| """Adds docstrings to functions defined in the torch._C""" |
| |
| import re |
| |
| import torch._C |
| from torch._C import _add_docstr as add_docstr |
| |
| |
| def parse_kwargs(desc): |
| """Maps a description of args to a dictionary of {argname: description}. |
| Input: |
| (' weight (Tensor): a weight tensor\n' + |
| ' Some optional description') |
| Output: { |
| 'weight': \ |
| 'weight (Tensor): a weight tensor\n Some optional description' |
| } |
| """ |
| # Split on exactly 4 spaces after a newline |
| regx = re.compile("\n\s{4}(?!\s)") |
| kwargs = [section.strip() for section in regx.split(desc)] |
| kwargs = [section for section in kwargs if len(section) > 0] |
| return {desc.split(' ')[0]: desc for desc in kwargs} |
| |
| |
| reduceops_common_args = parse_kwargs(""" |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| If specified, the input tensor is casted to :attr:`dtype` before the operation |
| is performed. This is useful for preventing data type overflows. Default: None. |
| """) |
| |
| factory_common_args = parse_kwargs(""" |
| out (Tensor, optional): the output tensor |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`). |
| layout (:class:`torch.layout`, optional): the desired layout of returned Tensor. |
| Default: ``torch.strided``. |
| device (:class:`torch.device`, optional): the desired device of returned tensor. |
| Default: if ``None``, uses the current device for the default tensor type |
| (see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU |
| for CPU tensor types and the current CUDA device for CUDA tensor types. |
| requires_grad (bool, optional): If autograd should record operations on the |
| returned tensor. Default: ``False``. |
| """) |
| |
| factory_like_common_args = parse_kwargs(""" |
| input (Tensor): the size of :attr:`input` will determine size of the output tensor |
| layout (:class:`torch.layout`, optional): the desired layout of returned tensor. |
| Default: if ``None``, defaults to the layout of :attr:`input`. |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor. |
| Default: if ``None``, defaults to the dtype of :attr:`input`. |
| device (:class:`torch.device`, optional): the desired device of returned tensor. |
| Default: if ``None``, defaults to the device of :attr:`input`. |
| requires_grad (bool, optional): If autograd should record operations on the |
| returned tensor. Default: ``False``. |
| """) |
| |
| factory_data_common_args = parse_kwargs(""" |
| data (array_like): Initial data for the tensor. Can be a list, tuple, |
| NumPy ``ndarray``, scalar, and other types. |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: if ``None``, infers data type from :attr:`data`. |
| device (:class:`torch.device`, optional): the desired device of returned tensor. |
| Default: if ``None``, uses the current device for the default tensor type |
| (see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU |
| for CPU tensor types and the current CUDA device for CUDA tensor types. |
| requires_grad (bool, optional): If autograd should record operations on the |
| returned tensor. Default: ``False``. |
| """) |
| |
| add_docstr(torch.abs, |
| r""" |
| abs(input, out=None) -> Tensor |
| |
| Computes the element-wise absolute value of the given :attr:`input` tensor. |
| |
| .. math:: |
| \text{out}_{i} = |\text{input}_{i}| |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.abs(torch.tensor([-1, -2, 3])) |
| tensor([ 1, 2, 3]) |
| """) |
| |
| add_docstr(torch.acos, |
| r""" |
| acos(input, out=None) -> Tensor |
| |
| Returns a new tensor with the arccosine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cos^{-1}(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.3348, -0.5889, 0.2005, -0.1584]) |
| >>> torch.acos(a) |
| tensor([ 1.2294, 2.2004, 1.3690, 1.7298]) |
| """) |
| |
| add_docstr(torch.add, |
| r""" |
| .. function:: add(input, value, out=None) |
| |
| Adds the scalar :attr:`value` to each element of the input :attr:`input` |
| and returns a new resulting tensor. |
| |
| .. math:: |
| \text{out} = \text{input} + \text{value} |
| |
| If :attr:`input` is of type FloatTensor or DoubleTensor, :attr:`value` must be |
| a real number, otherwise it should be an integer. |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): the number to be added to each element of :attr:`input` |
| |
| Keyword arguments: |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.0202, 1.0985, 1.3506, -0.6056]) |
| >>> torch.add(a, 20) |
| tensor([ 20.0202, 21.0985, 21.3506, 19.3944]) |
| |
| .. function:: add(input, value=1, other, out=None) |
| |
| Each element of the tensor :attr:`other` is multiplied by the scalar |
| :attr:`value` and added to each element of the tensor :attr:`input`. |
| The resulting tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| \text{out} = \text{input} + \text{value} \times \text{other} |
| |
| If :attr:`other` is of type FloatTensor or DoubleTensor, :attr:`value` must be |
| a real number, otherwise it should be an integer. |
| |
| Args: |
| input (Tensor): the first input tensor |
| value (Number): the scalar multiplier for :attr:`other` |
| other (Tensor): the second input tensor |
| |
| Keyword arguments: |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.9732, -0.3497, 0.6245, 0.4022]) |
| >>> b = torch.randn(4, 1) |
| >>> b |
| tensor([[ 0.3743], |
| [-1.7724], |
| [-0.5811], |
| [-0.8017]]) |
| >>> torch.add(a, 10, b) |
| tensor([[ 2.7695, 3.3930, 4.3672, 4.1450], |
| [-18.6971, -18.0736, -17.0994, -17.3216], |
| [ -6.7845, -6.1610, -5.1868, -5.4090], |
| [ -8.9902, -8.3667, -7.3925, -7.6147]]) |
| """) |
| |
| add_docstr(torch.addbmm, |
| r""" |
| addbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices stored |
| in :attr:`batch1` and :attr:`batch2`, |
| with a reduced add step (all matrix multiplications get accumulated |
| along the first dimension). |
| :attr:`mat` is added to the final result. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the |
| same number of matrices. |
| |
| If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a |
| :math:`(b \times m \times p)` tensor, :attr:`mat` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor |
| and :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| .. math:: |
| out = \beta\ \text{mat} + \alpha\ (\sum_{i=0}^{b} \text{batch1}_i \mathbin{@} \text{batch2}_i) |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha` |
| must be real numbers, otherwise they should be integers. |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| mat (Tensor): matrix to be added |
| alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`) |
| batch1 (Tensor): the first batch of matrices to be multiplied |
| batch2 (Tensor): the second batch of matrices to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(3, 5) |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> torch.addbmm(M, batch1, batch2) |
| tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], |
| [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], |
| [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]]) |
| """) |
| |
| add_docstr(torch.addcdiv, |
| r""" |
| addcdiv(tensor, value=1, tensor1, tensor2, out=None) -> Tensor |
| |
| Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`, |
| multiply the result by the scalar :attr:`value` and add it to :attr:`tensor`. |
| |
| .. math:: |
| \text{out}_i = \text{tensor}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i} |
| |
| The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be |
| a real number, otherwise an integer. |
| |
| Args: |
| tensor (Tensor): the tensor to be added |
| value (Number, optional): multiplier for :math:`\text{tensor1} / \text{tensor2}` |
| tensor1 (Tensor): the numerator tensor |
| tensor2 (Tensor): the denominator tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> t = torch.randn(1, 3) |
| >>> t1 = torch.randn(3, 1) |
| >>> t2 = torch.randn(1, 3) |
| >>> torch.addcdiv(t, 0.1, t1, t2) |
| tensor([[-0.2312, -3.6496, 0.1312], |
| [-1.0428, 3.4292, -0.1030], |
| [-0.5369, -0.9829, 0.0430]]) |
| """) |
| |
| add_docstr(torch.addcmul, |
| r""" |
| addcmul(tensor, value=1, tensor1, tensor2, out=None) -> Tensor |
| |
| Performs the element-wise multiplication of :attr:`tensor1` |
| by :attr:`tensor2`, multiply the result by the scalar :attr:`value` |
| and add it to :attr:`tensor`. |
| |
| .. math:: |
| \text{out}_i = \text{tensor}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i |
| |
| The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be |
| a real number, otherwise an integer. |
| |
| Args: |
| tensor (Tensor): the tensor to be added |
| value (Number, optional): multiplier for :math:`tensor1 .* tensor2` |
| tensor1 (Tensor): the tensor to be multiplied |
| tensor2 (Tensor): the tensor to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> t = torch.randn(1, 3) |
| >>> t1 = torch.randn(3, 1) |
| >>> t2 = torch.randn(1, 3) |
| >>> torch.addcmul(t, 0.1, t1, t2) |
| tensor([[-0.8635, -0.6391, 1.6174], |
| [-0.7617, -0.5879, 1.7388], |
| [-0.8353, -0.6249, 1.6511]]) |
| """) |
| |
| add_docstr(torch.addmm, |
| r""" |
| addmm(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor |
| |
| Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. |
| The matrix :attr:`mat` is added to the final result. |
| |
| If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a |
| :math:`(m \times p)` tensor, then :attr:`mat` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor |
| and :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between |
| :attr:`mat1` and :attr`mat2` and the added matrix :attr:`mat` respectively. |
| |
| .. math:: |
| \text{out} = \beta\ \text{mat} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i) |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers. |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| mat (Tensor): matrix to be added |
| alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`) |
| mat1 (Tensor): the first matrix to be multiplied |
| mat2 (Tensor): the second matrix to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(2, 3) |
| >>> mat1 = torch.randn(2, 3) |
| >>> mat2 = torch.randn(3, 3) |
| >>> torch.addmm(M, mat1, mat2) |
| tensor([[-4.8716, 1.4671, -1.3746], |
| [ 0.7573, -3.9555, -2.8681]]) |
| """) |
| |
| add_docstr(torch.addmv, |
| r""" |
| addmv(beta=1, tensor, alpha=1, mat, vec, out=None) -> Tensor |
| |
| Performs a matrix-vector product of the matrix :attr:`mat` and |
| the vector :attr:`vec`. |
| The vector :attr:`tensor` is added to the final result. |
| |
| If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of |
| size `m`, then :attr:`tensor` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a 1-D tensor of size `n` and |
| :attr:`out` will be 1-D tensor of size `n`. |
| |
| :attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between |
| :attr:`mat` and :attr:`vec` and the added tensor :attr:`tensor` respectively. |
| |
| .. math:: |
| \text{out} = \beta\ \text{tensor} + \alpha\ (\text{mat} \mathbin{@} \text{vec}) |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`tensor` (:math:`\beta`) |
| tensor (Tensor): vector to be added |
| alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`) |
| mat (Tensor): matrix to be multiplied |
| vec (Tensor): vector to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(2) |
| >>> mat = torch.randn(2, 3) |
| >>> vec = torch.randn(3) |
| >>> torch.addmv(M, mat, vec) |
| tensor([-0.3768, -5.5565]) |
| """) |
| |
| add_docstr(torch.addr, |
| r""" |
| addr(beta=1, mat, alpha=1, vec1, vec2, out=None) -> Tensor |
| |
| Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2` |
| and adds it to the matrix :attr:`mat`. |
| |
| Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the |
| outer product between :attr:`vec1` and :attr:`vec2` and the added matrix |
| :attr:`mat` respectively. |
| |
| .. math:: |
| \text{out} = \beta\ \text{mat} + \alpha\ (\text{vec1} \otimes \text{vec2}) |
| |
| If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector |
| of size `m`, then :attr:`mat` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a matrix of size |
| :math:`(n \times m)` and :attr:`out` will be a matrix of size |
| :math:`(n \times m)`. |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| mat (Tensor): matrix to be added |
| alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`) |
| vec1 (Tensor): the first vector of the outer product |
| vec2 (Tensor): the second vector of the outer product |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> vec1 = torch.arange(1., 4.) |
| >>> vec2 = torch.arange(1., 3.) |
| >>> M = torch.zeros(3, 2) |
| >>> torch.addr(M, vec1, vec2) |
| tensor([[ 1., 2.], |
| [ 2., 4.], |
| [ 3., 6.]]) |
| """) |
| |
| add_docstr(torch.allclose, |
| r""" |
| allclose(self, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool |
| |
| This function checks if all :attr:`self` and :attr:`other` satisfy the condition: |
| |
| .. math:: |
| \lvert \text{self} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert |
| |
| elementwise, for all elements of :attr:`self` and :attr:`other`. The behaviour of this function is analogous to |
| `numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>`_ |
| |
| Args: |
| self (Tensor): first tensor to compare |
| other (Tensor): second tensor to compare |
| atol (float, optional): absolute tolerance. Default: 1e-08 |
| rtol (float, optional): relative tolerance. Default: 1e-05 |
| equal_nan (float, optional): if ``True``, then two ``NaN`` s will be compared as equal. Default: ``False`` |
| |
| Example:: |
| |
| >>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08])) |
| False |
| >>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09])) |
| True |
| >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')])) |
| False |
| >>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True) |
| True |
| """) |
| |
| add_docstr(torch.as_tensor, |
| r""" |
| as_tensor(data, dtype=None, device=None) -> Tensor |
| |
| Convert the data into a `torch.Tensor`. If the data is already a `Tensor` with the same `dtype` and `device`, |
| no copy will be performed, otherwise a new `Tensor` will be returned with computational graph retained if data |
| `Tensor` has ``requires_grad=True``. Similarly, if the data is an ``ndarray`` of the corresponding `dtype` and |
| the `device` is the cpu, no copy will be performed. |
| |
| Args: |
| {data} |
| {dtype} |
| {device} |
| |
| Example:: |
| |
| >>> a = numpy.array([1, 2, 3]) |
| >>> t = torch.as_tensor(a) |
| >>> t |
| tensor([ 1, 2, 3]) |
| >>> t[0] = -1 |
| >>> a |
| array([-1, 2, 3]) |
| |
| >>> a = numpy.array([1, 2, 3]) |
| >>> t = torch.as_tensor(a, device=torch.device('cuda')) |
| >>> t |
| tensor([ 1, 2, 3]) |
| >>> t[0] = -1 |
| >>> a |
| array([1, 2, 3]) |
| """.format(**factory_data_common_args)) |
| |
| add_docstr(torch.asin, |
| r""" |
| asin(input, out=None) -> Tensor |
| |
| Returns a new tensor with the arcsine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sin^{-1}(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.5962, 1.4985, -0.4396, 1.4525]) |
| >>> torch.asin(a) |
| tensor([-0.6387, nan, -0.4552, nan]) |
| """) |
| |
| add_docstr(torch.atan, |
| r""" |
| atan(input, out=None) -> Tensor |
| |
| Returns a new tensor with the arctangent of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tan^{-1}(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.2341, 0.2539, -0.6256, -0.6448]) |
