| import collections |
| import functools |
| import itertools |
| import math |
| import os |
| import random |
| import re |
| import unittest |
| from typing import Any, Callable, Iterator, List, Tuple |
| |
| import torch |
| |
| from torch.testing._internal.common_utils import \ |
| (IS_SANDCASTLE, IS_WINDOWS, TestCase, make_tensor, run_tests, skipIfRocm, slowTest) |
| from torch.testing._internal.framework_utils import calculate_shards |
| from torch.testing._internal.common_device_type import \ |
| (PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY, PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, dtypes, |
| get_device_type_test_bases, instantiate_device_type_tests, onlyCUDA, onlyOnCPUAndCUDA, |
| deviceCountAtLeast) |
| from torch.testing._asserts import UsageError |
| |
| # For testing TestCase methods and torch.testing functions |
| class TestTesting(TestCase): |
| # Ensure that assertEqual handles numpy arrays properly |
| @dtypes(*(torch.testing.get_all_dtypes(include_half=True, include_bfloat16=False, |
| include_bool=True, include_complex=True))) |
| def test_assertEqual_numpy(self, device, dtype): |
| S = 10 |
| test_sizes = [ |
| (), |
| (0,), |
| (S,), |
| (S, S), |
| (0, S), |
| (S, 0)] |
| for test_size in test_sizes: |
| a = make_tensor(test_size, device, dtype, low=-5, high=5) |
| a_n = a.cpu().numpy() |
| msg = f'size: {test_size}' |
| self.assertEqual(a_n, a, rtol=0, atol=0, msg=msg) |
| self.assertEqual(a, a_n, rtol=0, atol=0, msg=msg) |
| self.assertEqual(a_n, a_n, rtol=0, atol=0, msg=msg) |
| |
| # Tests that when rtol or atol (including self.precision) is set, then |
| # the other is zeroed. |
| # TODO: this is legacy behavior and should be updated after test |
| # precisions are reviewed to be consistent with torch.isclose. |
| @onlyOnCPUAndCUDA |
| def test__comparetensors_legacy(self, device): |
| a = torch.tensor((10000000.,)) |
| b = torch.tensor((10000002.,)) |
| |
| x = torch.tensor((1.,)) |
| y = torch.tensor((1. + 1e-5,)) |
| |
| # Helper for reusing the tensor values as scalars |
| def _scalar_helper(a, b, rtol=None, atol=None): |
| return self._compareScalars(a.item(), b.item(), rtol=rtol, atol=atol) |
| |
| for op in (self._compareTensors, _scalar_helper): |
| # Tests default |
| result, debug_msg = op(a, b) |
| self.assertTrue(result) |
| |
| # Tests setting atol |
| result, debug_msg = op(a, b, atol=2, rtol=0) |
| self.assertTrue(result) |
| |
| # Tests setting atol too small |
| result, debug_msg = op(a, b, atol=1, rtol=0) |
| self.assertFalse(result) |
| |
| # Tests setting rtol too small |
| result, debug_msg = op(x, y, atol=0, rtol=1.05e-5) |
| self.assertTrue(result) |
| |
| # Tests setting rtol too small |
| result, debug_msg = op(x, y, atol=0, rtol=1e-5) |
| self.assertFalse(result) |
| |
| @onlyOnCPUAndCUDA |
| def test__comparescalars_debug_msg(self, device): |
| # float x float |
| result, debug_msg = self._compareScalars(4., 7.) |
| expected_msg = ("Comparing 4.0 and 7.0 gives a difference of 3.0, " |
| "but the allowed difference with rtol=1.3e-06 and " |
| "atol=1e-05 is only 1.9100000000000003e-05!") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # complex x complex, real difference |
| result, debug_msg = self._compareScalars(complex(1, 3), complex(3, 1)) |
| expected_msg = ("Comparing the real part 1.0 and 3.0 gives a difference " |
| "of 2.0, but the allowed difference with rtol=1.3e-06 " |
| "and atol=1e-05 is only 1.39e-05!") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # complex x complex, imaginary difference |
| result, debug_msg = self._compareScalars(complex(1, 3), complex(1, 5.5)) |
| expected_msg = ("Comparing the imaginary part 3.0 and 5.5 gives a " |
| "difference of 2.5, but the allowed difference with " |
| "rtol=1.3e-06 and atol=1e-05 is only 1.715e-05!") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # complex x int |
| result, debug_msg = self._compareScalars(complex(1, -2), 1) |
| expected_msg = ("Comparing the imaginary part -2.0 and 0.0 gives a " |
| "difference of 2.0, but the allowed difference with " |
| "rtol=1.3e-06 and atol=1e-05 is only 1e-05!") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # NaN x NaN, equal_nan=False |
| result, debug_msg = self._compareScalars(float('nan'), float('nan'), equal_nan=False) |
| expected_msg = ("Found nan and nan while comparing and either one is " |
| "nan and the other isn't, or both are nan and equal_nan " |
| "is False") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks that compareTensors provides the correct debug info |
| @onlyOnCPUAndCUDA |
| def test__comparetensors_debug_msg(self, device): |
| # Acquires atol that will be used |
| atol = max(1e-05, self.precision) |
| |
| # Checks float tensor comparisons (2D tensor) |
| a = torch.tensor(((0, 6), (7, 9)), device=device, dtype=torch.float32) |
| b = torch.tensor(((0, 7), (7, 22)), device=device, dtype=torch.float32) |
| result, debug_msg = self._compareTensors(a, b) |
| expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 4) " |
| "whose difference(s) exceeded the margin of error (including 0 nan comparisons). " |
| "The greatest difference was 13.0 (9.0 vs. 22.0), " |