| >>> torch.atan(a) |
| tensor([ 0.2299, 0.2487, -0.5591, -0.5727]) |
| """) |
| |
| add_docstr(torch.atan2, |
| r""" |
| atan2(input1, input2, out=None) -> Tensor |
| |
| Returns a new tensor with the arctangent of the elements of :attr:`input1` |
| and :attr:`input2`. |
| |
| The shapes of :attr:`input1` and :attr:`input2` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input1 (Tensor): the first input tensor |
| input2 (Tensor): the second input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.9041, 0.0196, -0.3108, -2.4423]) |
| >>> torch.atan2(a, torch.randn(4)) |
| tensor([ 0.9833, 0.0811, -1.9743, -1.4151]) |
| """) |
| |
| add_docstr(torch.baddbmm, |
| r""" |
| baddbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices in :attr:`batch1` |
| and :attr:`batch2`. |
| :attr:`mat` is added to the final result. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same |
| number of matrices. |
| |
| If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a |
| :math:`(b \times m \times p)` tensor, then :attr:`mat` must be |
| :ref:`broadcastable <broadcasting-semantics>` with a |
| :math:`(b \times n \times p)` tensor and :attr:`out` will be a |
| :math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the |
| same as the scaling factors used in :meth:`torch.addbmm`. |
| |
| .. math:: |
| \text{out}_i = \beta\ \text{mat}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i) |
| |
| For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and |
| :attr:`alpha` must be real numbers, otherwise they should be integers. |
| |
| Args: |
| beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`) |
| mat (Tensor): the tensor to be added |
| alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`) |
| batch1 (Tensor): the first batch of matrices to be multiplied |
| batch2 (Tensor): the second batch of matrices to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> M = torch.randn(10, 3, 5) |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> torch.baddbmm(M, batch1, batch2).size() |
| torch.Size([10, 3, 5]) |
| """) |
| |
| add_docstr(torch.bernoulli, |
| r""" |
| bernoulli(input, *, generator=None, out=None) -> Tensor |
| |
| Draws binary random numbers (0 or 1) from a Bernoulli distribution. |
| |
| The :attr:`input` tensor should be a tensor containing probabilities |
| to be used for drawing the binary random number. |
| Hence, all values in :attr:`input` have to be in the range: |
| :math:`0 \leq \text{input}_i \leq 1`. |
| |
| The :math:`\text{i}^{th}` element of the output tensor will draw a |
| value :math:`1` according to the :math:`\text{i}^{th}` probability value given |
| in :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) |
| |
| The returned :attr:`out` tensor only has values 0 or 1 and is of the same |
| shape as :attr:`input`. |
| |
| :attr:`out` can have integral ``dtype``, but :attr`input` must have floating |
| point ``dtype``. |
| |
| Args: |
| input (Tensor): the input tensor of probability values for the Bernoulli distribution |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] |
| >>> a |
| tensor([[ 0.1737, 0.0950, 0.3609], |
| [ 0.7148, 0.0289, 0.2676], |
| [ 0.9456, 0.8937, 0.7202]]) |
| >>> torch.bernoulli(a) |
| tensor([[ 1., 0., 0.], |
| [ 0., 0., 0.], |
| [ 1., 1., 1.]]) |
| |
| >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 |
| >>> torch.bernoulli(a) |
| tensor([[ 1., 1., 1.], |
| [ 1., 1., 1.], |
| [ 1., 1., 1.]]) |
| >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 |
| >>> torch.bernoulli(a) |
| tensor([[ 0., 0., 0.], |
| [ 0., 0., 0.], |
| [ 0., 0., 0.]]) |
| """) |
| |
| add_docstr(torch.bincount, |
| r""" |
| bincount(self, weights=None, minlength=0) -> Tensor |
| |
| Count the frequency of each value in an array of non-negative ints. |
| |
| The number of bins (size 1) is one larger than the largest value in |
| :attr:`input` unless :attr:`input` is empty, in which case the result is a |
| tensor of size 0. If :attr:`minlength` is specified, the number of bins is at least |
| :attr:`minlength` and if :attr:`input` is empty, then the result is tensor of size |
| :attr:`minlength` filled with zeros. If ``n`` is the value at position ``i``, |
| ``out[n] += weights[i]`` if :attr:`weights` is specified else |
| ``out[n] += 1``. |
| |
| Arguments: |
| input (Tensor): 1-d int tensor |
| weights (Tensor): optional, weight for each value in the input tensor. |
| Should be of same size as input tensor. |
| minlength (int): optional, minimum number of bins. Should be non-negative. |
| |
| Returns: |
| output (Tensor): a tensor of shape ``Size([max(input) + 1])`` if |
| :attr:`input` is non-empty, else ``Size(0)`` |
| |
| Example:: |
| |
| >>> input = torch.randint(0, 8, (5,), dtype=torch.int64) |
| >>> weights = torch.linspace(0, 1, steps=5) |
| >>> input, weights |
| (tensor([4, 3, 6, 3, 4]), |
| tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000]) |
| |
| >>> torch.bincount(input) |
| tensor([0, 0, 0, 2, 2, 0, 1]) |
| |
| >>> input.bincount(weights) |
| tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000]) |
| """) |
| |
| add_docstr(torch.bmm, |
| r""" |
| bmm(batch1, batch2, out=None) -> Tensor |
| |
| Performs a batch matrix-matrix product of matrices stored in :attr:`batch1` |
| and :attr:`batch2`. |
| |
| :attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing |
| the same number of matrices. |
| |
| If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a |
| :math:`(b \times m \times p)` tensor, :attr:`out` will be a |
| :math:`(b \times n \times p)` tensor. |
| |
| .. math:: |
| \text{out}_i = \text{batch1}_i \mathbin{@} \text{batch2}_i |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| For broadcasting matrix products, see :func:`torch.matmul`. |
| |
| Args: |
| batch1 (Tensor): the first batch of matrices to be multiplied |
| batch2 (Tensor): the second batch of matrices to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> batch1 = torch.randn(10, 3, 4) |
| >>> batch2 = torch.randn(10, 4, 5) |
| >>> res = torch.bmm(batch1, batch2) |
| >>> res.size() |
| torch.Size([10, 3, 5]) |
| """) |
| |
| add_docstr(torch.stack, |
| r""" |
| stack(seq, dim=0, out=None) -> Tensor |
| |
| Concatenates sequence of tensors along a new dimension. |
| |
| All tensors need to be of the same size. |
| |
| Arguments: |
| seq (sequence of Tensors): sequence of tensors to concatenate |
| dim (int): dimension to insert. Has to be between 0 and the number |
| of dimensions of concatenated tensors (inclusive) |
| out (Tensor, optional): the output tensor |
| """) |
| |
| add_docstr(torch.chunk, |
| r""" |
| chunk(tensor, chunks, dim=0) -> List of Tensors |
| |
| Splits a tensor into a specific number of chunks. |
| |
| Last chunk will be smaller if the tensor size along the given dimension |
| :attr:`dim` is not divisible by :attr:`chunks`. |
| |
| Arguments: |
| tensor (Tensor): the tensor to split |
| chunks (int): number of chunks to return |
| dim (int): dimension along which to split the tensor |
| """) |
| |
| add_docstr(torch.cat, |
| r""" |
| cat(seq, dim=0, out=None) -> Tensor |
| |
| Concatenates the given sequence of :attr:`seq` tensors in the given dimension. |
| All tensors must either have the same shape (except in the concatenating |
| dimension) or be empty. |
| |
| :func:`torch.cat` can be seen as an inverse operation for :func:`torch.split` |
| and :func:`torch.chunk`. |
| |
| :func:`torch.cat` can be best understood via examples. |
| |
| Args: |
| seq (sequence of Tensors): any python sequence of tensors of the same type. |
| Non-empty tensors provided must have the same shape, except in the |
| cat dimension. |
| dim (int, optional): the dimension over which the tensors are concatenated |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| tensor([[ 0.6580, -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497]]) |
| >>> torch.cat((x, x, x), 0) |
| tensor([[ 0.6580, -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497], |
| [ 0.6580, -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497], |
| [ 0.6580, -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497]]) |
| >>> torch.cat((x, x, x), 1) |
| tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580, |
| -1.0969, -0.4614], |
| [-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034, |
| -0.5790, 0.1497]]) |
| """) |
| |
| add_docstr(torch.ceil, |
| r""" |
| ceil(input, out=None) -> Tensor |
| |
| Returns a new tensor with the ceil of the elements of :attr:`input`, |
| the smallest integer greater than or equal to each element. |
| |
| .. math:: |
| \text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil = \left\lfloor \text{input}_{i} \right\rfloor + 1 |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.6341, -1.4208, -1.0900, 0.5826]) |
| >>> torch.ceil(a) |
| tensor([-0., -1., -1., 1.]) |
| """) |
| |
| add_docstr(torch.reciprocal, |
| r""" |
| reciprocal(input, out=None) -> Tensor |
| |
| Returns a new tensor with the reciprocal of the elements of :attr:`input` |
| |
| .. math:: |
| \text{out}_{i} = \frac{1}{\text{input}_{i}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.4595, -2.1219, -1.4314, 0.7298]) |
| >>> torch.reciprocal(a) |
| tensor([-2.1763, -0.4713, -0.6986, 1.3702]) |
| """) |
| |
| add_docstr(torch.clamp, |
| r""" |
| clamp(input, min, max, out=None) -> Tensor |
| |
| Clamp all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]` and return |
| a resulting tensor: |
| |
| .. math:: |
| y_i = \begin{cases} |
| \text{min} & \text{if } x_i < \text{min} \\ |
| x_i & \text{if } \text{min} \leq x_i \leq \text{max} \\ |
| \text{max} & \text{if } x_i > \text{max} |
| \end{cases} |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, args :attr:`min` |
| and :attr:`max` must be real numbers, otherwise they should be integers. |
| |
| Args: |
| input (Tensor): the input tensor |
| min (Number): lower-bound of the range to be clamped to |
| max (Number): upper-bound of the range to be clamped to |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-1.7120, 0.1734, -0.0478, -0.0922]) |
| >>> torch.clamp(a, min=-0.5, max=0.5) |
| tensor([-0.5000, 0.1734, -0.0478, -0.0922]) |
| |
| .. function:: clamp(input, *, min, out=None) -> Tensor |
| |
| Clamps all elements in :attr:`input` to be larger or equal :attr:`min`. |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value` |
| should be a real number, otherwise it should be an integer. |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): minimal value of each element in the output |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.0299, -2.3184, 2.1593, -0.8883]) |
| >>> torch.clamp(a, min=0.5) |
| tensor([ 0.5000, 0.5000, 2.1593, 0.5000]) |
| |
| .. function:: clamp(input, *, max, out=None) -> Tensor |
| |
| Clamps all elements in :attr:`input` to be smaller or equal :attr:`max`. |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value` |
| should be a real number, otherwise it should be an integer. |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): maximal value of each element in the output |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.7753, -0.4702, -0.4599, 1.1899]) |
| >>> torch.clamp(a, max=0.5) |
| tensor([ 0.5000, -0.4702, -0.4599, 0.5000]) |
| """) |
| |
| add_docstr(torch.cos, |
| r""" |
| cos(input, out=None) -> Tensor |
| |
| Returns a new tensor with the cosine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cos(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 1.4309, 1.2706, -0.8562, 0.9796]) |
| >>> torch.cos(a) |
| tensor([ 0.1395, 0.2957, 0.6553, 0.5574]) |
| """) |
| |
| add_docstr(torch.cosh, |
| r""" |
| cosh(input, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic cosine of the elements of |
| :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \cosh(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.1632, 1.1835, -0.6979, -0.7325]) |
| >>> torch.cosh(a) |
| tensor([ 1.0133, 1.7860, 1.2536, 1.2805]) |
| """) |
| |
| add_docstr(torch.cross, |
| r""" |
| cross(input, other, dim=-1, out=None) -> Tensor |
| |
| |
| Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input` |
| and :attr:`other`. |
| |
| :attr:`input` and :attr:`other` must have the same size, and the size of their |
| :attr:`dim` dimension should be 3. |
| |
| If :attr:`dim` is not given, it defaults to the first dimension found with the |
| size 3. |
| |
| Args: |
| input (Tensor): the input tensor |
| other (Tensor): the second input tensor |
| dim (int, optional): the dimension to take the cross-product in. |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 3) |
| >>> a |
| tensor([[-0.3956, 1.1455, 1.6895], |
| [-0.5849, 1.3672, 0.3599], |
| [-1.1626, 0.7180, -0.0521], |
| [-0.1339, 0.9902, -2.0225]]) |
| >>> b = torch.randn(4, 3) |
| >>> b |
| tensor([[-0.0257, -1.4725, -1.2251], |
| [-1.1479, -0.7005, -1.9757], |
| [-1.3904, 0.3726, -1.1836], |
| [-0.9688, -0.7153, 0.2159]]) |
| >>> torch.cross(a, b, dim=1) |
| tensor([[ 1.0844, -0.5281, 0.6120], |
| [-2.4490, -1.5687, 1.9792], |
| [-0.8304, -1.3037, 0.5650], |
| [-1.2329, 1.9883, 1.0551]]) |
| >>> torch.cross(a, b) |
| tensor([[ 1.0844, -0.5281, 0.6120], |
| [-2.4490, -1.5687, 1.9792], |
| [-0.8304, -1.3037, 0.5650], |
| [-1.2329, 1.9883, 1.0551]]) |
| """) |
| |
| add_docstr(torch.cumprod, |
| r""" |
| cumprod(input, dim, dtype=None) -> Tensor |
| |
| Returns the cumulative product of elements of :attr:`input` in the dimension |
| :attr:`dim`. |
| |
| For example, if :attr:`input` is a vector of size N, the result will also be |
| a vector of size N, with elements. |
| |
| .. math:: |
| y_i = x_1 \times x_2\times x_3\times \dots \times x_i |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to do the operation over |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126, |
| -0.2129, -0.4206, 0.1968]) |
| >>> torch.cumprod(a, dim=0) |
| tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065, |
| 0.0014, -0.0006, -0.0001]) |
| |
| >>> a[5] = 0.0 |
| >>> torch.cumprod(a, dim=0) |
| tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000, |
| 0.0000, -0.0000, -0.0000]) |
| """.format(**reduceops_common_args)) |
| |
| add_docstr(torch.cumsum, |
| r""" |
| cumsum(input, dim, out=None) -> Tensor |
| |
| Returns the cumulative sum of elements of :attr:`input` in the dimension |
| :attr:`dim`. |
| |
| For example, if :attr:`input` is a vector of size N, the result will also be |
| a vector of size N, with elements. |
| |
| .. math:: |
| y_i = x_1 + x_2 + x_3 + \dots + x_i |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to do the operation over |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(10) |
| >>> a |
| tensor([-0.8286, -0.4890, 0.5155, 0.8443, 0.1865, -0.1752, -2.0595, |
| 0.1850, -1.1571, -0.4243]) |
| >>> torch.cumsum(a, dim=0) |
| tensor([-0.8286, -1.3175, -0.8020, 0.0423, 0.2289, 0.0537, -2.0058, |
| -1.8209, -2.9780, -3.4022]) |
| """.format(**reduceops_common_args)) |
| |
| add_docstr(torch.diag, |
| r""" |
| diag(input, diagonal=0, out=None) -> Tensor |
| |
| - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor |
| with the elements of :attr:`input` as the diagonal. |
| - If :attr:`input` is a matrix (2-D tensor), then returns a 1-D tensor with |
| the diagonal elements of :attr:`input`. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider: |
| |