| "which occurred at index (1, 1).").format(atol) |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks float tensor comparisons (with extremal values) |
| a = torch.tensor((float('inf'), 5, float('inf')), device=device, dtype=torch.float32) |
| b = torch.tensor((float('inf'), float('nan'), float('-inf')), device=device, dtype=torch.float32) |
| result, debug_msg = self._compareTensors(a, b) |
| expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 3) " |
| "whose difference(s) exceeded the margin of error (including 1 nan comparisons). " |
| "The greatest difference was nan (5.0 vs. nan), " |
| "which occurred at index 1.").format(atol) |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks float tensor comparisons (with finite vs nan differences) |
| a = torch.tensor((20, -6), device=device, dtype=torch.float32) |
| b = torch.tensor((-1, float('nan')), device=device, dtype=torch.float32) |
| result, debug_msg = self._compareTensors(a, b) |
| expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 2) " |
| "whose difference(s) exceeded the margin of error (including 1 nan comparisons). " |
| "The greatest difference was nan (-6.0 vs. nan), " |
| "which occurred at index 1.").format(atol) |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks int tensor comparisons (1D tensor) |
| a = torch.tensor((1, 2, 3, 4), device=device) |
| b = torch.tensor((2, 5, 3, 4), device=device) |
| result, debug_msg = self._compareTensors(a, b) |
| expected_msg = ("Found 2 different element(s) (out of 4), " |
| "with the greatest difference of 3 (2 vs. 5) " |
| "occuring at index 1.") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks bool tensor comparisons (0D tensor) |
| a = torch.tensor((True), device=device) |
| b = torch.tensor((False), device=device) |
| result, debug_msg = self._compareTensors(a, b) |
| expected_msg = ("Found 1 different element(s) (out of 1), " |
| "with the greatest difference of 1 (1 vs. 0) " |
| "occuring at index 0.") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks complex tensor comparisons (real part) |
| a = torch.tensor((1 - 1j, 4 + 3j), device=device) |
| b = torch.tensor((1 - 1j, 1 + 3j), device=device) |
| result, debug_msg = self._compareTensors(a, b) |
| expected_msg = ("Real parts failed to compare as equal! " |
| "With rtol=1.3e-06 and atol={0}, " |
| "found 1 element(s) (out of 2) whose difference(s) exceeded the " |
| "margin of error (including 0 nan comparisons). The greatest difference was " |
| "3.0 (4.0 vs. 1.0), which occurred at index 1.").format(atol) |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks complex tensor comparisons (imaginary part) |
| a = torch.tensor((1 - 1j, 4 + 3j), device=device) |
| b = torch.tensor((1 - 1j, 4 - 21j), device=device) |
| result, debug_msg = self._compareTensors(a, b) |
| expected_msg = ("Imaginary parts failed to compare as equal! " |
| "With rtol=1.3e-06 and atol={0}, " |
| "found 1 element(s) (out of 2) whose difference(s) exceeded the " |
| "margin of error (including 0 nan comparisons). The greatest difference was " |
| "24.0 (3.0 vs. -21.0), which occurred at index 1.").format(atol) |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks size mismatch |
| a = torch.tensor((1, 2), device=device) |
| b = torch.tensor((3), device=device) |
| result, debug_msg = self._compareTensors(a, b) |
| expected_msg = ("Attempted to compare equality of tensors " |
| "with different sizes. Got sizes torch.Size([2]) and torch.Size([]).") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks dtype mismatch |
| a = torch.tensor((1, 2), device=device, dtype=torch.long) |
| b = torch.tensor((1, 2), device=device, dtype=torch.float32) |
| result, debug_msg = self._compareTensors(a, b, exact_dtype=True) |
| expected_msg = ("Attempted to compare equality of tensors " |
| "with different dtypes. Got dtypes torch.int64 and torch.float32.") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Checks device mismatch |
| if self.device_type == 'cuda': |
| a = torch.tensor((5), device='cpu') |
| b = torch.tensor((5), device=device) |
| result, debug_msg = self._compareTensors(a, b, exact_device=True) |
| expected_msg = ("Attempted to compare equality of tensors " |
| "on different devices! Got devices cpu and cuda:0.") |
| self.assertEqual(debug_msg, expected_msg) |
| |
| # Helper for testing _compareTensors and _compareScalars |
| # Works on single element tensors |
| def _comparetensors_helper(self, tests, device, dtype, equal_nan, exact_dtype=True, atol=1e-08, rtol=1e-05): |
| for test in tests: |
| a = torch.tensor((test[0],), device=device, dtype=dtype) |
| b = torch.tensor((test[1],), device=device, dtype=dtype) |
| |
| # Tensor x Tensor comparison |
| compare_result, debug_msg = self._compareTensors(a, b, rtol=rtol, atol=atol, |
| equal_nan=equal_nan, |
| exact_dtype=exact_dtype) |
| self.assertEqual(compare_result, test[2]) |
| |
| # Scalar x Scalar comparison |
| compare_result, debug_msg = self._compareScalars(a.item(), b.item(), |
| rtol=rtol, atol=atol, |
| equal_nan=equal_nan) |
| self.assertEqual(compare_result, test[2]) |
| |
| def _isclose_helper(self, tests, device, dtype, equal_nan, atol=1e-08, rtol=1e-05): |
| for test in tests: |