| - If :attr:`diagonal` = 0, it is the main diagonal. |
| - If :attr:`diagonal` > 0, it is above the main diagonal. |
| - If :attr:`diagonal` < 0, it is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input tensor |
| diagonal (int, optional): the diagonal to consider |
| out (Tensor, optional): the output tensor |
| |
| .. seealso:: |
| |
| :func:`torch.diagonal` always returns the diagonal of its input. |
| |
| :func:`torch.diagflat` always constructs a tensor with diagonal elements |
| specified by the input. |
| |
| Examples: |
| |
| Get the square matrix where the input vector is the diagonal:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| tensor([ 0.5950,-0.0872, 2.3298]) |
| >>> torch.diag(a) |
| tensor([[ 0.5950, 0.0000, 0.0000], |
| [ 0.0000,-0.0872, 0.0000], |
| [ 0.0000, 0.0000, 2.3298]]) |
| >>> torch.diag(a, 1) |
| tensor([[ 0.0000, 0.5950, 0.0000, 0.0000], |
| [ 0.0000, 0.0000,-0.0872, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 2.3298], |
| [ 0.0000, 0.0000, 0.0000, 0.0000]]) |
| |
| Get the k-th diagonal of a given matrix:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| tensor([[-0.4264, 0.0255,-0.1064], |
| [ 0.8795,-0.2429, 0.1374], |
| [ 0.1029,-0.6482,-1.6300]]) |
| >>> torch.diag(a, 0) |
| tensor([-0.4264,-0.2429,-1.6300]) |
| >>> torch.diag(a, 1) |
| tensor([ 0.0255, 0.1374]) |
| """) |
| |
| add_docstr(torch.diagflat, |
| r""" |
| diagflat(input, diagonal=0) -> Tensor |
| |
| - If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor |
| with the elements of :attr:`input` as the diagonal. |
| - If :attr:`input` is a tensor with more than one dimension, then returns a |
| 2-D tensor with diagonal elements equal to a flattened :attr:`input`. |
| |
| The argument :attr:`offset` controls which diagonal to consider: |
| |
| - If :attr:`offset` = 0, it is the main diagonal. |
| - If :attr:`offset` > 0, it is above the main diagonal. |
| - If :attr:`offset` < 0, it is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input tensor |
| offset (int, optional): the diagonal to consider. Default: 0 (main |
| diagonal). |
| |
| Examples:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| tensor([-0.2956, -0.9068, 0.1695]) |
| >>> torch.diagflat(a) |
| tensor([[-0.2956, 0.0000, 0.0000], |
| [ 0.0000, -0.9068, 0.0000], |
| [ 0.0000, 0.0000, 0.1695]]) |
| >>> torch.diagflat(a, 1) |
| tensor([[ 0.0000, -0.2956, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, -0.9068, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 0.1695], |
| [ 0.0000, 0.0000, 0.0000, 0.0000]]) |
| |
| >>> a = torch.randn(2, 2) |
| >>> a |
| tensor([[ 0.2094, -0.3018], |
| [-0.1516, 1.9342]]) |
| >>> torch.diagflat(a) |
| tensor([[ 0.2094, 0.0000, 0.0000, 0.0000], |
| [ 0.0000, -0.3018, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, -0.1516, 0.0000], |
| [ 0.0000, 0.0000, 0.0000, 1.9342]]) |
| """) |
| |
| add_docstr(torch.diagonal, |
| r""" |
| diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor |
| |
| Returns a partial view of :attr:`input` with the its diagonal elements |
| with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension |
| at the end of the shape. |
| |
| The argument :attr:`offset` controls which diagonal to consider: |
| |
| - If :attr:`offset` = 0, it is the main diagonal. |
| - If :attr:`offset` > 0, it is above the main diagonal. |
| - If :attr:`offset` < 0, it is below the main diagonal. |
| |
| Args: |
| input (Tensor): the input tensor. Must be at least 2-dimensional. |
| offset (int, optional): which diagonal to consider. Default: 0 |
| (main diagonal). |
| dim1 (int, optional): first dimension with respect to which to |
| take diagonal. Default: 0. |
| dim2 (int, optional): second dimension with respect to which to |
| take diagonal. Default: 1. |
| |
| .. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1. |
| |
| Examples:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| tensor([[-1.0854, 1.1431, -0.1752], |
| [ 0.8536, -0.0905, 0.0360], |
| [ 0.6927, -0.3735, -0.4945]]) |
| |
| |
| >>> torch.diagonal(a, 0) |
| tensor([-1.0854, -0.0905, -0.4945]) |
| |
| |
| >>> torch.diagonal(a, 1) |
| tensor([ 1.1431, 0.0360]) |
| |
| |
| >>> x = torch.randn(2, 5, 4, 2) |
| >>> torch.diagonal(x, offset=-1, dim1=1, dim2=2) |
| tensor([[[-1.2631, 0.3755, -1.5977, -1.8172], |
| [-1.1065, 1.0401, -0.2235, -0.7938]], |
| |
| [[-1.7325, -0.3081, 0.6166, 0.2335], |
| [ 1.0500, 0.7336, -0.3836, -1.1015]]]) |
| """) |
| |
| add_docstr(torch.digamma, |
| r""" |
| digamma(input) -> Tensor |
| |
| Computes the logarithmic derivative of the gamma function on `input`. |
| |
| .. math:: |
| \psi(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)} |
| |
| Args: |
| input (Tensor): the tensor to compute the digamma function on |
| |
| Example:: |
| |
| >>> a = torch.tensor([1, 0.5]) |
| >>> torch.digamma(a) |
| tensor([-0.5772, -1.9635]) |
| """) |
| |
| |
| add_docstr(torch.dist, |
| r""" |
| dist(input, other, p=2) -> Tensor |
| |
| Returns the p-norm of (:attr:`input` - :attr:`other`) |
| |
| The shapes of :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the input tensor |
| other (Tensor): the Right-hand-side input tensor |
| p (float, optional): the norm to be computed |
| |
| Example:: |
| |
| >>> x = torch.randn(4) |
| >>> x |
| tensor([-1.5393, -0.8675, 0.5916, 1.6321]) |
| >>> y = torch.randn(4) |
| >>> y |
| tensor([ 0.0967, -1.0511, 0.6295, 0.8360]) |
| >>> torch.dist(x, y, 3.5) |
| tensor(1.6727) |
| >>> torch.dist(x, y, 3) |
| tensor(1.6973) |
| >>> torch.dist(x, y, 0) |
| tensor(inf) |
| >>> torch.dist(x, y, 1) |
| tensor(2.6537) |
| """) |
| |
| add_docstr(torch.div, |
| r""" |
| .. function:: div(input, value, out=None) -> Tensor |
| |
| Divides each element of the input :attr:`input` with the scalar :attr:`value` |
| and returns a new resulting tensor. |
| |
| .. math:: |
| \text{out}_i = \frac{\text{input}_i}{\text{value}} |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value` |
| should be a real number, otherwise it should be an integer |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): the number to be divided to each element of :attr:`input` |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637]) |
| >>> torch.div(a, 0.5) |
| tensor([ 0.7620, 2.5548, -0.5944, -0.7439, 0.9275]) |
| |
| .. function:: div(input, other, out=None) -> Tensor |
| |
| Each element of the tensor :attr:`input` is divided by each element |
| of the tensor :attr:`other`. The resulting tensor is returned. The shapes of |
| :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| \text{out}_i = \frac{\text{input}_i}{\text{other}_i} |
| |
| Args: |
| input (Tensor): the numerator tensor |
| other (Tensor): the denominator tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[-0.3711, -1.9353, -0.4605, -0.2917], |
| [ 0.1815, -1.0111, 0.9805, -1.5923], |
| [ 0.1062, 1.4581, 0.7759, -1.2344], |
| [-0.1830, -0.0313, 1.1908, -1.4757]]) |
| >>> b = torch.randn(4) |
| >>> b |
| tensor([ 0.8032, 0.2930, -0.8113, -0.2308]) |
| >>> torch.div(a, b) |
| tensor([[-0.4620, -6.6051, 0.5676, 1.2637], |
| [ 0.2260, -3.4507, -1.2086, 6.8988], |
| [ 0.1322, 4.9764, -0.9564, 5.3480], |
| [-0.2278, -0.1068, -1.4678, 6.3936]]) |
| """) |
| |
| add_docstr(torch.dot, |
| r""" |
| dot(tensor1, tensor2) -> Tensor |
| |
| Computes the dot product (inner product) of two tensors. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| |
| Example:: |
| |
| >>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1])) |
| tensor(7) |
| """) |
| |
| add_docstr(torch.eig, |
| r""" |
| eig(a, eigenvectors=False, out=None) -> (Tensor, Tensor) |
| |
| Computes the eigenvalues and eigenvectors of a real square matrix. |
| |
| Args: |
| a (Tensor): the square matrix of shape :math:`(n \times n)` for which the eigenvalues and eigenvectors |
| will be computed |
| eigenvectors (bool): ``True`` to compute both eigenvalues and eigenvectors; |
| otherwise, only eigenvalues will be computed |
| out (tuple, optional): the output tensors |
| |
| Returns: |
| (Tensor, Tensor): A tuple containing |
| |
| - **e** (*Tensor*): Shape :math:`(n \times 2)`. Each row is an eigenvalue of ``a``, |
| where the first element is the real part and the second element is the imaginary part. |
| The eigenvalues are not necessarily ordered. |
| - **v** (*Tensor*): If ``eigenvectors=False``, it's an empty tensor. |
| Otherwise, this tensor of shape :math:`(n \times n)` can be used to compute normalized (unit length) |
| eigenvectors of corresponding eigenvalues ``e`` as follows. |
| If the corresponding e[j] is a real number, column v[:, j] is the eigenvector corresponding to |
| eigenvalue e[j]. |
| If the corresponding e[j] and e[j + 1] eigenvalues form a complex conjugate pair, then the true eigenvectors |
| can be computed as |
| :math:`\text{eigenvector}[j] = v[:, j] + i \times v[:, j + 1]`, |
| :math:`\text{eigenvector}[j + 1] = v[:, j] - i \times v[:, j + 1]`. |
| """) |
| |
| add_docstr(torch.eq, |
| r""" |
| eq(input, other, out=None) -> Tensor |
| |
| Computes element-wise equality |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor. Must be a `ByteTensor` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[ 1, 0], |
| [ 0, 1]], dtype=torch.uint8) |
| """) |
| |
| add_docstr(torch.equal, |
| r""" |
| equal(tensor1, tensor2) -> bool |
| |
| ``True`` if two tensors have the same size and elements, ``False`` otherwise. |
| |
| Example:: |
| |
| >>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2])) |
| True |
| """) |
| |
| add_docstr(torch.erf, |
| r""" |
| erf(tensor, out=None) -> Tensor |
| |
| Computes the error function of each element. The error function is defined as follows: |
| |
| .. math:: |
| \mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.erf(torch.tensor([0, -1., 10.])) |
| tensor([ 0.0000, -0.8427, 1.0000]) |
| """) |
| |
| add_docstr(torch.erfc, |
| r""" |
| erfc(tensor, out=None) -> Tensor |
| |
| Computes the complementary error function of each element. The complementary error function is defined as follows: |
| |
| .. math:: |
| \mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.erfc(torch.tensor([0, -1., 10.])) |
| tensor([ 1.0000, 1.8427, 0.0000]) |
| """) |
| |
| add_docstr(torch.erfinv, |
| r""" |
| erfinv(tensor, out=None) -> Tensor |
| |
| Computes the inverse error function of each element. The inverse error function is defined |
| in the range :math:`(-1, 1)` as: |
| |
| .. math:: |
| \mathrm{erfinv}(\mathrm{erf}(x)) = x |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.erfinv(torch.tensor([0, 0.5, -1.])) |
| tensor([ 0.0000, 0.4769, -inf]) |
| """) |
| |
| add_docstr(torch.exp, |
| r""" |
| exp(tensor, out=None) -> Tensor |
| |
| Returns a new tensor with the exponential of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = e^{x_{i}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.exp(torch.tensor([0, math.log(2)])) |
| tensor([ 1., 2.]) |
| """) |
| |
| add_docstr(torch.expm1, |
| r""" |
| expm1(tensor, out=None) -> Tensor |
| |
| Returns a new tensor with the exponential of the elements minus 1 |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = e^{x_{i}} - 1 |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Args: |
| tensor (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.expm1(torch.tensor([0, math.log(2)])) |
| tensor([ 0., 1.]) |
| """) |
| |
| add_docstr(torch.eye, |
| r""" |
| eye(n, m=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a 2-D tensor with ones on the diagonal and zeros elsewhere. |
| |
| Args: |
| n (int): the number of rows |
| m (int, optional): the number of columns with default being :attr:`n` |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere |
| |
| Example:: |
| |
| >>> torch.eye(3) |
| tensor([[ 1., 0., 0.], |
| [ 0., 1., 0.], |
| [ 0., 0., 1.]]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.floor, |
| r""" |
| floor(input, out=None) -> Tensor |
| |
| Returns a new tensor with the floor of the elements of :attr:`input`, |
| the largest integer less than or equal to each element. |
| |
| .. math:: |
| \text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.8166, 1.5308, -0.2530, -0.2091]) |
| >>> torch.floor(a) |
| tensor([-1., 1., -1., -1.]) |
| """) |
| |
| add_docstr(torch.fmod, |
| r""" |
| fmod(input, divisor, out=None) -> Tensor |
| |
| Computes the element-wise remainder of division. |
| |
| The dividend and divisor may contain both for integer and floating point |
| numbers. The remainder has the same sign as the dividend :attr:`input`. |
| |
| When :attr:`divisor` is a tensor, the shapes of :attr:`input` and |
| :attr:`divisor` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the dividend |
| divisor (Tensor or float): the divisor, which may be either a number or a tensor of the same shape as the dividend |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) |
| tensor([-1., -0., -1., 1., 0., 1.]) |
| >>> torch.fmod(torch.tensor([1., 2, 3, 4, 5]), 1.5) |
| tensor([ 1.0000, 0.5000, 0.0000, 1.0000, 0.5000]) |
| |
| |
| """) |
| |
| add_docstr(torch.frac, |
| r""" |
| frac(tensor, out=None) -> Tensor |
| |
| Computes the fractional portion of each element in :attr:`tensor`. |
| |
| .. math:: |
| \text{out}_{i} = \text{input}_{i} - \left\lfloor \text{input}_{i} \right\rfloor |
| |
| Example:: |
| |
| >>> torch.frac(torch.tensor([1, 2.5, -3.2])) |
| tensor([ 0.0000, 0.5000, -0.2000]) |
| """) |
| |
| add_docstr(torch.from_numpy, |
| r""" |
| from_numpy(ndarray) -> Tensor |
| |
| Creates a :class:`Tensor` from a :class:`numpy.ndarray`. |
| |
| The returned tensor and :attr:`ndarray` share the same memory. Modifications to |
| the tensor will be reflected in the :attr:`ndarray` and vice versa. The returned |
| tensor is not resizable. |
| |
| Example:: |
| |
| >>> a = numpy.array([1, 2, 3]) |
| >>> t = torch.from_numpy(a) |
| >>> t |
| tensor([ 1, 2, 3]) |
| >>> t[0] = -1 |
| >>> a |
| array([-1, 2, 3]) |
| """) |
| |
| add_docstr(torch.flatten, |
| r""" |
| flatten(input, start_dim=0, end_dim=-1) -> Tensor |
| |
| Flattens a contiguous range of dims in a tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| start_dim (int): the first dim to flatten |
| end_dim (int): the last dim to flatten |
| |
| Example:: |
| |
| >>> t = torch.tensor([[[1, 2], |
| [3, 4]], |
| [[5, 6], |
| [7, 8]]]) |
| >>> torch.flatten(t) |
| tensor([1, 2, 3, 4, 5, 6, 7, 8]) |
| >>> torch.flatten(t, start_dim=1) |
| tensor([[1, 2, 3, 4], |
| [5, 6, 7, 8]]) |
| """) |
| |
| add_docstr(torch.gather, |
| r""" |
| gather(input, dim, index, out=None) -> Tensor |
| |
| Gathers values along an axis specified by `dim`. |
| |
| For a 3-D tensor the output is specified by:: |
| |
| out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 |
| out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 |
| out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 |
| |
| If :attr:`input` is an n-dimensional tensor with size |
| :math:`(x_0, x_1..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})` |
| and ``dim = i``, then :attr:`index` must be an :math:`n`-dimensional tensor with |
| size :math:`(x_0, x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})` where :math:`y \geq 1` |
| and :attr:`out` will have the same size as :attr:`index`. |
| |
| Args: |
| input (Tensor): the source tensor |
| dim (int): the axis along which to index |
| index (LongTensor): the indices of elements to gather |