| a = torch.tensor((test[0],), device=device, dtype=dtype) |
| b = torch.tensor((test[1],), device=device, dtype=dtype) |
| |
| actual = torch.isclose(a, b, equal_nan=equal_nan, atol=atol, rtol=rtol) |
| expected = test[2] |
| self.assertEqual(actual.item(), expected) |
| |
| # torch.close is not implemented for bool tensors |
| # see https://github.com/pytorch/pytorch/issues/33048 |
| def test_isclose_comparetensors_bool(self, device): |
| tests = ( |
| (True, True, True), |
| (False, False, True), |
| (True, False, False), |
| (False, True, False), |
| ) |
| |
| with self.assertRaises(RuntimeError): |
| self._isclose_helper(tests, device, torch.bool, False) |
| |
| self._comparetensors_helper(tests, device, torch.bool, False) |
| |
| @dtypes(torch.uint8, |
| torch.int8, torch.int16, torch.int32, torch.int64) |
| def test_isclose_comparetensors_integer(self, device, dtype): |
| tests = ( |
| (0, 0, True), |
| (0, 1, False), |
| (1, 0, False), |
| ) |
| |
| self._isclose_helper(tests, device, dtype, False) |
| |
| # atol and rtol tests |
| tests = [ |
| (0, 1, True), |
| (1, 0, False), |
| (1, 3, True), |
| ] |
| |
| self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5) |
| self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5) |
| |
| if dtype is torch.uint8: |
| tests = [ |
| (-1, 1, False), |
| (1, -1, False) |
| ] |
| else: |
| tests = [ |
| (-1, 1, True), |
| (1, -1, True) |
| ] |
| |
| self._isclose_helper(tests, device, dtype, False, atol=1.5, rtol=.5) |
| self._comparetensors_helper(tests, device, dtype, False, atol=1.5, rtol=.5) |
| |
| @onlyOnCPUAndCUDA |
| @dtypes(torch.float16, torch.float32, torch.float64) |
| def test_isclose_comparetensors_float(self, device, dtype): |
| tests = ( |
| (0, 0, True), |
| (0, -1, False), |
| (float('inf'), float('inf'), True), |
| (-float('inf'), float('inf'), False), |
| (float('inf'), float('nan'), False), |
| (float('nan'), float('nan'), False), |
| (0, float('nan'), False), |
| (1, 1, True), |
| ) |
| |
| self._isclose_helper(tests, device, dtype, False) |
| self._comparetensors_helper(tests, device, dtype, False) |
| |
| # atol and rtol tests |
| eps = 1e-2 if dtype is torch.half else 1e-6 |
| tests = ( |
| (0, 1, True), |
| (0, 1 + eps, False), |
| (1, 0, False), |
| (1, 3, True), |
| (1 - eps, 3, False), |
| (-.25, .5, True), |
| (-.25 - eps, .5, False), |
| (.25, -.5, True), |
| (.25 + eps, -.5, False), |
| ) |
| |
| self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5) |
| self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5) |
| |
| # equal_nan = True tests |
| tests = ( |
| (0, float('nan'), False), |
| (float('inf'), float('nan'), False), |
| (float('nan'), float('nan'), True), |
| ) |
| |
| self._isclose_helper(tests, device, dtype, True) |
| |
| self._comparetensors_helper(tests, device, dtype, True) |
| |
| # torch.close with equal_nan=True is not implemented for complex inputs |
| # see https://github.com/numpy/numpy/issues/15959 |
| # Note: compareTensor will compare the real and imaginary parts of a |
| # complex tensors separately, unlike isclose. |
| @dtypes(torch.complex64, torch.complex128) |
| def test_isclose_comparetensors_complex(self, device, dtype): |
| tests = ( |
| (complex(1, 1), complex(1, 1 + 1e-8), True), |
| (complex(0, 1), complex(1, 1), False), |
| (complex(1, 1), complex(1, 0), False), |
| (complex(1, 1), complex(1, float('nan')), False), |
| (complex(1, float('nan')), complex(1, float('nan')), False), |
| (complex(1, 1), complex(1, float('inf')), False), |
| (complex(float('inf'), 1), complex(1, float('inf')), False), |
| (complex(-float('inf'), 1), complex(1, float('inf')), False), |
| (complex(-float('inf'), 1), complex(float('inf'), 1), False), |
| (complex(float('inf'), 1), complex(float('inf'), 1), True), |
| (complex(float('inf'), 1), complex(float('inf'), 1 + 1e-4), False), |
| ) |
| |
| self._isclose_helper(tests, device, dtype, False) |
| self._comparetensors_helper(tests, device, dtype, False) |
| |
| # atol and rtol tests |
| |
| # atol and rtol tests |
| eps = 1e-6 |
| tests = ( |
| # Complex versions of float tests (real part) |
| (complex(0, 0), complex(1, 0), True), |
| (complex(0, 0), complex(1 + eps, 0), False), |
| (complex(1, 0), complex(0, 0), False), |
| (complex(1, 0), complex(3, 0), True), |
| (complex(1 - eps, 0), complex(3, 0), False), |
| (complex(-.25, 0), complex(.5, 0), True), |
| (complex(-.25 - eps, 0), complex(.5, 0), False), |
| (complex(.25, 0), complex(-.5, 0), True), |
| (complex(.25 + eps, 0), complex(-.5, 0), False), |
| # Complex versions of float tests (imaginary part) |
| (complex(0, 0), complex(0, 1), True), |
| (complex(0, 0), complex(0, 1 + eps), False), |
| (complex(0, 1), complex(0, 0), False), |
| (complex(0, 1), complex(0, 3), True), |
| (complex(0, 1 - eps), complex(0, 3), False), |
| (complex(0, -.25), complex(0, .5), True), |
| (complex(0, -.25 - eps), complex(0, .5), False), |
| (complex(0, .25), complex(0, -.5), True), |
| (complex(0, .25 + eps), complex(0, -.5), False), |
| ) |
| |
| self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5) |
| self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5) |
| |
| # atol and rtol tests for isclose |
| tests = ( |
| # Complex-specific tests |
| (complex(1, -1), complex(-1, 1), False), |
| (complex(1, -1), complex(2, -2), True), |
| (complex(-math.sqrt(2), math.sqrt(2)), |
| complex(-math.sqrt(.5), math.sqrt(.5)), True), |
| (complex(-math.sqrt(2), math.sqrt(2)), |
| complex(-math.sqrt(.501), math.sqrt(.499)), False), |
| (complex(2, 4), complex(1., 8.8523607), True), |
| (complex(2, 4), complex(1., 8.8523607 + eps), False), |
| (complex(1, 99), complex(4, 100), True), |
| ) |
| |
| self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5) |
| |
| # atol and rtol tests for compareTensors |
| tests = ( |
| (complex(1, -1), complex(-1, 1), False), |
| (complex(1, -1), complex(2, -2), True), |
| (complex(1, 99), complex(4, 100), False), |
| ) |
| |
| self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5) |
| |
| # equal_nan = True tests |
| tests = ( |
| (complex(1, 1), complex(1, float('nan')), False), |
| (complex(float('nan'), 1), complex(1, float('nan')), False), |
| (complex(float('nan'), 1), complex(float('nan'), 1), True), |
| ) |
| |
| with self.assertRaises(RuntimeError): |
| self._isclose_helper(tests, device, dtype, True) |
| |
| self._comparetensors_helper(tests, device, dtype, True) |
| |
| # Tests that isclose with rtol or atol values less than zero throws a |
| # RuntimeError |
| @dtypes(torch.bool, torch.uint8, |
| torch.int8, torch.int16, torch.int32, torch.int64, |
| torch.float16, torch.float32, torch.float64) |
| def test_isclose_atol_rtol_greater_than_zero(self, device, dtype): |
| t = torch.tensor((1,), device=device, dtype=dtype) |
| |
| with self.assertRaises(RuntimeError): |
| torch.isclose(t, t, atol=-1, rtol=1) |
| with self.assertRaises(RuntimeError): |
| torch.isclose(t, t, atol=1, rtol=-1) |
| with self.assertRaises(RuntimeError): |
| torch.isclose(t, t, atol=-1, rtol=-1) |
| |
| @dtypes(torch.bool, torch.long, torch.float, torch.cfloat) |
| def test_make_tensor(self, device, dtype): |
| def check(size, low, high, requires_grad, noncontiguous): |
| t = make_tensor(size, device, dtype, low=low, high=high, |
| requires_grad=requires_grad, noncontiguous=noncontiguous) |
| |
| self.assertEqual(t.shape, size) |
| self.assertEqual(t.device, torch.device(device)) |
| self.assertEqual(t.dtype, dtype) |
| |
| low = -9 if low is None else low |
| high = 9 if high is None else high |
| |
| if t.numel() > 0 and dtype in [torch.long, torch.float]: |
| self.assertTrue(t.le(high).logical_and(t.ge(low)).all().item()) |
| |
| if dtype in [torch.float, torch.cfloat]: |
| self.assertEqual(t.requires_grad, requires_grad) |
| else: |
| self.assertFalse(t.requires_grad) |
| |
| if t.numel() > 1: |
| self.assertEqual(t.is_contiguous(), not noncontiguous) |
| else: |
| self.assertTrue(t.is_contiguous()) |
| |
| for size in (tuple(), (0,), (1,), (1, 1), (2,), (2, 3), (8, 16, 32)): |
| check(size, None, None, False, False) |
| check(size, 2, 4, True, True) |
| |
| def test_assert_messages(self, device): |
| self.assertIsNone(self._get_assert_msg(msg=None)) |
| self.assertEqual("\nno_debug_msg", self._get_assert_msg("no_debug_msg")) |
| self.assertEqual("no_user_msg", self._get_assert_msg(msg=None, debug_msg="no_user_msg")) |
| self.assertEqual("debug_msg\nuser_msg", self._get_assert_msg(msg="user_msg", debug_msg="debug_msg")) |
| |
| # The following tests (test_cuda_assert_*) are added to ensure test suite terminates early |
| # when CUDA assert was thrown. Because all subsequent test will fail if that happens. |
| # These tests are slow because it spawn another process to run test suite. |
| # See: https://github.com/pytorch/pytorch/issues/49019 |
| @onlyCUDA |
| @slowTest |
| def test_cuda_assert_should_stop_common_utils_test_suite(self, device): |
| # test to ensure common_utils.py override has early termination for CUDA. |
| stderr = TestCase.runWithPytorchAPIUsageStderr("""\ |
| #!/usr/bin/env python3 |
| |
| import torch |
| from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest) |
| |
| class TestThatContainsCUDAAssertFailure(TestCase): |
| |
| @slowTest |
| def test_throw_unrecoverable_cuda_exception(self): |
| x = torch.rand(10, device='cuda') |
| # cause unrecoverable CUDA exception, recoverable on CPU |
| y = x[torch.tensor([25])].cpu() |
| |
| @slowTest |
| def test_trivial_passing_test_case_on_cpu_cuda(self): |
| x1 = torch.tensor([0., 1.], device='cuda') |
| x2 = torch.tensor([0., 1.], device='cpu') |
| self.assertEqual(x1, x2) |
| |
| if __name__ == '__main__': |
| run_tests() |
| """) |
| # should capture CUDA error |
| self.assertIn('CUDA error: device-side assert triggered', stderr) |
| # should run only 1 test because it throws unrecoverable error. |
| self.assertIn('Ran 1 test', stderr) |
| |
| |
| @onlyCUDA |
| @slowTest |
| def test_cuda_assert_should_stop_common_device_type_test_suite(self, device): |
| # test to ensure common_device_type.py override has early termination for CUDA. |
| stderr = TestCase.runWithPytorchAPIUsageStderr("""\ |
| #!/usr/bin/env python3 |
| |
| import torch |
| from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest) |
| from torch.testing._internal.common_device_type import instantiate_device_type_tests |
| |