| out (Tensor, optional): the destination tensor |
| |
| Example:: |
| |
| >>> t = torch.tensor([[1,2],[3,4]]) |
| >>> torch.gather(t, 1, torch.tensor([[0,0],[1,0]])) |
| tensor([[ 1, 1], |
| [ 4, 3]]) |
| """) |
| |
| add_docstr(torch.ge, |
| r""" |
| ge(input, other, out=None) -> Tensor |
| |
| Computes :math:`\text{input} \geq \text{other}` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[ 1, 1], |
| [ 0, 1]], dtype=torch.uint8) |
| """) |
| |
| add_docstr(torch.gels, |
| r""" |
| gels(B, A, out=None) -> Tensor |
| |
| Computes the solution to the least squares and least norm problems for a full |
| rank matrix :math:`A` of size :math:`(m \times n)` and a matrix :math:`B` of |
| size :math:`(m \times k)`. |
| |
| If :math:`m \geq n`, :func:`gels` solves the least-squares problem: |
| |
| .. math:: |
| |
| \begin{array}{ll} |
| \min_X & \|AX-B\|_2. |
| \end{array} |
| |
| If :math:`m < n`, :func:`gels` solves the least-norm problem: |
| |
| .. math:: |
| |
| \begin{array}{ll} |
| \min_X & \|X\|_2 & \text{subject to} & AX = B. |
| \end{array} |
| |
| Returned tensor :math:`X` has shape :math:`(\max(m, n) \times k)`. The first :math:`n` |
| rows of :math:`X` contains the solution. If :math:`m \geq n`, the residual sum of squares |
| for the solution in each column is given by the sum of squares of elements in the |
| remaining :math:`m - n` rows of that column. |
| |
| Args: |
| B (Tensor): the matrix :math:`B` |
| A (Tensor): the :math:`m` by :math:`n` matrix :math:`A` |
| out (tuple, optional): the optional destination tensor |
| |
| Returns: |
| (Tensor, Tensor): A tuple containing: |
| |
| - **X** (*Tensor*): the least squares solution |
| - **qr** (*Tensor*): the details of the QR factorization |
| |
| .. note:: |
| |
| The returned matrices will always be transposed, irrespective of the strides |
| of the input matrices. That is, they will have stride `(1, m)` instead of |
| `(m, 1)`. |
| |
| Example:: |
| |
| >>> A = torch.tensor([[1., 1, 1], |
| [2, 3, 4], |
| [3, 5, 2], |
| [4, 2, 5], |
| [5, 4, 3]]) |
| >>> B = torch.tensor([[-10., -3], |
| [ 12, 14], |
| [ 14, 12], |
| [ 16, 16], |
| [ 18, 16]]) |
| >>> X, _ = torch.gels(B, A) |
| >>> X |
| tensor([[ 2.0000, 1.0000], |
| [ 1.0000, 1.0000], |
| [ 1.0000, 2.0000], |
| [ 10.9635, 4.8501], |
| [ 8.9332, 5.2418]]) |
| """) |
| |
| add_docstr(torch.geqrf, |
| r""" |
| geqrf(input, out=None) -> (Tensor, Tensor) |
| |
| This is a low-level function for calling LAPACK directly. |
| |
| You'll generally want to use :func:`torch.qr` instead. |
| |
| Computes a QR decomposition of :attr:`input`, but without constructing |
| :math:`Q` and :math:`R` as explicit separate matrices. |
| |
| Rather, this directly calls the underlying LAPACK function `?geqrf` |
| which produces a sequence of 'elementary reflectors'. |
| |
| See `LAPACK documentation for geqrf`_ for further details. |
| |
| Args: |
| input (Tensor): the input matrix |
| out (tuple, optional): the output tuple of (Tensor, Tensor) |
| |
| .. _LAPACK documentation for geqrf: |
| https://software.intel.com/en-us/node/521004 |
| |
| """) |
| |
| add_docstr(torch.ger, |
| r""" |
| ger(vec1, vec2, out=None) -> Tensor |
| |
| Outer product of :attr:`vec1` and :attr:`vec2`. |
| If :attr:`vec1` is a vector of size :math:`n` and :attr:`vec2` is a vector of |
| size :math:`m`, then :attr:`out` must be a matrix of size :math:`(n \times m)`. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| |
| Args: |
| vec1 (Tensor): 1-D input vector |
| vec2 (Tensor): 1-D input vector |
| out (Tensor, optional): optional output matrix |
| |
| Example:: |
| |
| >>> v1 = torch.arange(1., 5.) |
| >>> v2 = torch.arange(1., 4.) |
| >>> torch.ger(v1, v2) |
| tensor([[ 1., 2., 3.], |
| [ 2., 4., 6.], |
| [ 3., 6., 9.], |
| [ 4., 8., 12.]]) |
| """) |
| |
| add_docstr(torch.gesv, |
| r""" |
| torch.gesv(B, A) -> (Tensor, Tensor) |
| |
| This function returns the solution to the system of linear |
| equations represented by :math:`AX = B` and the LU factorization of |
| A, in order as a tuple `X, LU`. |
| |
| `LU` contains `L` and `U` factors for LU factorization of `A`. |
| |
| `torch.gesv(B, A)` can take in 2D inputs `B, A` or inputs that are |
| batches of 2D matrices. If the inputs are batches, then returns |
| batched outputs `X, LU`. |
| |
| .. note:: |
| |
| The :attr:`out` keyword only supports 2D matrix inputs, that is, |
| `B, A` must be 2D matrices. |
| |
| .. note:: |
| |
| Irrespective of the original strides, the returned matrices |
| `X` and `LU` will be transposed, i.e. with strides like |
| `B.contiguous().transpose(-1, -2).strides()` and |
| `A.contiguous().transpose(-1, -2).strides()` respectively. |
| |
| Args: |
| B (Tensor): input matrix of size :math:`(*, m, k)` , where :math:`*` |
| is zero or more batch dimensions. |
| A (Tensor): input square matrix of size :math:`(*, m, m)`, where |
| :math:`*` is zero or more batch dimensions. |
| out ((Tensor, Tensor), optional): optional output tuple. |
| |
| Example:: |
| |
| >>> A = torch.tensor([[6.80, -2.11, 5.66, 5.97, 8.23], |
| [-6.05, -3.30, 5.36, -4.44, 1.08], |
| [-0.45, 2.58, -2.70, 0.27, 9.04], |
| [8.32, 2.71, 4.35, -7.17, 2.14], |
| [-9.67, -5.14, -7.26, 6.08, -6.87]]).t() |
| >>> B = torch.tensor([[4.02, 6.19, -8.22, -7.57, -3.03], |
| [-1.56, 4.00, -8.67, 1.75, 2.86], |
| [9.81, -4.09, -4.57, -8.61, 8.99]]).t() |
| >>> X, LU = torch.gesv(B, A) |
| >>> torch.dist(B, torch.mm(A, X)) |
| tensor(1.00000e-06 * |
| 7.0977) |
| |
| >>> # Batched solver example |
| >>> A = torch.randn(2, 3, 1, 4, 4) |
| >>> B = torch.randn(2, 3, 1, 4, 6) |
| >>> X, LU = torch.gesv(B, A) |
| >>> torch.dist(B, A.matmul(X)) |
| tensor(1.00000e-06 * |
| 3.6386) |
| |
| """) |
| |
| add_docstr(torch.get_default_dtype, |
| r""" |
| get_default_dtype() -> :class:`torch.dtype` |
| |
| Get the current default floating point :class:`torch.dtype`. |
| |
| Example:: |
| |
| >>> torch.get_default_dtype() # initial default for floating point is torch.float32 |
| torch.float32 |
| >>> torch.set_default_dtype(torch.float64) |
| >>> torch.get_default_dtype() # default is now changed to torch.float64 |
| torch.float64 |
| >>> torch.set_default_tensor_type(torch.FloatTensor) # setting tensor type also affects this |
| >>> torch.get_default_dtype() # changed to torch.float32, the dtype for torch.FloatTensor |
| torch.float32 |
| |
| """) |
| |
| add_docstr(torch.get_num_threads, |
| r""" |
| get_num_threads() -> int |
| |
| Gets the number of OpenMP threads used for parallelizing CPU operations |
| """) |
| |
| add_docstr(torch.gt, |
| r""" |
| gt(input, other, out=None) -> Tensor |
| |
| Computes :math:`\text{input} > \text{other}` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[ 0, 1], |
| [ 0, 0]], dtype=torch.uint8) |
| """) |
| |
| add_docstr(torch.histc, |
| r""" |
| histc(input, bins=100, min=0, max=0, out=None) -> Tensor |
| |
| Computes the histogram of a tensor. |
| |
| The elements are sorted into equal width bins between :attr:`min` and |
| :attr:`max`. If :attr:`min` and :attr:`max` are both zero, the minimum and |
| maximum values of the data are used. |
| |
| Args: |
| input (Tensor): the input tensor |
| bins (int): number of histogram bins |
| min (int): lower end of the range (inclusive) |
| max (int): upper end of the range (inclusive) |
| out (Tensor, optional): the output tensor |
| |
| Returns: |
| Tensor: Histogram represented as a tensor |
| |
| Example:: |
| |
| >>> torch.histc(torch.tensor([1., 2, 1]), bins=4, min=0, max=3) |
| tensor([ 0., 2., 1., 0.]) |
| """) |
| |
| add_docstr(torch.index_select, |
| r""" |
| index_select(input, dim, index, out=None) -> Tensor |
| |
| Returns a new tensor which indexes the :attr:`input` tensor along dimension |
| :attr:`dim` using the entries in :attr:`index` which is a `LongTensor`. |
| |
| The returned tensor has the same number of dimensions as the original tensor |
| (:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length |
| of :attr:`index`; other dimensions have the same size as in the original tensor. |
| |
| .. note:: The returned tensor does **not** use the same storage as the original |
| tensor. If :attr:`out` has a different shape than expected, we |
| silently change it to the correct shape, reallocating the underlying |
| storage if necessary. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension in which we index |
| index (LongTensor): the 1-D tensor containing the indices to index |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> x |
| tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], |
| [-0.4664, 0.2647, -0.1228, -1.1068], |
| [-1.1734, -0.6571, 0.7230, -0.6004]]) |
| >>> indices = torch.tensor([0, 2]) |
| >>> torch.index_select(x, 0, indices) |
| tensor([[ 0.1427, 0.0231, -0.5414, -1.0009], |
| [-1.1734, -0.6571, 0.7230, -0.6004]]) |
| >>> torch.index_select(x, 1, indices) |
| tensor([[ 0.1427, -0.5414], |
| [-0.4664, -0.1228], |
| [-1.1734, 0.7230]]) |
| """) |
| |
| add_docstr(torch.inverse, |
| r""" |
| inverse(input, out=None) -> Tensor |
| |
| Takes the inverse of the square matrix :attr:`input`. |
| |
| .. note:: |
| |
| Irrespective of the original strides, the returned matrix will be |
| transposed, i.e. with strides `(1, m)` instead of `(m, 1)` |
| |
| Args: |
| input (Tensor): the input 2-D square tensor |
| out (Tensor, optional): the optional output tensor |
| |
| Example:: |
| |
| >>> x = torch.rand(4, 4) |
| >>> y = torch.inverse(x) |
| >>> z = torch.mm(x, y) |
| >>> z |
| tensor([[ 1.0000, -0.0000, -0.0000, 0.0000], |
| [ 0.0000, 1.0000, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, 1.0000, 0.0000], |
| [ 0.0000, -0.0000, -0.0000, 1.0000]]) |
| >>> torch.max(torch.abs(z - torch.eye(4))) # Max nonzero |
| tensor(1.00000e-07 * |
| 1.1921) |
| """) |
| |
| add_docstr(torch.kthvalue, |
| r""" |
| kthvalue(input, k, dim=None, keepdim=False, out=None) -> (Tensor, LongTensor) |
| |
| Returns the :attr:`k` th smallest element of the given :attr:`input` tensor |
| along a given dimension. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| A tuple of `(values, indices)` is returned, where the `indices` is the indices |
| of the kth-smallest element in the original `input` tensor in dimension `dim`. |
| |
| If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors |
| are the same size as :attr:`input`, except in the dimension :attr:`dim` where |
| they are of size 1. Otherwise, :attr:`dim` is squeezed |
| (see :func:`torch.squeeze`), resulting in both the :attr:`values` and |
| :attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| k (int): k for the k-th smallest element |
| dim (int, optional): the dimension to find the kth value along |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| out (tuple, optional): the output tuple of (Tensor, LongTensor) |
| can be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.arange(1., 6.) |
| >>> x |
| tensor([ 1., 2., 3., 4., 5.]) |
| >>> torch.kthvalue(x, 4) |
| (tensor(4.), tensor(3)) |
| |
| >>> x=torch.arange(1.,7.).resize_(2,3) |
| >>> x |
| tensor([[ 1., 2., 3.], |
| [ 4., 5., 6.]]) |
| >>> torch.kthvalue(x,2,0,True) |
| (tensor([[ 4., 5., 6.]]), tensor([[ 1, 1, 1]])) |
| """) |
| |
| add_docstr(torch.le, |
| r""" |
| le(input, other, out=None) -> Tensor |
| |
| Computes :math:`\text{input} \leq \text{other}` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[ 1, 0], |
| [ 1, 1]], dtype=torch.uint8) |
| """) |
| |
| add_docstr(torch.lerp, |
| r""" |
| lerp(start, end, weight, out=None) |
| |
| Does a linear interpolation of two tensors :attr:`start` and :attr:`end` based |
| on a scalar :attr:`weight` and returns the resulting :attr:`out` tensor. |
| |
| .. math:: |
| \text{out}_i = \text{start}_i + \text{weight} \times (\text{end}_i - \text{start}_i) |
| |
| The shapes of :attr:`start` and :attr:`end` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| start (Tensor): the tensor with the starting points |
| end (Tensor): the tensor with the ending points |
| weight (float): the weight for the interpolation formula |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> start = torch.arange(1., 5.) |
| >>> end = torch.empty(4).fill_(10) |
| >>> start |
| tensor([ 1., 2., 3., 4.]) |
| >>> end |
| tensor([ 10., 10., 10., 10.]) |
| >>> torch.lerp(start, end, 0.5) |
| tensor([ 5.5000, 6.0000, 6.5000, 7.0000]) |
| """) |
| |
| add_docstr(torch.linspace, |
| r""" |
| linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a one-dimensional tensor of :attr:`steps` |
| equally spaced points between :attr:`start` and :attr:`end`. |
| |
| The output tensor is 1-D of size :attr:`steps`. |
| |
| Args: |
| start (float): the starting value for the set of points |
| end (float): the ending value for the set of points |
| steps (int): number of points to sample between :attr:`start` |
| and :attr:`end`. Default: ``100``. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| |
| Example:: |
| |
| >>> torch.linspace(3, 10, steps=5) |
| tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000]) |
| >>> torch.linspace(-10, 10, steps=5) |
| tensor([-10., -5., 0., 5., 10.]) |
| >>> torch.linspace(start=-10, end=10, steps=5) |
| tensor([-10., -5., 0., 5., 10.]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.log, |
| r""" |
| log(input, out=None) -> Tensor |
| |
| Returns a new tensor with the natural logarithm of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{e} (x_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| tensor([-0.7168, -0.5471, -0.8933, -1.4428, -0.1190]) |
| >>> torch.log(a) |
| tensor([ nan, nan, nan, nan, nan]) |
| """) |
| |
| add_docstr(torch.log10, |
| r""" |
| log10(input, out=None) -> Tensor |
| |
| Returns a new tensor with the logarithm to the base 10 of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{10} (x_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.rand(5) |
| >>> a |
| tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251]) |
| |
| |
| >>> torch.log10(a) |
| tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476]) |
| |
| """) |
| |
| add_docstr(torch.log1p, |
| r""" |
| log1p(input, out=None) -> Tensor |
| |
| Returns a new tensor with the natural logarithm of (1 + :attr:`input`). |
| |
| .. math:: |
| y_i = \log_{e} (x_i + 1) |
| |
| .. note:: This function is more accurate than :func:`torch.log` for small |
| values of :attr:`input` |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492]) |
| >>> torch.log1p(a) |
| tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225]) |
| """) |
| |
| add_docstr(torch.log2, |
| r""" |
| log2(input, out=None) -> Tensor |
| |
| Returns a new tensor with the logarithm to the base 2 of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| y_{i} = \log_{2} (x_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.rand(5) |
| >>> a |
| tensor([ 0.8419, 0.8003, 0.9971, 0.5287, 0.0490]) |
| |
| |
| >>> torch.log2(a) |
| tensor([-0.2483, -0.3213, -0.0042, -0.9196, -4.3504]) |
| |
| """) |
| |
| add_docstr(torch.logspace, |
| r""" |
| logspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a one-dimensional tensor of :attr:`steps` points |
| logarithmically spaced between :math:`10^{{\text{{start}}}}` and :math:`10^{{\text{{end}}}}`. |
| |
| The output tensor is 1-D of size :attr:`steps`. |
| |
| Args: |
| start (float): the starting value for the set of points |
| end (float): the ending value for the set of points |
| steps (int): number of points to sample between :attr:`start` |
| and :attr:`end`. Default: ``100``. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.logspace(start=-10, end=10, steps=5) |
| tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10]) |
| >>> torch.logspace(start=0.1, end=1.0, steps=5) |
| tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.logsumexp, |
| r""" |
| logsumexp(input, dim, keepdim=False, out=None) |
| |
| Returns the log of summed exponentials of each row of the :attr:`input` |
| tensor in the given dimension :attr:`dim`. The computation is numerically |
| stabilized. |
| |
| For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is |
| |
| .. math:: |
| \text{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij}) |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the output tensor having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int or tuple of ints): the dimension or dimensions to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| out (Tensor, optional): the output tensor |
| |
| |
| Example:: |
| >>> a = torch.randn(3, 3) |
| >>> torch.logsumexp(a, 1) |
| tensor([ 0.8442, 1.4322, 0.8711]) |
| """) |
| |
| add_docstr(torch.lt, |
| r""" |
| lt(input, other, out=None) -> Tensor |
| |
| Computes :math:`\text{input} < \text{other}` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` |
| |
| Returns: |
| Tensor: A `torch.ByteTensor` containing a 1 at each location where comparison is true |
| |
| Example:: |
| |
| >>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[ 0, 0], |
| [ 1, 0]], dtype=torch.uint8) |
| """) |
| |
| add_docstr(torch.masked_select, |
| r""" |
| masked_select(input, mask, out=None) -> Tensor |
| |
| Returns a new 1-D tensor which indexes the :attr:`input` tensor according to |
| the binary mask :attr:`mask` which is a `ByteTensor`. |
| |
| The shapes of the :attr:`mask` tensor and the :attr:`input` tensor don't need |
| to match, but they must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. note:: The returned tensor does **not** use the same storage |
| as the original tensor |
| |
| Args: |
| input (Tensor): the input data |
| mask (ByteTensor): the tensor containing the binary mask to index with |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> x |
| tensor([[ 0.3552, -2.3825, -0.8297, 0.3477], |
| [-1.2035, 1.2252, 0.5002, 0.6248], |
| [ 0.1307, -2.0608, 0.1244, 2.0139]]) |
| >>> mask = x.ge(0.5) |
| >>> mask |
| tensor([[ 0, 0, 0, 0], |
| [ 0, 1, 1, 1], |
| [ 0, 0, 0, 1]], dtype=torch.uint8) |
| >>> torch.masked_select(x, mask) |
| tensor([ 1.2252, 0.5002, 0.6248, 2.0139]) |
| """) |
| |
| add_docstr(torch.matrix_rank, |
| r""" |
| matrix_rank(input, tol=None, bool symmetric=False) -> Tensor |
| |
| Returns the numerical rank of a 2-D tensor. The method to compute the |
| matrix rank is done using SVD by default. If :attr:`symmetric` is ``True``, |
| then :attr:`input` is assumed to be symmetric, and the computation of the |
| rank is done by obtaining the eigenvalues. |
| |
| :attr:`tol` is the threshold below which the singular values (or the eigenvalues |
| when :attr:`symmetric` is ``True``) are considered to be 0. If :attr:`tol` is not |
| specified, :attr:`tol` is set to ``S.max() * max(S.size()) * eps`` where `S` is the |
| singular values (or the eigenvalues when :attr:`symmetric` is ``True``), and ``eps`` |
| is the epsilon value for the datatype of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input 2-D tensor |
| tol (float, optional): the tolerance value. Default: ``None`` |
| symmetric(bool, optional): indicates whether :attr:`input` is symmetric. |
| Default: ``False`` |
| |
| Example:: |
| |
| >>> a = torch.eye(10) |
| >>> torch.matrix_rank(a) |
| tensor(10) |
| >>> b = torch.eye(10) |
| >>> b[0, 0] = 0 |
| >>> torch.matrix_rank(b) |
| tensor(9) |
| """) |
| |
| add_docstr(torch.matrix_power, |
| r""" |
| matrix_power(input, n) -> Tensor |
| |
| Returns the matrix raised to the power :attr:`n` for square matrices. |
| For batch of matrices, each individual matrix is raised to the power :attr:`n`. |
| |
| If :attr:`n` is negative, then the inverse of the matrix (if invertible) is |
| raised to the power :attr:`n`. If :attr:`n` is 0, then an identity matrix |
| is returned. |
| |
| Args: |
| input (Tensor): the input tensor |
| n (int): the power to raise the matrix to |
| |
| Example:: |
| |
| >>> a = torch.randn(2, 2, 2) |
| >>> a |
| tensor([[[-1.9975, -1.9610], |
| [ 0.9592, -2.3364]], |
| |
| [[-1.2534, -1.3429], |
| [ 0.4153, -1.4664]]]) |
| >>> torch.matrix_power(a, 3) |
| tensor([[[ 3.9392, -23.9916], |
| [ 11.7357, -0.2070]], |
| |
| [[ 0.2468, -6.7168], |
| [ 2.0774, -0.8187]]]) |
| """) |
| |
| add_docstr(torch.max, |
| r""" |
| .. function:: max(input) -> Tensor |
| |
| Returns the maximum value of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 0.6763, 0.7445, -2.2369]]) |
| >>> torch.max(a) |
| tensor(0.7445) |
| |
| .. function:: max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor) |
| |
| Returns the maximum value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. The second return value is the index location of each |
| maximum value found (argmax). |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensors having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| out (tuple, optional): the result tuple of two output tensors (max, max_indices) |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[-1.2360, -0.2942, -0.1222, 0.8475], |
| [ 1.1949, -1.1127, -2.2379, -0.6702], |
| [ 1.5717, -0.9207, 0.1297, -1.8768], |
| [-0.6172, 1.0036, -0.6060, -0.2432]]) |
| >>> torch.max(a, 1) |
| (tensor([ 0.8475, 1.1949, 1.5717, 1.0036]), tensor([ 3, 0, 0, 1])) |
| |
| .. function:: max(input, other, out=None) -> Tensor |
| |
| Each element of the tensor :attr:`input` is compared with the corresponding |
| element of the tensor :attr:`other` and an element-wise maximum is taken. |
| |
| The shapes of :attr:`input` and :attr:`other` don't need to match, |
| but they must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| \text{out}_i = \max(\text{tensor}_i, \text{other}_i) |
| |
| .. note:: When the shapes do not match, the shape of the returned output tensor |
| follows the :ref:`broadcasting rules <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the input tensor |
| other (Tensor): the second input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.2942, -0.7416, 0.2653, -0.1584]) |
| >>> b = torch.randn(4) |
| >>> b |
| tensor([ 0.8722, -1.7421, -0.4141, -0.5055]) |
| >>> torch.max(a, b) |
| tensor([ 0.8722, -0.7416, 0.2653, -0.1584]) |
| """) |
| |
| add_docstr(torch.mean, |
| r""" |
| .. function:: mean(input) -> Tensor |
| |
| Returns the mean value of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 0.2294, -0.5481, 1.3288]]) |
| >>> torch.mean(a) |
| tensor(0.3367) |
| |
| .. function:: mean(input, dim, keepdim=False, out=None) -> Tensor |
| |
| Returns the mean value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the |
| output tensor having 1 fewer dimension. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool, optional): whether the output tensor has :attr:`dim` retained or not |
| out (Tensor): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[-0.3841, 0.6320, 0.4254, -0.7384], |
| [-0.9644, 1.0131, -0.6549, -1.4279], |
| [-0.2951, -1.3350, -0.7694, 0.5600], |
| [ 1.0842, -0.9580, 0.3623, 0.2343]]) |
| >>> torch.mean(a, 1) |
| tensor([-0.0163, -0.5085, -0.4599, 0.1807]) |
| >>> torch.mean(a, 1, True) |
| tensor([[-0.0163], |
| [-0.5085], |
| [-0.4599], |
| [ 0.1807]]) |
| """) |
| |
| add_docstr(torch.median, |
| r""" |
| .. function:: median(input) -> Tensor |
| |
| Returns the median value of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 1.5219, -1.5212, 0.2202]]) |
| >>> torch.median(a) |
| tensor(0.2202) |
| |
| .. function:: median(input, dim=-1, keepdim=False, values=None, indices=None) -> (Tensor, LongTensor) |
| |
| Returns the median value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. Also returns the index location of the median value |
| as a `LongTensor`. |
| |
| By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the outputs tensor having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| values (Tensor, optional): the output tensor |
| indices (Tensor, optional): the output index tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 5) |
| >>> a |
| tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], |
| [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], |
| [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], |
| [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) |
| >>> torch.median(a, 1) |
| (tensor([-0.3982, 0.2270, 0.2488, 0.4742]), tensor([ 1, 4, 4, 3])) |
| """) |
| |
| add_docstr(torch.min, |
| r""" |
| .. function:: min(input) -> Tensor |
| |
| Returns the minimum value of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 0.6750, 1.0857, 1.7197]]) |
| >>> torch.min(a) |
| tensor(0.6750) |
| |
| .. function:: min(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor) |
| |
| Returns the minimum value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. The second return value is the index location of each |
| minimum value found (argmin). |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the output tensors having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| out (tuple, optional): the tuple of two output tensors (min, min_indices) |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[-0.6248, 1.1334, -1.1899, -0.2803], |
| [-1.4644, -0.2635, -0.3651, 0.6134], |
| [ 0.2457, 0.0384, 1.0128, 0.7015], |
| [-0.1153, 2.9849, 2.1458, 0.5788]]) |
| >>> torch.min(a, 1) |
| (tensor([-1.1899, -1.4644, 0.0384, -0.1153]), tensor([ 2, 0, 1, 0])) |
| |
| .. function:: min(input, other, out=None) -> Tensor |
| |
| Each element of the tensor :attr:`input` is compared with the corresponding |
| element of the tensor :attr:`other` and an element-wise minimum is taken. |
| The resulting tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` don't need to match, |
| but they must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| \text{out}_i = \min(\text{tensor}_i, \text{other}_i) |
| |
| .. note:: When the shapes do not match, the shape of the returned output tensor |
| follows the :ref:`broadcasting rules <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the input tensor |
| other (Tensor): the second input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.8137, -1.1740, -0.6460, 0.6308]) |
| >>> b = torch.randn(4) |
| >>> b |
| tensor([-0.1369, 0.1555, 0.4019, -0.1929]) |
| >>> torch.min(a, b) |
| tensor([-0.1369, -1.1740, -0.6460, -0.1929]) |
| """) |
| |
| add_docstr(torch.mm, |
| r""" |
| mm(mat1, mat2, out=None) -> Tensor |
| |
| Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`. |
| |
| If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a |
| :math:`(m \times p)` tensor, :attr:`out` will be a :math:`(n \times p)` tensor. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| For broadcasting matrix products, see :func:`torch.matmul`. |
| |
| Args: |
| mat1 (Tensor): the first matrix to be multiplied |
| mat2 (Tensor): the second matrix to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> mat1 = torch.randn(2, 3) |
| >>> mat2 = torch.randn(3, 3) |
| >>> torch.mm(mat1, mat2) |
| tensor([[ 0.4851, 0.5037, -0.3633], |
| [-0.0760, -3.6705, 2.4784]]) |
| """) |
| |
| add_docstr(torch.matmul, |
| r""" |
| matmul(tensor1, tensor2, out=None) -> Tensor |
| |
| Matrix product of two tensors. |
| |
| The behavior depends on the dimensionality of the tensors as follows: |
| |
| - If both tensors are 1-dimensional, the dot product (scalar) is returned. |
| - If both arguments are 2-dimensional, the matrix-matrix product is returned. |
| - If the first argument is 1-dimensional and the second argument is 2-dimensional, |
| a 1 is prepended to its dimension for the purpose of the matrix multiply. |
| After the matrix multiply, the prepended dimension is removed. |
| - If the first argument is 2-dimensional and the second argument is 1-dimensional, |
| the matrix-vector product is returned. |
| - If both arguments are at least 1-dimensional and at least one argument is |
| N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first |
| argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the |
| batched matrix multiply and removed after. If the second argument is 1-dimensional, a |
| 1 is appended to its dimension for the purpose of the batched matrix multiple and removed after. |
| The non-matrix (i.e. batch) dimensions are :ref:`broadcasted <broadcasting-semantics>` (and thus |
| must be broadcastable). For example, if :attr:`tensor1` is a |
| :math:`(j \times 1 \times n \times m)` tensor and :attr:`tensor2` is a :math:`(k \times m \times p)` |
| tensor, :attr:`out` will be an :math:`(j \times k \times n \times p)` tensor. |
| |
| .. note:: |
| |
| The 1-dimensional dot product version of this function does not support an :attr:`out` parameter. |
| |
| Arguments: |
| tensor1 (Tensor): the first tensor to be multiplied |
| tensor2 (Tensor): the second tensor to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> # vector x vector |
| >>> tensor1 = torch.randn(3) |
| >>> tensor2 = torch.randn(3) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([]) |
| >>> # matrix x vector |
| >>> tensor1 = torch.randn(3, 4) |
| >>> tensor2 = torch.randn(4) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([3]) |
| >>> # batched matrix x broadcasted vector |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(4) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3]) |
| >>> # batched matrix x batched matrix |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(10, 4, 5) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3, 5]) |
| >>> # batched matrix x broadcasted matrix |
| >>> tensor1 = torch.randn(10, 3, 4) |
| >>> tensor2 = torch.randn(4, 5) |
| >>> torch.matmul(tensor1, tensor2).size() |
| torch.Size([10, 3, 5]) |
| |
| """) |
| |
| add_docstr(torch.mode, |
| r""" |
| mode(input, dim=-1, keepdim=False, values=None, indices=None) -> (Tensor, LongTensor) |
| |
| Returns the mode value of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. Also returns the index location of the mode value |
| as a `LongTensor`. |
| |
| By default, :attr:`dim` is the last dimension of the :attr:`input` tensor. |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensors having 1 fewer dimension than :attr:`input`. |
| |
| .. note:: This function is not defined for ``torch.cuda.Tensor`` yet. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensors have :attr:`dim` retained or not |
| values (Tensor, optional): the output tensor |
| indices (Tensor, optional): the output index tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 5) |
| >>> a |
| tensor([[-1.2808, -1.0966, -1.5946, -0.1148, 0.3631], |
| [ 1.1395, 1.1452, -0.6383, 0.3667, 0.4545], |
| [-0.4061, -0.3074, 0.4579, -1.3514, 1.2729], |
| [-1.0130, 0.3546, -1.4689, -0.1254, 0.0473]]) |
| >>> torch.mode(a, 1) |
| (tensor([-1.5946, -0.6383, -1.3514, -1.4689]), tensor([ 2, 2, 3, 2])) |
| """) |
| |
| add_docstr(torch.mul, |
| r""" |
| .. function:: mul(input, value, out=None) |
| |
| Multiplies each element of the input :attr:`input` with the scalar |