| class TestThatContainsCUDAAssertFailure(TestCase): |
| |
| @slowTest |
| def test_throw_unrecoverable_cuda_exception(self, device): |
| x = torch.rand(10, device=device) |
| # cause unrecoverable CUDA exception, recoverable on CPU |
| y = x[torch.tensor([25])].cpu() |
| |
| @slowTest |
| def test_trivial_passing_test_case_on_cpu_cuda(self, device): |
| x1 = torch.tensor([0., 1.], device=device) |
| x2 = torch.tensor([0., 1.], device='cpu') |
| self.assertEqual(x1, x2) |
| |
| instantiate_device_type_tests( |
| TestThatContainsCUDAAssertFailure, |
| globals(), |
| only_for='cuda' |
| ) |
| |
| if __name__ == '__main__': |
| run_tests() |
| """) |
| # should capture CUDA error |
| self.assertIn('CUDA error: device-side assert triggered', stderr) |
| # should run only 1 test because it throws unrecoverable error. |
| self.assertIn('Ran 1 test', stderr) |
| |
| |
| @onlyCUDA |
| @slowTest |
| def test_cuda_assert_should_not_stop_common_distributed_test_suite(self, device): |
| # test to ensure common_distributed.py override should not early terminate CUDA. |
| stderr = TestCase.runWithPytorchAPIUsageStderr("""\ |
| #!/usr/bin/env python3 |
| |
| import torch |
| from torch.testing._internal.common_utils import (run_tests, slowTest) |
| from torch.testing._internal.common_device_type import instantiate_device_type_tests |
| from torch.testing._internal.common_distributed import MultiProcessTestCase |
| |
| class TestThatContainsCUDAAssertFailure(MultiProcessTestCase): |
| |
| @slowTest |
| def test_throw_unrecoverable_cuda_exception(self, device): |
| x = torch.rand(10, device=device) |
| # cause unrecoverable CUDA exception, recoverable on CPU |
| y = x[torch.tensor([25])].cpu() |
| |
| @slowTest |
| def test_trivial_passing_test_case_on_cpu_cuda(self, device): |
| x1 = torch.tensor([0., 1.], device=device) |
| x2 = torch.tensor([0., 1.], device='cpu') |
| self.assertEqual(x1, x2) |
| |
| instantiate_device_type_tests( |
| TestThatContainsCUDAAssertFailure, |
| globals(), |
| only_for='cuda' |
| ) |
| |
| if __name__ == '__main__': |
| run_tests() |
| """) |
| # we are currently disabling CUDA early termination for distributed tests. |
| self.assertIn('Ran 2 test', stderr) |
| |
| |
| instantiate_device_type_tests(TestTesting, globals()) |
| |
| |
| class TestFrameworkUtils(TestCase): |
| tests = [ |
| 'super_long_test', |
| 'long_test1', |
| 'long_test2', |
| 'normal_test1', |
| 'normal_test2', |
| 'normal_test3', |
| 'short_test1', |
| 'short_test2', |
| 'short_test3', |
| 'short_test4', |
| 'short_test5', |
| ] |
| |
| test_times = { |
| 'super_long_test': 55, |
| 'long_test1': 22, |
| 'long_test2': 18, |
| 'normal_test1': 9, |
| 'normal_test2': 7, |
| 'normal_test3': 5, |
| 'short_test1': 1, |
| 'short_test2': 0.6, |
| 'short_test3': 0.4, |
| 'short_test4': 0.3, |
| 'short_test5': 0.01, |
| } |
| |
| def test_calculate_2_shards_with_complete_test_times(self): |
| expected_shards = [ |
| (60, ['super_long_test', 'normal_test3']), |
| (58.31, ['long_test1', 'long_test2', 'normal_test1', 'normal_test2', 'short_test1', 'short_test2', |
| 'short_test3', 'short_test4', 'short_test5']) |
| ] |
| self.assertEqual(expected_shards, calculate_shards(2, self.tests, self.test_times)) |
| |
| |
| def test_calculate_5_shards_with_complete_test_times(self): |
| expected_shards = [ |
| (55, ['super_long_test']), |
| (22, ['long_test1', ]), |
| (18, ['long_test2', ]), |
| (11.31, ['normal_test1', 'short_test1', 'short_test2', 'short_test3', 'short_test4', 'short_test5']), |
| (12, ['normal_test2', 'normal_test3']), |
| ] |
| self.assertEqual(expected_shards, calculate_shards(5, self.tests, self.test_times)) |
| |
| |
| def test_calculate_2_shards_with_incomplete_test_times(self): |
| incomplete_test_times = {k: v for k, v in self.test_times.items() if 'test1' in k} |
| expected_shards = [ |
| (22, ['long_test1', 'long_test2', 'normal_test3', 'short_test3', 'short_test5']), |
| (10, ['normal_test1', 'short_test1', 'super_long_test', 'normal_test2', 'short_test2', 'short_test4']), |
| ] |
| self.assertEqual(expected_shards, calculate_shards(2, self.tests, incomplete_test_times)) |
| |
| |
| def test_calculate_5_shards_with_incomplete_test_times(self): |
| incomplete_test_times = {k: v for k, v in self.test_times.items() if 'test1' in k} |
| expected_shards = [ |
| (22, ['long_test1', 'normal_test2', 'short_test5']), |
| (9, ['normal_test1', 'normal_test3']), |
| (1, ['short_test1', 'short_test2']), |
| (0, ['super_long_test', 'short_test3']), |
| (0, ['long_test2', 'short_test4']), |
| ] |
| self.assertEqual(expected_shards, calculate_shards(5, self.tests, incomplete_test_times)) |
| |
| def test_calculate_2_shards_against_optimal_shards(self): |
| for _ in range(100): |
| random.seed(120) |
| random_times = {k: random.random() * 10 for k in self.tests} |
| # all test times except first two |
| rest_of_tests = [i for k, i in random_times.items() if k != 'super_long_test' and k != 'long_test1'] |
| sum_of_rest = sum(rest_of_tests) |
| random_times['super_long_test'] = max(sum_of_rest / 2, max(rest_of_tests)) |
| random_times['long_test1'] = sum_of_rest - random_times['super_long_test'] |
| # An optimal sharding would look like the below, but we don't need to compute this for the test: |
| # optimal_shards = [ |
| # (sum_of_rest, ['super_long_test', 'long_test1']), |
| # (sum_of_rest, [i for i in self.tests if i != 'super_long_test' and i != 'long_test1']), |
| # ] |
| calculated_shards = calculate_shards(2, self.tests, random_times) |
| max_shard_time = max(calculated_shards[0][0], calculated_shards[1][0]) |
| if sum_of_rest != 0: |
| # The calculated shard should not have a ratio worse than 7/6 for num_shards = 2 |
| self.assertGreaterEqual(7.0 / 6.0, max_shard_time / sum_of_rest) |
| sorted_tests = sorted(self.tests) |
| sorted_shard_tests = sorted(calculated_shards[0][1] + calculated_shards[1][1]) |
| # All the tests should be represented by some shard |
| self.assertEqual(sorted_tests, sorted_shard_tests) |
| |
| @skipIfRocm |
| @unittest.skipIf(IS_WINDOWS, "Skipping because doesn't work for windows") |
| @unittest.skipIf(IS_SANDCASTLE, "Skipping because doesn't work on sandcastle") |
| def test_filtering_env_var(self): |
| # Test environment variable selected device type test generator. |
| test_filter_file_template = """\ |
| #!/usr/bin/env python3 |
| |
| import torch |
| from torch.testing._internal.common_utils import (TestCase, run_tests) |
| from torch.testing._internal.common_device_type import instantiate_device_type_tests |
| |
| class TestEnvironmentVariable(TestCase): |
| |
| def test_trivial_passing_test(self, device): |
| x1 = torch.tensor([0., 1.], device=device) |
| x2 = torch.tensor([0., 1.], device='cpu') |
| self.assertEqual(x1, x2) |
| |
| instantiate_device_type_tests( |
| TestEnvironmentVariable, |
| globals(), |
| ) |
| |
| if __name__ == '__main__': |
| run_tests() |
| """ |
| test_bases_count = len(get_device_type_test_bases()) |
| # Test without setting env var should run everything. |
| env = dict(os.environ) |
| for k in ['IN_CI', PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY, PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY]: |
| if k in env.keys(): |
| del env[k] |
| _, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env) |
| self.assertIn(f'Ran {test_bases_count} test', stderr.decode('ascii')) |
| |
| # Test with setting only_for should only run 1 test. |
| env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY] = 'cpu' |
| _, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env) |
| self.assertIn('Ran 1 test', stderr.decode('ascii')) |
| |
| # Test with setting except_for should run 1 less device type from default. |
| del env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY] |
| env[PYTORCH_TESTING_DEVICE_EXCEPT_FOR_KEY] = 'cpu' |
| _, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env) |
| self.assertIn(f'Ran {test_bases_count-1} test', stderr.decode('ascii')) |
| |
| # Test with setting both should throw exception |
| env[PYTORCH_TESTING_DEVICE_ONLY_FOR_KEY] = 'cpu' |
| _, stderr = TestCase.run_process_no_exception(test_filter_file_template, env=env) |
| self.assertNotIn('OK', stderr.decode('ascii')) |
| |
| |
| def assert_fns() -> List[Callable]: |
| """Gets assert functions to be tested. |
| |
| Returns: |
| List(Callable): Top-level assert functions from :mod:`torch.testing`. |
| """ |
| return [torch.testing.assert_equal, torch.testing.assert_close] |
| |
| |
| def make_assert_inputs(actual: Any, expected: Any) -> List[Tuple[Any, Any]]: |
| """Makes inputs for assert functions based on two examples. |
| |
| Args: |
| actual (Any): Actual input. |
| expected (Any): Expected input. |
| |
| Returns: |
| List[Tuple[Any, Any]]: Pair of example inputs, as well as the example inputs wrapped in sequences |
| (:class:`tuple`, :class:`list`), and mappings (:class:`dict`, :class:`~collections.OrderedDict`). |
| """ |
| return [ |
| (actual, expected), |
| # tuple vs. tuple |
| ((actual,), (expected,)), |
| # list vs. list |
| ([actual], [expected]), |
| # tuple vs. list |
| ((actual,), [expected]), |
| # dict vs. dict |
| ({"t": actual}, {"t": expected}), |
| # OrderedDict vs. OrderedDict |
| (collections.OrderedDict([("t", actual)]), collections.OrderedDict([("t", expected)])), |
| # dict vs. OrderedDict |
| ({"t": actual}, collections.OrderedDict([("t", expected)])), |
| # list of tuples vs. tuple of lists |
| ([(actual,)], ([expected],)), |
| # list of dicts vs. tuple of OrderedDicts |
| ([{"t": actual}], (collections.OrderedDict([("t", expected)]),)), |
| # dict of lists vs. OrderedDict of tuples |
| ({"t": [actual]}, collections.OrderedDict([("t", (expected,))])), |
| ] |
| |
| |
| def assert_fns_with_inputs(actual: Any, expected: Any) -> Iterator[Callable]: |
| """Yields assert functions with included positional inputs based on two examples. |
| |
| .. note:: |
| |
| This is a valid product of combinations from :meth:`assert_fns` and :meth:`make_inputs`. Every test |
| that does not test for anything specific should iterate over this to maximize the coverage. |
| |
| Args: |
| actual (Any): Actual input. |
| expected (Any): Expected input. |
| |
| Yields: |
| List[Callable]: Assert functions with predefined positional inputs. |
| """ |
| for assert_fn, inputs in itertools.product(assert_fns(), make_assert_inputs(actual, expected)): |
| yield functools.partial(assert_fn, *inputs) |