| :attr:`value` and returns a new resulting tensor. |
| |
| .. math:: |
| \text{out}_i = \text{value} \times \text{input}_i |
| |
| If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value` |
| should be a real number, otherwise it should be an integer |
| |
| Args: |
| input (Tensor): the input tensor |
| value (Number): the number to be multiplied to each element of :attr:`input` |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(3) |
| >>> a |
| tensor([ 0.2015, -0.4255, 2.6087]) |
| >>> torch.mul(a, 100) |
| tensor([ 20.1494, -42.5491, 260.8663]) |
| |
| .. function:: mul(input, other, out=None) |
| |
| Each element of the tensor :attr:`input` is multiplied by each element of the |
| Tensor :attr:`other`. The resulting tensor is returned. |
| |
| The shapes of :attr:`input` and :attr:`other` must be |
| :ref:`broadcastable <broadcasting-semantics>`. |
| |
| .. math:: |
| \text{out}_i = \text{input}_i \times \text{other}_i |
| |
| Args: |
| input (Tensor): the first multiplicand tensor |
| other (Tensor): the second multiplicand tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 1) |
| >>> a |
| tensor([[ 1.1207], |
| [-0.3137], |
| [ 0.0700], |
| [ 0.8378]]) |
| >>> b = torch.randn(1, 4) |
| >>> b |
| tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]]) |
| >>> torch.mul(a, b) |
| tensor([[ 0.5767, 0.1363, -0.5877, 2.5083], |
| [-0.1614, -0.0382, 0.1645, -0.7021], |
| [ 0.0360, 0.0085, -0.0367, 0.1567], |
| [ 0.4312, 0.1019, -0.4394, 1.8753]]) |
| """) |
| |
| add_docstr(torch.multinomial, |
| r""" |
| multinomial(input, num_samples, replacement=False, out=None) -> LongTensor |
| |
| Returns a tensor where each row contains :attr:`num_samples` indices sampled |
| from the multinomial probability distribution located in the corresponding row |
| of tensor :attr:`input`. |
| |
| .. note:: |
| The rows of :attr:`input` do not need to sum to one (in which case we use |
| the values as weights), but must be non-negative, finite and have |
| a non-zero sum. |
| |
| Indices are ordered from left to right according to when each was sampled |
| (first samples are placed in first column). |
| |
| If :attr:`input` is a vector, :attr:`out` is a vector of size :attr:`num_samples`. |
| |
| If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape |
| :math:`(m \times \text{num\_samples})`. |
| |
| If replacement is ``True``, samples are drawn with replacement. |
| |
| If not, they are drawn without replacement, which means that when a |
| sample index is drawn for a row, it cannot be drawn again for that row. |
| |
| This implies the constraint that :attr:`num_samples` must be lower than |
| :attr:`input` length (or number of columns of :attr:`input` if it is a matrix). |
| |
| Args: |
| input (Tensor): the input tensor containing probabilities |
| num_samples (int): number of samples to draw |
| replacement (bool, optional): whether to draw with replacement or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights |
| >>> torch.multinomial(weights, 4) |
| tensor([ 1, 2, 0, 0]) |
| >>> torch.multinomial(weights, 4, replacement=True) |
| tensor([ 2, 1, 1, 1]) |
| """) |
| |
| add_docstr(torch.mv, |
| r""" |
| mv(mat, vec, out=None) -> Tensor |
| |
| Performs a matrix-vector product of the matrix :attr:`mat` and the vector |
| :attr:`vec`. |
| |
| If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of |
| size :math:`m`, :attr:`out` will be 1-D of size :math:`n`. |
| |
| .. note:: This function does not :ref:`broadcast <broadcasting-semantics>`. |
| |
| Args: |
| mat (Tensor): matrix to be multiplied |
| vec (Tensor): vector to be multiplied |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> mat = torch.randn(2, 3) |
| >>> vec = torch.randn(3) |
| >>> torch.mv(mat, vec) |
| tensor([ 1.0404, -0.6361]) |
| """) |
| |
| add_docstr(torch.mvlgamma, |
| r""" |
| mvlgamma(input, p) -> Tensor |
| |
| Computes the multivariate log-gamma function with dimension :math:`p` element-wise, given by |
| |
| .. math:: |
| \log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right) |
| |
| where :math:`C = \log(\pi) \times \frac{p (p - 1)}{2}` and :math:`\Gamma(\cdot)` is the Gamma function. |
| |
| If any of the elements are less than or equal to :math:`\frac{p - 1}{2}`, then an error |
| is thrown. |
| |
| Args: |
| input (Tensor): the tensor to compute the multivariate log-gamma function |
| p (int): the number of dimensions |
| |
| Example:: |
| |
| >>> a = torch.empty(2, 3).uniform_(1, 2) |
| >>> a |
| tensor([[1.6835, 1.8474, 1.1929], |
| [1.0475, 1.7162, 1.4180]]) |
| >>> torch.mvlgamma(a, 2) |
| tensor([[0.3928, 0.4007, 0.7586], |
| [1.0311, 0.3901, 0.5049]]) |
| """) |
| |
| add_docstr(torch.narrow, |
| r""" |
| narrow(input, dimension, start, length) -> Tensor |
| |
| Returns a new tensor that is a narrowed version of :attr:`input` tensor. The |
| dimension :attr:`dim` is input from :attr:`start` to :attr:`start + length`. The |
| returned tensor and :attr:`self` tensor share the same underlying storage. |
| |
| Args: |
| input (Tensor): the tensor to narrow |
| dimension (int): the dimension along which to narrow |
| start (int): the starting dimension |
| length (int): the distance to the ending dimension |
| |
| Example:: |
| |
| >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| >>> torch.narrow(x, 0, 0, 2) |
| tensor([[ 1, 2, 3], |
| [ 4, 5, 6]]) |
| >>> torch.narrow(x, 1, 1, 2) |
| tensor([[ 2, 3], |
| [ 5, 6], |
| [ 8, 9]]) |
| """) |
| |
| add_docstr(torch.ne, |
| r""" |
| ne(input, other, out=None) -> Tensor |
| |
| Computes :math:`input \neq other` element-wise. |
| |
| The second argument can be a number or a tensor whose shape is |
| :ref:`broadcastable <broadcasting-semantics>` with the first argument. |
| |
| Args: |
| input (Tensor): the tensor to compare |
| other (Tensor or float): the tensor or value to compare |
| out (Tensor, optional): the output tensor that must be a `ByteTensor` |
| |
| Returns: |
| Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true. |
| |
| Example:: |
| |
| >>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]])) |
| tensor([[ 0, 1], |
| [ 1, 0]], dtype=torch.uint8) |
| """) |
| |
| add_docstr(torch.neg, |
| r""" |
| neg(input, out=None) -> Tensor |
| |
| Returns a new tensor with the negative of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out} = -1 \times \text{input} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(5) |
| >>> a |
| tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940]) |
| >>> torch.neg(a) |
| tensor([-0.0090, 0.2262, 0.0682, 0.2866, -0.3940]) |
| """) |
| |
| add_docstr(torch.nonzero, |
| r""" |
| nonzero(input, out=None) -> LongTensor |
| |
| Returns a tensor containing the indices of all non-zero elements of |
| :attr:`input`. Each row in the result contains the indices of a non-zero |
| element in :attr:`input`. |
| |
| If :attr:`input` has `n` dimensions, then the resulting indices tensor |
| :attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of |
| non-zero elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| out (LongTensor, optional): the output tensor containing indices |
| |
| Example:: |
| |
| >>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1])) |
| tensor([[ 0], |
| [ 1], |
| [ 2], |
| [ 4]]) |
| >>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0], |
| [0.0, 0.4, 0.0, 0.0], |
| [0.0, 0.0, 1.2, 0.0], |
| [0.0, 0.0, 0.0,-0.4]])) |
| tensor([[ 0, 0], |
| [ 1, 1], |
| [ 2, 2], |
| [ 3, 3]]) |
| """) |
| |
| add_docstr(torch.normal, |
| r""" |
| .. function:: normal(mean, std, out=None) -> Tensor |
| |
| Returns a tensor of random numbers drawn from separate normal distributions |
| whose mean and standard deviation are given. |
| |
| The :attr:`mean` is a tensor with the mean of |
| each output element's normal distribution |
| |
| The :attr:`std` is a tensor with the standard deviation of |
| each output element's normal distribution |
| |
| The shapes of :attr:`mean` and :attr:`std` don't need to match, but the |
| total number of elements in each tensor need to be the same. |
| |
| .. note:: When the shapes do not match, the shape of :attr:`mean` |
| is used as the shape for the returned output tensor |
| |
| Args: |
| mean (Tensor): the tensor of per-element means |
| std (Tensor): the tensor of per-element standard deviations |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1)) |
| tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134, |
| 8.0505, 8.1408, 9.0563, 10.0566]) |
| |
| .. function:: normal(mean=0.0, std, out=None) -> Tensor |
| |
| Similar to the function above, but the means are shared among all drawn |
| elements. |
| |
| Args: |
| mean (float, optional): the mean for all distributions |
| std (Tensor): the tensor of per-element standard deviations |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.normal(mean=0.5, std=torch.arange(1., 6.)) |
| tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303]) |
| |
| .. function:: normal(mean, std=1.0, out=None) -> Tensor |
| |
| Similar to the function above, but the standard-deviations are shared among |
| all drawn elements. |
| |
| Args: |
| mean (Tensor): the tensor of per-element means |
| std (float, optional): the standard deviation for all distributions |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.normal(mean=torch.arange(1., 6.)) |
| tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361]) |
| """) |
| |
| add_docstr(torch.numel, |
| r""" |
| numel(input) -> int |
| |
| Returns the total number of elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 2, 3, 4, 5) |
| >>> torch.numel(a) |
| 120 |
| >>> a = torch.zeros(4,4) |
| >>> torch.numel(a) |
| 16 |
| |
| """) |
| |
| add_docstr(torch.ones, |
| r""" |
| ones(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with the scalar value `1`, with the shape defined |
| by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.ones(2, 3) |
| tensor([[ 1., 1., 1.], |
| [ 1., 1., 1.]]) |
| |
| >>> torch.ones(5) |
| tensor([ 1., 1., 1., 1., 1.]) |
| |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.ones_like, |
| r""" |
| ones_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with the scalar value `1`, with the same size as |
| :attr:`input`. ``torch.ones_like(input)`` is equivalent to |
| ``torch.ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| .. warning:: |
| As of 0.4, this function does not support an :attr:`out` keyword. As an alternative, |
| the old ``torch.ones_like(input, out=output)`` is equivalent to |
| ``torch.ones(input.size(), out=output)``. |
| |
| Args: |
| {input} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> input = torch.empty(2, 3) |
| >>> torch.ones_like(input) |
| tensor([[ 1., 1., 1.], |
| [ 1., 1., 1.]]) |
| """.format(**factory_like_common_args)) |
| |
| add_docstr(torch.orgqr, |
| r""" |
| orgqr(a, tau) -> Tensor |
| |
| Computes the orthogonal matrix `Q` of a QR factorization, from the `(a, tau)` |
| tuple returned by :func:`torch.geqrf`. |
| |
| This directly calls the underlying LAPACK function `?orgqr`. |
| See `LAPACK documentation for orgqr`_ for further details. |
| |
| Args: |
| a (Tensor): the `a` from :func:`torch.geqrf`. |
| tau (Tensor): the `tau` from :func:`torch.geqrf`. |
| |
| .. _LAPACK documentation for orgqr: |
| https://software.intel.com/en-us/mkl-developer-reference-c-orgqr |
| |
| """) |
| |
| add_docstr(torch.ormqr, |
| r""" |
| ormqr(a, tau, mat, left=True, transpose=False) -> (Tensor, Tensor) |
| |
| Multiplies `mat` by the orthogonal `Q` matrix of the QR factorization |
| formed by :func:`torch.geqrf` that is represented by `(a, tau)`. |
| |
| This directly calls the underlying LAPACK function `?ormqr`. |
| See `LAPACK documentation for ormqr`_ for further details. |
| |
| Args: |
| a (Tensor): the `a` from :func:`torch.geqrf`. |
| tau (Tensor): the `tau` from :func:`torch.geqrf`. |
| mat (Tensor): the matrix to be multiplied. |
| |
| .. _LAPACK documentation for ormqr: |
| https://software.intel.com/en-us/mkl-developer-reference-c-ormqr |
| |
| """) |
| |
| add_docstr(torch.potrf, r""" |
| potrf(a, upper=True, out=None) -> Tensor |
| |
| Computes the Cholesky decomposition of a symmetric positive-definite |
| matrix :math:`A`. |
| |
| If :attr:`upper` is ``True``, the returned matrix `U` is upper-triangular, and |
| the decomposition has the form: |
| |
| .. math:: |
| |
| A = U^TU |
| |
| If :attr:`upper` is ``False``, the returned matrix `L` is lower-triangular, and |
| the decomposition has the form: |
| |
| .. math:: |
| |
| A = LL^T |
| |
| Args: |
| a (Tensor): the input 2-D tensor, a symmetric positive-definite matrix |
| upper (bool, optional): flag that indicates whether to return the |
| upper or lower triangular matrix |
| out (Tensor, optional): the output matrix |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = torch.mm(a, a.t()) # make symmetric positive definite |
| >>> u = torch.potrf(a) |
| >>> a |
| tensor([[ 2.4112, -0.7486, 1.4551], |
| [-0.7486, 1.3544, 0.1294], |
| [ 1.4551, 0.1294, 1.6724]]) |
| >>> u |
| tensor([[ 1.5528, -0.4821, 0.9371], |
| [ 0.0000, 1.0592, 0.5486], |
| [ 0.0000, 0.0000, 0.7023]]) |
| >>> torch.mm(u.t(), u) |
| tensor([[ 2.4112, -0.7486, 1.4551], |
| [-0.7486, 1.3544, 0.1294], |
| [ 1.4551, 0.1294, 1.6724]]) |
| """) |
| |
| add_docstr(torch.potri, r""" |
| potri(u, upper=True, out=None) -> Tensor |
| |
| Computes the inverse of a positive semidefinite matrix given its |
| Cholesky factor :attr:`u`: returns matrix `inv` |
| |
| If :attr:`upper` is ``True`` or not provided, :attr:`u` is upper |
| triangular such that the returned tensor is |
| |
| .. math:: |
| inv = (u^T u)^{-1} |
| |
| If :attr:`upper` is ``False``, :attr:`u` is lower triangular |
| such that the returned tensor is |
| |
| .. math:: |
| inv = (uu^{T})^{-1} |
| |
| Args: |
| u (Tensor): the input 2-D tensor, a upper or lower triangular |
| Cholesky factor |
| upper (bool, optional): whether to return a upper (default) or lower triangular matrix |
| out (Tensor, optional): the output tensor for `inv` |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = torch.mm(a, a.t()) # make symmetric positive definite |
| >>> u = torch.potrf(a) |
| >>> a |
| tensor([[ 0.9935, -0.6353, 1.5806], |
| [ -0.6353, 0.8769, -1.7183], |
| [ 1.5806, -1.7183, 10.6618]]) |
| >>> torch.potri(u) |
| tensor([[ 1.9314, 1.2251, -0.0889], |
| [ 1.2251, 2.4439, 0.2122], |
| [-0.0889, 0.2122, 0.1412]]) |
| >>> a.inverse() |
| tensor([[ 1.9314, 1.2251, -0.0889], |
| [ 1.2251, 2.4439, 0.2122], |
| [-0.0889, 0.2122, 0.1412]]) |
| """) |
| |
| add_docstr(torch.potrs, r""" |
| potrs(b, u, upper=True, out=None) -> Tensor |
| |
| Solves a linear system of equations with a positive semidefinite |
| matrix to be inverted given its Cholesky factor matrix :attr:`u`. |
| |
| If :attr:`upper` is ``True`` or not provided, :attr:`u` is upper triangular |
| and `c` is returned such that: |
| |
| .. math:: |
| c = (u^T u)^{-1} b |
| |
| If :attr:`upper` is ``False``, :attr:`u` is and lower triangular and `c` is |
| returned such that: |
| |
| .. math:: |
| c = (u u^T)^{-1} b |
| |
| .. note:: :attr:`b` is always a 2-D tensor, use `b.unsqueeze(1)` to convert a vector. |
| |
| Args: |
| b (Tensor): the right hand side 2-D tensor |
| u (Tensor): the input 2-D tensor, a upper or lower triangular Cholesky factor |
| upper (bool, optional): whether to return a upper (default) or lower triangular matrix |
| out (Tensor, optional): the output tensor for `c` |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = torch.mm(a, a.t()) # make symmetric positive definite |
| >>> u = torch.potrf(a) |
| >>> a |
| tensor([[ 0.7747, -1.9549, 1.3086], |
| [-1.9549, 6.7546, -5.4114], |
| [ 1.3086, -5.4114, 4.8733]]) |
| >>> b = torch.randn(3, 2) |
| >>> b |
| tensor([[-0.6355, 0.9891], |
| [ 0.1974, 1.4706], |
| [-0.4115, -0.6225]]) |
| >>> torch.potrs(b,u) |
| tensor([[ -8.1625, 19.6097], |
| [ -5.8398, 14.2387], |
| [ -4.3771, 10.4173]]) |
| >>> torch.mm(a.inverse(),b) |
| tensor([[ -8.1626, 19.6097], |
| [ -5.8398, 14.2387], |
| [ -4.3771, 10.4173]]) |
| """) |
| |
| add_docstr(torch.pow, |
| r""" |
| .. function:: pow(input, exponent, out=None) -> Tensor |
| |
| Takes the power of each element in :attr:`input` with :attr:`exponent` and |
| returns a tensor with the result. |
| |
| :attr:`exponent` can be either a single ``float`` number or a `Tensor` |
| with the same number of elements as :attr:`input`. |
| |
| When :attr:`exponent` is a scalar value, the operation applied is: |
| |
| .. math:: |
| \text{out}_i = x_i ^ \text{exponent} |
| |
| When :attr:`exponent` is a tensor, the operation applied is: |
| |
| .. math:: |
| \text{out}_i = x_i ^ {\text{exponent}_i} |
| |
| When :attr:`exponent` is a tensor, the shapes of :attr:`input` |
| and :attr:`exponent` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the input tensor |
| exponent (float or tensor): the exponent value |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.4331, 1.2475, 0.6834, -0.2791]) |
| >>> torch.pow(a, 2) |
| tensor([ 0.1875, 1.5561, 0.4670, 0.0779]) |
| >>> exp = torch.arange(1., 5.) |
| |
| >>> a = torch.arange(1., 5.) |
| >>> a |
| tensor([ 1., 2., 3., 4.]) |
| >>> exp |
| tensor([ 1., 2., 3., 4.]) |
| >>> torch.pow(a, exp) |
| tensor([ 1., 4., 27., 256.]) |
| |
| .. function:: pow(base, input, out=None) -> Tensor |
| |
| :attr:`base` is a scalar ``float`` value, and :attr:`input` is a tensor. |
| The returned tensor :attr:`out` is of the same shape as :attr:`input` |
| |
| The operation applied is: |
| |
| .. math:: |
| out_i = base ^ {input_i} |
| |
| Args: |
| base (float): the scalar base value for the power operation |
| input (Tensor): the exponent tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> exp = torch.arange(1., 5.) |
| >>> base = 2 |
| >>> torch.pow(base, exp) |
| tensor([ 2., 4., 8., 16.]) |
| """) |
| |
| add_docstr(torch.prod, |
| r""" |
| .. function:: prod(input, dtype=None) -> Tensor |
| |
| Returns the product of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[-0.8020, 0.5428, -1.5854]]) |
| >>> torch.prod(a) |
| tensor(0.6902) |
| |
| .. function:: prod(input, dim, keepdim=False, dtype=None) -> Tensor |
| |
| Returns the product of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensor having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 2) |
| >>> a |
| tensor([[ 0.5261, -0.3837], |
| [ 1.1857, -0.2498], |
| [-1.1646, 0.0705], |
| [ 1.1131, -1.0629]]) |
| >>> torch.prod(a, 1) |
| tensor([-0.2018, -0.2962, -0.0821, -1.1831]) |
| """.format(**reduceops_common_args)) |
| |
| add_docstr(torch.pstrf, r""" |
| pstrf(a, upper=True, out=None) -> (Tensor, Tensor) |
| |
| Computes the pivoted Cholesky decomposition of a positive semidefinite |
| matrix :attr:`a`. returns matrices `u` and `piv`. |
| |
| If :attr:`upper` is ``True`` or not provided, `u` is upper triangular |
| such that :math:`a = p^T u^T u p`, with `p` the permutation given by `piv`. |
| |
| If :attr:`upper` is ``False``, `u` is lower triangular such that |
| :math:`a = p^T u u^T p`. |
| |
| Args: |
| a (Tensor): the input 2-D tensor |
| upper (bool, optional): whether to return a upper (default) or lower triangular matrix |
| out (tuple, optional): tuple of `u` and `piv` tensors |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a = torch.mm(a, a.t()) # make symmetric positive definite |
| >>> a |
| tensor([[ 3.5405, -0.4577, 0.8342], |
| [-0.4577, 1.8244, -0.1996], |
| [ 0.8342, -0.1996, 3.7493]]) |
| >>> u,piv = torch.pstrf(a) |
| >>> u |
| tensor([[ 1.9363, 0.4308, -0.1031], |
| [ 0.0000, 1.8316, -0.2256], |
| [ 0.0000, 0.0000, 1.3277]]) |
| >>> piv |
| tensor([ 2, 0, 1], dtype=torch.int32) |
| >>> p = torch.eye(3).index_select(0,piv.long()).index_select(0,piv.long()).t() # make pivot permutation |
| >>> torch.mm(torch.mm(p.t(),torch.mm(u.t(),u)),p) # reconstruct |
| tensor([[ 3.5405, -0.4577, 0.8342], |
| [-0.4577, 1.8244, -0.1996], |
| [ 0.8342, -0.1996, 3.7493]]) |
| """) |
| |
| add_docstr(torch.qr, |
| r""" |
| qr(input, out=None) -> (Tensor, Tensor) |
| |
| Computes the QR decomposition of a matrix :attr:`input`, and returns matrices |
| `Q` and `R` such that :math:`\text{input} = Q R`, with :math:`Q` being an |
| orthogonal matrix and :math:`R` being an upper triangular matrix. |
| |
| This returns the thin (reduced) QR factorization. |
| |
| .. note:: precision may be lost if the magnitudes of the elements of :attr:`input` |
| are large |
| |
| .. note:: While it should always give you a valid decomposition, it may not |
| give you the same one across platforms - it will depend on your |
| LAPACK implementation. |
| |
| .. note:: Irrespective of the original strides, the returned matrix :math:`Q` will be |
| transposed, i.e. with strides `(1, m)` instead of `(m, 1)`. |
| |
| Args: |
| input (Tensor): the input 2-D tensor |
| out (tuple, optional): tuple of `Q` and `R` tensors |
| |
| Example:: |
| |
| >>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]]) |
| >>> q, r = torch.qr(a) |
| >>> q |
| tensor([[-0.8571, 0.3943, 0.3314], |
| [-0.4286, -0.9029, -0.0343], |
| [ 0.2857, -0.1714, 0.9429]]) |
| >>> r |
| tensor([[ -14.0000, -21.0000, 14.0000], |
| [ 0.0000, -175.0000, 70.0000], |
| [ 0.0000, 0.0000, -35.0000]]) |
| >>> torch.mm(q, r).round() |
| tensor([[ 12., -51., 4.], |
| [ 6., 167., -68.], |
| [ -4., 24., -41.]]) |
| >>> torch.mm(q.t(), q).round() |
| tensor([[ 1., 0., 0.], |
| [ 0., 1., -0.], |
| [ 0., -0., 1.]]) |
| """) |
| |
| add_docstr(torch.rand, |
| r""" |
| rand(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with random numbers from a uniform distribution |
| on the interval :math:`[0, 1)` |
| |
| The shape of the tensor is defined by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.rand(4) |
| tensor([ 0.5204, 0.2503, 0.3525, 0.5673]) |
| >>> torch.rand(2, 3) |
| tensor([[ 0.8237, 0.5781, 0.6879], |
| [ 0.3816, 0.7249, 0.0998]]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.rand_like, |
| r""" |
| rand_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor with the same size as :attr:`input` that is filled with |
| random numbers from a uniform distribution on the interval :math:`[0, 1)`. |
| ``torch.rand_like(input)`` is equivalent to |
| ``torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| Args: |
| {input} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| """.format(**factory_like_common_args)) |
| |
| add_docstr(torch.randint, |
| r""" |
| randint(low=0, high, size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with random integers generated uniformly |
| between :attr:`low` (inclusive) and :attr:`high` (exclusive). |
| |
| The shape of the tensor is defined by the variable argument :attr:`size`. |
| |
| .. note: |
| With the global dtype default (`torch.float32`), this function returns |
| a tensor with dtype `torch.float32`, NOT an integer dtype. |
| |
| Args: |
| low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. |
| high (int): One above the highest integer to be drawn from the distribution. |
| size (tuple): a tuple defining the shape of the output tensor. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.randint(3, 5, (3,)) |
| tensor([ 4., 3., 4.]) |
| |
| |
| >>> torch.randint(10, (2,2)) |
| tensor([[ 0., 2.], |
| [ 5., 5.]]) |
| |
| |
| >>> torch.randint(3, 10, (2,2)) |
| tensor([[ 4., 5.], |
| [ 6., 7.]]) |
| |
| |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.randint_like, |
| r""" |
| randint_like(input, low=0, high, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor with the same shape as Tensor :attr:`input` filled with |
| random integers generated uniformly between :attr:`low` (inclusive) and |
| :attr:`high` (exclusive). |
| |
| .. note: |
| With the global dtype default (`torch.float32`), this function returns |
| a tensor with dtype `torch.float32`, NOT an integer dtype. |
| |
| Args: |
| {input} |
| low (int, optional): Lowest integer to be drawn from the distribution. Default: 0. |
| high (int): One above the highest integer to be drawn from the distribution. |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| """.format(**factory_like_common_args)) |
| |
| add_docstr(torch.randn, |
| r""" |
| randn(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with random numbers from a normal distribution |
| with mean `0` and variance `1` (also called the standard normal |
| distribution). |
| |
| .. math:: |
| \text{{out}}_{{i}} \sim \mathcal{{N}}(0, 1) |
| |
| The shape of the tensor is defined by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.randn(4) |
| tensor([-2.1436, 0.9966, 2.3426, -0.6366]) |
| >>> torch.randn(2, 3) |
| tensor([[ 1.5954, 2.8929, -1.0923], |
| [ 1.1719, -0.4709, -0.1996]]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.randn_like, |
| r""" |
| randn_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor with the same size as :attr:`input` that is filled with |
| random numbers from a normal distribution with mean 0 and variance 1. |
| ``torch.randn_like(input)`` is equivalent to |
| ``torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| Args: |
| {input} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| """.format(**factory_like_common_args)) |
| |
| add_docstr(torch.randperm, |
| r""" |
| randperm(n, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False) -> LongTensor |
| |
| Returns a random permutation of integers from ``0`` to ``n - 1``. |
| |
| Args: |
| n (int): the upper bound (exclusive) |
| {out} |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: ``torch.int64``. |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.randperm(4) |
| tensor([ 2, 1, 0, 3]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.tensor, |
| r""" |
| tensor(data, dtype=None, device=None, requires_grad=False) -> Tensor |
| |
| Constructs a tensor with :attr:`data`. |
| |
| .. warning:: |
| |
| :func:`torch.tensor` always copies :attr:`data`. If you have a Tensor |
| ``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_` |
| or :func:`torch.Tensor.detach`. |
| If you have a NumPy ``ndarray`` and want to avoid a copy, use |
| :func:`torch.from_numpy`. |
| |
| .. warning:: |
| |
| When data is a tensor `x`, :func:`torch.tensor` reads out 'the data' from whatever it is passed, |
| and constructs a leaf variable. Therefore ``torch.tensor(x)`` is equivalent to ``x.clone().detach()`` |
| and ``torch.tensor(x, requires_grad=True)`` is equivalent to ``x.clone().detach().requires_grad_(True)``. |
| The equivalents using ``clone()`` and ``detach()`` are recommended. |
| |
| Args: |
| {data} |
| {dtype} |
| {device} |
| {requires_grad} |
| |
| |
| Example:: |
| |
| >>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]]) |
| tensor([[ 0.1000, 1.2000], |
| [ 2.2000, 3.1000], |
| [ 4.9000, 5.2000]]) |
| |
| >>> torch.tensor([0, 1]) # Type inference on data |
| tensor([ 0, 1]) |
| |
| >>> torch.tensor([[0.11111, 0.222222, 0.3333333]], |
| dtype=torch.float64, |
| device=torch.device('cuda:0')) # creates a torch.cuda.DoubleTensor |
| tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0') |
| |
| >>> torch.tensor(3.14159) # Create a scalar (zero-dimensional tensor) |
| tensor(3.1416) |
| |
| >>> torch.tensor([]) # Create an empty tensor (of size (0,)) |
| tensor([]) |
| """.format(**factory_data_common_args)) |
| |
| add_docstr(torch.range, |
| r""" |
| range(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1` |
| with values from :attr:`start` to :attr:`end` with step :attr:`step`. Step is |
| the gap between two values in the tensor. |
| |
| .. math:: |
| \text{out}_{i+1} = \text{out}_i + \text{step}. |
| """ + r""" |
| .. warning:: |
| This function is deprecated in favor of :func:`torch.arange`. |
| |
| Args: |
| start (float): the starting value for the set of points. Default: ``0``. |
| end (float): the ending value for the set of points |
| step (float): the gap between each pair of adjacent points. Default: ``1``. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.range(1, 4) |
| tensor([ 1., 2., 3., 4.]) |
| >>> torch.range(1, 4, 0.5) |
| tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.arange, |
| r""" |
| arange(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor` |
| with values from the interval ``[start, end)`` taken with common difference |
| :attr:`step` beginning from `start`. |
| |
| Note that non-integer :attr:`step` is subject to floating point rounding errors when |
| comparing against :attr:`end`; to avoid inconsistency, we advise adding a small epsilon to :attr:`end` |
| in such cases. |
| |
| .. math:: |
| \text{out}_{{i+1}} = \text{out}_{i} + \text{step} |
| """ + r""" |
| Args: |
| start (Number): the starting value for the set of points. Default: ``0``. |
| end (Number): the ending value for the set of points |
| step (Number): the gap between each pair of adjacent points. Default: ``1``. |
| {out} |
| {dtype} If `dtype` is not given, infer the data type from the other input |
| arguments. If any of `start`, `end`, or `stop` are floating-point, the |
| `dtype` is inferred to be the default dtype, see |
| :meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to |
| be `torch.int64`. |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.arange(5) |
| tensor([ 0, 1, 2, 3, 4]) |
| >>> torch.arange(1, 4) |
| tensor([ 1, 2, 3]) |
| >>> torch.arange(1, 2.5, 0.5) |
| tensor([ 1.0000, 1.5000, 2.0000]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.remainder, |
| r""" |
| remainder(input, divisor, out=None) -> Tensor |
| |
| Computes the element-wise remainder of division. |
| |
| The divisor and dividend may contain both for integer and floating point |
| numbers. The remainder has the same sign as the divisor. |
| |
| When :attr:`divisor` is a tensor, the shapes of :attr:`input` and |
| :attr:`divisor` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Args: |
| input (Tensor): the dividend |
| divisor (Tensor or float): the divisor that may be either a number or a |
| Tensor of the same shape as the dividend |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2) |
| tensor([ 1., 0., 1., 1., 0., 1.]) |
| >>> torch.remainder(torch.tensor([1., 2, 3, 4, 5]), 1.5) |
| tensor([ 1.0000, 0.5000, 0.0000, 1.0000, 0.5000]) |
| |
| .. seealso:: |
| |
| :func:`torch.fmod`, which computes the element-wise remainder of |
| division equivalently to the C library function ``fmod()``. |
| """) |
| |
| add_docstr(torch.renorm, |
| r""" |
| renorm(input, p, dim, maxnorm, out=None) -> Tensor |
| |
| Returns a tensor where each sub-tensor of :attr:`input` along dimension |
| :attr:`dim` is normalized such that the `p`-norm of the sub-tensor is lower |
| than the value :attr:`maxnorm` |
| |
| .. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged |
| |
| Args: |
| input (Tensor): the input tensor |