| |
| |
| class TestAsserts(TestCase): |
| def test_sparse_support(self): |
| actual = torch.empty(()) |
| expected = torch.sparse_coo_tensor(size=()) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaises(UsageError): |
| fn() |
| |
| def test_quantized_support(self): |
| val = 1 |
| actual = torch.tensor([val], dtype=torch.int32) |
| expected = torch._empty_affine_quantized(actual.shape, scale=1, zero_point=0, dtype=torch.qint32) |
| expected.fill_(val) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaises(UsageError): |
| fn() |
| |
| def test_mismatching_shape(self): |
| actual = torch.empty(()) |
| expected = actual.clone().reshape((1,)) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, "shape"): |
| fn() |
| |
| def test_mismatching_dtype(self): |
| actual = torch.empty((), dtype=torch.float) |
| expected = actual.clone().to(torch.int) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, "dtype"): |
| fn() |
| |
| def test_mismatching_dtype_no_check(self): |
| actual = torch.ones((), dtype=torch.float) |
| expected = actual.clone().to(torch.int) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| fn(check_dtype=False) |
| |
| def test_mismatching_stride(self): |
| actual = torch.empty((2, 2)) |
| expected = torch.as_strided(actual.clone().t().contiguous(), actual.shape, actual.stride()[::-1]) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, "stride"): |
| fn() |
| |
| def test_mismatching_stride_no_check(self): |
| actual = torch.rand((2, 2)) |
| expected = torch.as_strided(actual.clone().t().contiguous(), actual.shape, actual.stride()[::-1]) |
| for fn in assert_fns_with_inputs(actual, expected): |
| fn(check_stride=False) |
| |
| def test_mismatching_values(self): |
| actual = torch.tensor(1) |
| expected = torch.tensor(2) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaises(AssertionError): |
| fn() |
| |
| def test_assert_equal(self): |
| actual = torch.tensor(1) |
| expected = actual.clone() |
| |
| torch.testing.assert_equal(actual, expected) |
| |
| def test_assert_close(self): |
| actual = torch.tensor(1.0) |
| expected = actual.clone() |
| |
| torch.testing.assert_close(actual, expected) |
| |
| def test_assert_close_only_rtol(self): |
| actual = torch.empty(()) |
| expected = actual.clone() |
| |
| with self.assertRaises(UsageError): |
| torch.testing.assert_close(actual, expected, rtol=0.0) |
| |
| def test_assert_close_only_atol(self): |
| actual = torch.empty(()) |
| expected = actual.clone() |
| |
| with self.assertRaises(UsageError): |
| torch.testing.assert_close(actual, expected, atol=0.0) |
| |
| def test_assert_close_mismatching_values_rtol(self): |
| eps = 1e-3 |
| actual = torch.tensor(1.0) |
| expected = torch.tensor(1.0 + eps) |
| |
| with self.assertRaises(AssertionError): |
| torch.testing.assert_close(actual, expected, rtol=eps / 2, atol=0.0) |
| |
| def test_assert_close_matching_values_rtol(self): |
| eps = 1e-3 |
| actual = torch.tensor(1.0) |
| expected = torch.tensor(1.0 + eps) |
| |
| torch.testing.assert_close(actual, expected, rtol=eps * 2, atol=0.0) |
| |
| def test_assert_close_mismatching_values_atol(self): |
| eps = 1e-3 |
| actual = torch.tensor(0.0) |
| expected = torch.tensor(eps) |
| |
| with self.assertRaises(AssertionError): |
| torch.testing.assert_close(actual, expected, rtol=0.0, atol=eps / 2) |
| |
| def test_assert_close_matching_values_atol(self): |
| eps = 1e-3 |
| actual = torch.tensor(0.0) |
| expected = torch.tensor(eps) |
| |
| torch.testing.assert_close(actual, expected, rtol=0.0, atol=eps * 2) |
| |
| def test_assert_close_nan(self): |
| a = torch.tensor(float("NaN")) |
| b = torch.tensor(float("NaN")) |
| |
| for inputs in make_assert_inputs(a, b): |
| with self.assertRaises(AssertionError): |
| torch.testing.assert_close(*inputs) |
| |
| def test_assert_close_equal_nan(self): |
| a = torch.tensor(float("NaN")) |
| b = torch.tensor(float("NaN")) |
| |
| for inputs in make_assert_inputs(a, b): |
| torch.testing.assert_close(*inputs, equal_nan=True) |
| |
| def test_assert_close_equal_nan_complex(self): |
| a = torch.tensor(complex(1, float("NaN"))) |
| b = torch.tensor(complex(float("NaN"), 1)) |
| |
| for inputs in make_assert_inputs(a, b): |
| with self.assertRaises(AssertionError): |
| torch.testing.assert_close(*inputs, equal_nan=True) |
| |
| def test_assert_close_equal_nan_complex_relaxed(self): |
| a = torch.tensor(complex(1, float("NaN"))) |
| b = torch.tensor(complex(float("NaN"), 1)) |
| |
| for inputs in make_assert_inputs(a, b): |
| torch.testing.assert_close(*inputs, equal_nan="relaxed") |
| |
| def test_mismatching_values_msg_mismatches(self): |
| actual = torch.tensor([1, 2, 3, 4]) |
| expected = torch.tensor([1, 2, 5, 6]) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, re.escape("Mismatched elements: 2 / 4 (50.0%)")): |
| fn() |
| |
| def test_mismatching_values_msg_abs_diff(self): |
| actual = torch.tensor([[1, 2], [3, 4]]) |
| expected = torch.tensor([[1, 2], [5, 4]]) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, re.escape("Greatest absolute difference: 2 at (1, 0)")): |
| fn() |
| |
| def test_mismatching_values_msg_rel_diff(self): |
| actual = torch.tensor([[1, 2], [3, 4]]) |
| expected = torch.tensor([[1, 4], [3, 4]]) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, re.escape("Greatest relative difference: 0.5 at (0, 1)")): |
| fn() |
| |
| def test_mismatching_values_zero_div_zero(self): |
| actual = torch.tensor([1.0, 0.0]) |
| expected = torch.tensor([2.0, 0.0]) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| # Although it looks complicated, this regex just makes sure that the word 'nan' is not part of the error |
| # message. That would happen if the 0 / 0 is used for the mismatch computation although it matches. |
| with self.assertRaisesRegex(AssertionError, "((?!nan).)*"): |
| fn() |
| |
| def test_mismatching_values_msg_complex_real(self): |
| actual = torch.tensor(complex(0, 1)) |
| expected = torch.tensor(complex(1, 1)) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the real part")): |
| fn() |
| |
| def test_mismatching_values_msg_complex_imag(self): |
| actual = torch.tensor(complex(1, 0)) |
| expected = torch.tensor(complex(1, 1)) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, re.escape("The failure occurred for the imaginary part")): |
| fn() |
| |
| def test_assert_close_mismatching_values_msg_rtol(self): |
| rtol = 1e-3 |
| |
| actual = torch.tensor(1) |
| expected = torch.tensor(2) |
| |
| for inputs in make_assert_inputs(actual, expected): |
| with self.assertRaisesRegex( |
| AssertionError, re.escape(f"Greatest relative difference: 0.5 at 0 (up to {rtol} allowed)") |
| ): |
| torch.testing.assert_close(*inputs, rtol=rtol, atol=0.0) |
| |
| def test_assert_close_mismatching_values_msg_atol(self): |
| atol = 1e-3 |
| |
| actual = torch.tensor(1) |
| expected = torch.tensor(2) |
| |
| for inputs in make_assert_inputs(actual, expected): |
| with self.assertRaisesRegex( |
| AssertionError, re.escape(f"Greatest absolute difference: 1 at 0 (up to {atol} allowed)") |
| ): |
| torch.testing.assert_close(*inputs, rtol=0.0, atol=atol) |
| |
| def test_sequence_mismatching_len(self): |
| actual = (torch.empty(()),) |
| expected = () |
| |
| for fn in assert_fns(): |
| with self.assertRaises(AssertionError): |
| fn(actual, expected) |
| |
| def test_sequence_mismatching_values_msg(self): |
| t1 = torch.tensor(1) |
| t2 = torch.tensor(2) |
| |
| actual = (t1, t1) |
| expected = (t1, t2) |
| |
| for fn in assert_fns(): |
| with self.assertRaisesRegex(AssertionError, r"index\s+1"): |
| fn(actual, expected) |
| |
| def test_mapping_mismatching_keys(self): |
| actual = {"a": torch.empty(())} |
| expected = {} |
| |
| for fn in assert_fns(): |
| with self.assertRaises(AssertionError): |
| fn(actual, expected) |
| |
| def test_mapping_mismatching_values_msg(self): |
| t1 = torch.tensor(1) |
| t2 = torch.tensor(2) |
| |
| actual = {"a": t1, "b": t1} |
| expected = {"a": t1, "b": t2} |
| |
| for fn in assert_fns(): |
| with self.assertRaisesRegex(AssertionError, r"key\s+'b'"): |
| fn(actual, expected) |
| |
| def test_type_inequality(self): |
| actual = torch.empty(2) |
| expected = actual.tolist() |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, str(type(expected))): |
| fn() |
| |
| def test_unknown_type(self): |
| actual = "0" |
| expected = "0" |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(UsageError, str(type(actual))): |
| fn() |
| |
| def test_numpy(self): |
| tensor = torch.rand(2, 2, dtype=torch.float32) |
| actual = tensor.numpy() |
| expected = actual.copy() |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| fn() |
| |
| def test_scalar(self): |
| number = torch.randint(10, size=()).item() |
| for actual, expected in itertools.product((int(number), float(number), complex(number)), repeat=2): |
| check_dtype = type(actual) is type(expected) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| fn(check_dtype=check_dtype) |
| |
| def test_msg_str(self): |
| msg = "Custom error message!" |
| |
| actual = torch.tensor(1) |
| expected = torch.tensor(2) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, msg): |
| fn(msg=msg) |
| |
| def test_msg_callable(self): |
| msg = "Custom error message!" |
| |
| def make_msg(actual, expected, trace): |
| return msg |
| |
| actual = torch.tensor(1) |
| expected = torch.tensor(2) |
| |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, msg): |
| fn(msg=make_msg) |
| |
| |
| class TestAssertsMultiDevice(TestCase): |
| @deviceCountAtLeast(1) |
| def test_mismatching_device(self, devices): |
| for actual_device, expected_device in itertools.permutations(("cpu", *devices), 2): |
| actual = torch.empty((), device=actual_device) |
| expected = actual.clone().to(expected_device) |
| for fn in assert_fns_with_inputs(actual, expected): |
| with self.assertRaisesRegex(AssertionError, "device"): |
| fn() |
| |
| @deviceCountAtLeast(1) |
| def test_mismatching_device_no_check(self, devices): |
| for actual_device, expected_device in itertools.permutations(("cpu", *devices), 2): |
| actual = torch.rand((), device=actual_device) |
| expected = actual.clone().to(expected_device) |
| for fn in assert_fns_with_inputs(actual, expected): |
| fn(check_device=False) |
| |
| |
| instantiate_device_type_tests(TestAssertsMultiDevice, globals(), only_for="cuda") |
| |
| |
| if __name__ == '__main__': |
| run_tests() |