| p (float): the power for the norm computation |
| dim (int): the dimension to slice over to get the sub-tensors |
| maxnorm (float): the maximum norm to keep each sub-tensor under |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.ones(3, 3) |
| >>> x[1].fill_(2) |
| tensor([ 2., 2., 2.]) |
| >>> x[2].fill_(3) |
| tensor([ 3., 3., 3.]) |
| >>> x |
| tensor([[ 1., 1., 1.], |
| [ 2., 2., 2.], |
| [ 3., 3., 3.]]) |
| >>> torch.renorm(x, 1, 0, 5) |
| tensor([[ 1.0000, 1.0000, 1.0000], |
| [ 1.6667, 1.6667, 1.6667], |
| [ 1.6667, 1.6667, 1.6667]]) |
| """) |
| |
| add_docstr(torch.reshape, |
| r""" |
| reshape(input, shape) -> Tensor |
| |
| Returns a tensor with the same data and number of elements as :attr:`input`, |
| but with the specified shape. When possible, the returned tensor will be a view |
| of :attr:`input`. Otherwise, it will be a copy. Contiguous inputs and inputs |
| with compatible strides can be reshaped without copying, but you should not |
| depend on the copying vs. viewing behavior. |
| |
| See :meth:`torch.Tensor.view` on when it is possible to return a view. |
| |
| A single dimension may be -1, in which case it's inferred from the remaining |
| dimensions and the number of elements in :attr:`input`. |
| |
| Args: |
| input (Tensor): the tensor to be reshaped |
| shape (tuple of ints): the new shape |
| |
| Example:: |
| |
| >>> a = torch.arange(4.) |
| >>> torch.reshape(a, (2, 2)) |
| tensor([[ 0., 1.], |
| [ 2., 3.]]) |
| >>> b = torch.tensor([[0, 1], [2, 3]]) |
| >>> torch.reshape(b, (-1,)) |
| tensor([ 0, 1, 2, 3]) |
| """) |
| |
| |
| add_docstr(torch.round, |
| r""" |
| round(input, out=None) -> Tensor |
| |
| Returns a new tensor with each of the elements of :attr:`input` rounded |
| to the closest integer. |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.9920, 0.6077, 0.9734, -1.0362]) |
| >>> torch.round(a) |
| tensor([ 1., 1., 1., -1.]) |
| """) |
| |
| add_docstr(torch.rsqrt, |
| r""" |
| rsqrt(input, out=None) -> Tensor |
| |
| Returns a new tensor with the reciprocal of the square-root of each of |
| the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.0370, 0.2970, 1.5420, -0.9105]) |
| >>> torch.rsqrt(a) |
| tensor([ nan, 1.8351, 0.8053, nan]) |
| """) |
| |
| add_docstr(torch.set_flush_denormal, |
| r""" |
| set_flush_denormal(mode) -> bool |
| |
| Disables denormal floating numbers on CPU. |
| |
| Returns ``True`` if your system supports flushing denormal numbers and it |
| successfully configures flush denormal mode. :meth:`~torch.set_flush_denormal` |
| is only supported on x86 architectures supporting SSE3. |
| |
| Args: |
| mode (bool): Controls whether to enable flush denormal mode or not |
| |
| Example:: |
| |
| >>> torch.set_flush_denormal(True) |
| True |
| >>> torch.tensor([1e-323], dtype=torch.float64) |
| tensor([ 0.], dtype=torch.float64) |
| >>> torch.set_flush_denormal(False) |
| True |
| >>> torch.tensor([1e-323], dtype=torch.float64) |
| tensor(9.88131e-324 * |
| [ 1.0000], dtype=torch.float64) |
| """) |
| |
| add_docstr(torch.set_num_threads, |
| r""" |
| set_num_threads(int) |
| |
| Sets the number of OpenMP threads used for parallelizing CPU operations |
| """) |
| |
| add_docstr(torch.sigmoid, |
| r""" |
| sigmoid(input, out=None) -> Tensor |
| |
| Returns a new tensor with the sigmoid of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.9213, 1.0887, -0.8858, -1.7683]) |
| >>> torch.sigmoid(a) |
| tensor([ 0.7153, 0.7481, 0.2920, 0.1458]) |
| """) |
| |
| add_docstr(torch.sign, |
| r""" |
| sign(input, out=None) -> Tensor |
| |
| Returns a new tensor with the sign of the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 1.0382, -1.4526, -0.9709, 0.4542]) |
| >>> torch.sign(a) |
| tensor([ 1., -1., -1., 1.]) |
| """) |
| |
| add_docstr(torch.sin, |
| r""" |
| sin(input, out=None) -> Tensor |
| |
| Returns a new tensor with the sine of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sin(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-0.5461, 0.1347, -2.7266, -0.2746]) |
| >>> torch.sin(a) |
| tensor([-0.5194, 0.1343, -0.4032, -0.2711]) |
| """) |
| |
| add_docstr(torch.sinh, |
| r""" |
| sinh(input, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic sine of the elements of |
| :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sinh(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.5380, -0.8632, -0.1265, 0.9399]) |
| >>> torch.sinh(a) |
| tensor([ 0.5644, -0.9744, -0.1268, 1.0845]) |
| """) |
| |
| add_docstr(torch.sort, |
| r""" |
| sort(input, dim=None, descending=False, out=None) -> (Tensor, LongTensor) |
| |
| Sorts the elements of the :attr:`input` tensor along a given dimension |
| in ascending order by value. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`descending` is ``True`` then the elements are sorted in descending |
| order by value. |
| |
| A tuple of (sorted_tensor, sorted_indices) is returned, where the |
| sorted_indices are the indices of the elements in the original `input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int, optional): the dimension to sort along |
| descending (bool, optional): controls the sorting order (ascending or descending) |
| out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can |
| be optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 4) |
| >>> sorted, indices = torch.sort(x) |
| >>> sorted |
| tensor([[-0.2162, 0.0608, 0.6719, 2.3332], |
| [-0.5793, 0.0061, 0.6058, 0.9497], |
| [-0.5071, 0.3343, 0.9553, 1.0960]]) |
| >>> indices |
| tensor([[ 1, 0, 2, 3], |
| [ 3, 1, 0, 2], |
| [ 0, 3, 1, 2]]) |
| |
| >>> sorted, indices = torch.sort(x, 0) |
| >>> sorted |
| tensor([[-0.5071, -0.2162, 0.6719, -0.5793], |
| [ 0.0608, 0.0061, 0.9497, 0.3343], |
| [ 0.6058, 0.9553, 1.0960, 2.3332]]) |
| >>> indices |
| tensor([[ 2, 0, 0, 1], |
| [ 0, 1, 1, 2], |
| [ 1, 2, 2, 0]]) |
| """) |
| |
| add_docstr(torch.sparse_coo_tensor, |
| r""" |
| sparse_coo_tensor(indices, values, size=None, dtype=None, device=None, requires_grad=False) -> Tensor |
| |
| Constructs a sparse tensors in COO(rdinate) format with non-zero elements at the given :attr:`indices` |
| with the given :attr:`values`. A sparse tensor can be `uncoalesced`, in that case, there are duplicate |
| coordinates in the indices, and the value at that index is the sum of all duplicate value entries: |
| `torch.sparse`_. |
| |
| Args: |
| indices (array_like): Initial data for the tensor. Can be a list, tuple, |
| NumPy ``ndarray``, scalar, and other types. Will be cast to a :class:`torch.LongTensor` |
| internally. The indices are the coordinates of the non-zero values in the matrix, and thus |
| should be two-dimensional where the first dimension is the number of tensor dimensions and |
| the second dimension is the number of non-zero values. |
| values (array_like): Initial values for the tensor. Can be a list, tuple, |
| NumPy ``ndarray``, scalar, and other types. |
| size (list, tuple, or :class:`torch.Size`, optional): Size of the sparse tensor. If not |
| provided the size will be inferred as the minimum size big enough to hold all non-zero |
| elements. |
| dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor. |
| Default: if None, infers data type from :attr:`values`. |
| device (:class:`torch.device`, optional): the desired device of returned tensor. |
| Default: if None, uses the current device for the default tensor type |
| (see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU |
| for CPU tensor types and the current CUDA device for CUDA tensor types. |
| requires_grad (bool, optional): If autograd should record operations on the |
| returned tensor. Default: ``False``. |
| |
| |
| Example:: |
| |
| >>> i = torch.LongTensor([[0, 1, 1], |
| [2, 0, 2]]) |
| >>> v = torch.FloatTensor([3, 4, 5]) |
| >>> torch.sparse_coo_tensor(i, v, torch.Size([2,4])) |
| torch.sparse.FloatTensor of size (2,4) with indices: |
| tensor([[ 0, 1, 1], |
| [ 2, 0, 2]]) |
| and values: |
| tensor([ 3., 4., 5.]) |
| |
| >>> torch.sparse_coo_tensor(i, v) # Shape inference |
| torch.sparse.FloatTensor of size (2,3) with indices: |
| tensor([[ 0, 1, 1], |
| [ 2, 0, 2]]) |
| and values: |
| tensor([ 3., 4., 5.]) |
| |
| >>> torch.sparse_coo_tensor(i, v, torch.Size([2,4]), dtype=torch.float64, |
| device=torch.device('cuda:0')) |
| torch.cuda.sparse.DoubleTensor of size (2,4) with indices: |
| tensor([[ 0, 1, 1], |
| [ 2, 0, 2]], device='cuda:0') |
| and values: |
| tensor([ 3., 4., 5.], dtype=torch.float64, device='cuda:0') |
| |
| >>> torch.sparse_coo_tensor([], [], torch.Size([])) # Create an empty tensor (of size (0,)) |
| torch.sparse.FloatTensor of size () with indices: |
| tensor([], dtype=torch.int64) |
| and values: |
| tensor([]) |
| |
| .. _torch.sparse: https://pytorch.org/docs/stable/sparse.html |
| """) |
| |
| add_docstr(torch.sqrt, |
| r""" |
| sqrt(input, out=None) -> Tensor |
| |
| Returns a new tensor with the square-root of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \sqrt{\text{input}_{i}} |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-2.0755, 1.0226, 0.0831, 0.4806]) |
| >>> torch.sqrt(a) |
| tensor([ nan, 1.0112, 0.2883, 0.6933]) |
| """) |
| |
| add_docstr(torch.squeeze, |
| r""" |
| squeeze(input, dim=None, out=None) -> Tensor |
| |
| Returns a tensor with all the dimensions of :attr:`input` of size `1` removed. |
| |
| For example, if `input` is of shape: |
| :math:`(A \times 1 \times B \times C \times 1 \times D)` then the `out` tensor |
| will be of shape: :math:`(A \times B \times C \times D)`. |
| |
| When :attr:`dim` is given, a squeeze operation is done only in the given |
| dimension. If `input` is of shape: :math:`(A \times 1 \times B)`, |
| ``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)`` |
| will squeeze the tensor to the shape :math:`(A \times B)`. |
| |
| .. note:: The returned tensor shares the storage with the input tensor, |
| so changing the contents of one will change the contents of the other. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int, optional): if given, the input will be squeezed only in |
| this dimension |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.zeros(2, 1, 2, 1, 2) |
| >>> x.size() |
| torch.Size([2, 1, 2, 1, 2]) |
| >>> y = torch.squeeze(x) |
| >>> y.size() |
| torch.Size([2, 2, 2]) |
| >>> y = torch.squeeze(x, 0) |
| >>> y.size() |
| torch.Size([2, 1, 2, 1, 2]) |
| >>> y = torch.squeeze(x, 1) |
| >>> y.size() |
| torch.Size([2, 2, 1, 2]) |
| """) |
| |
| add_docstr(torch.std, |
| r""" |
| .. function:: std(input, unbiased=True) -> Tensor |
| |
| Returns the standard-deviation of all elements in the :attr:`input` tensor. |
| |
| If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated |
| via the biased estimator. Otherwise, Bessel's correction will be used. |
| |
| Args: |
| input (Tensor): the input tensor |
| unbiased (bool): whether to use the unbiased estimation or not |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[-0.8166, -1.3802, -0.3560]]) |
| >>> torch.std(a) |
| tensor(0.5130) |
| |
| .. function:: std(input, dim, keepdim=False, unbiased=True, out=None) -> Tensor |
| |
| Returns the standard-deviation of each row of the :attr:`input` tensor in the |
| given dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size as |
| :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting |
| in the output tensor having 1 fewer dimension than :attr:`input`. |
| |
| If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated |
| via the biased estimator. Otherwise, Bessel's correction will be used. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| unbiased (bool): whether to use the unbiased estimation or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.2035, 1.2959, 1.8101, -0.4644], |
| [ 1.5027, -0.3270, 0.5905, 0.6538], |
| [-1.5745, 1.3330, -0.5596, -0.6548], |
| [ 0.1264, -0.5080, 1.6420, 0.1992]]) |
| >>> torch.std(a, dim=1) |
| tensor([ 1.0311, 0.7477, 1.2204, 0.9087]) |
| """) |
| |
| add_docstr(torch.sum, |
| r""" |
| .. function:: sum(input, dtype=None) -> Tensor |
| |
| Returns the sum of all elements in the :attr:`input` tensor. |
| |
| Args: |
| input (Tensor): the input tensor |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[ 0.1133, -0.9567, 0.2958]]) |
| >>> torch.sum(a) |
| tensor(-0.5475) |
| |
| .. function:: sum(input, dim, keepdim=False, dtype=None) -> Tensor |
| |
| Returns the sum of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. If :attr::`dim` is a list of dimensions, |
| reduce over all of them. |
| |
| If :attr:`keepdim` is ``True``, the output tensor is of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where it is of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the output tensor having 1 fewer dimension than :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int or tuple of ints): the dimension or dimensions to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| {dtype} |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[ 0.0569, -0.2475, 0.0737, -0.3429], |
| [-0.2993, 0.9138, 0.9337, -1.6864], |
| [ 0.1132, 0.7892, -0.1003, 0.5688], |
| [ 0.3637, -0.9906, -0.4752, -1.5197]]) |
| >>> torch.sum(a, 1) |
| tensor([-0.4598, -0.1381, 1.3708, -2.6217]) |
| >>> b = torch.arange(4 * 5 * 6).view(4, 5, 6) |
| >>> torch.sum(b, (2, 1)) |
| tensor([ 435., 1335., 2235., 3135.]) |
| """.format(**reduceops_common_args)) |
| |
| add_docstr(torch.svd, |
| r""" |
| svd(input, some=True, out=None) -> (Tensor, Tensor, Tensor) |
| |
| `U, S, V = torch.svd(A)` returns the singular value decomposition of a |
| real matrix `A` of size `(n x m)` such that :math:`A = USV^T`. |
| |
| `U` is of shape :math:`(n \times n)`. |
| |
| `S` is a diagonal matrix of shape :math:`(n \times m)`, represented as a vector |
| of size :math:`\min(n, m)` containing the non-negative diagonal entries. |
| |
| `V` is of shape :math:`(m \times m)`. |
| |
| If :attr:`some` is ``True`` (default), the returned `U` and `V` matrices will |
| contain only :math:`min(n, m)` orthonormal columns. |
| |
| .. note:: The implementation of SVD on CPU uses the LAPACK routine `?gesdd` (a divide-and-conquer |
| algorithm) instead of `?gesvd` for speed. Analogously, the SVD on GPU uses the MAGMA routine |
| `gesdd` as well. |
| |
| .. note:: Irrespective of the original strides, the returned matrix `U` |
| will be transposed, i.e. with strides `(1, n)` instead of `(n, 1)`. |
| |
| .. note:: Extra care needs to be taken when backward through `U` and `V` |
| outputs. Such operation is really only stable when :attr:`input` is |
| full rank with all distinct singular values. Otherwise, ``NaN`` can |
| appear as the gradients are not properly defined. Also, notice that |
| double backward will usually do an additional backward through `U` and |
| `V` even if the original backward is only on `S`. |
| |
| .. note:: When :attr:`some` = ``False``, the gradients on ``U[:, min(n, m):]`` |
| and ``V[:, min(n, m):]`` will be ignored in backward as those vectors |
| can be arbitrary bases of the subspaces. |
| |
| Args: |
| input (Tensor): the input 2-D tensor |
| some (bool, optional): controls the shape of returned `U` and `V` |
| out (tuple, optional): the output tuple of tensors |
| |
| Example:: |
| |
| >>> a = torch.tensor([[8.79, 6.11, -9.15, 9.57, -3.49, 9.84], |
| [9.93, 6.91, -7.93, 1.64, 4.02, 0.15], |
| [9.83, 5.04, 4.86, 8.83, 9.80, -8.99], |
| [5.45, -0.27, 4.85, 0.74, 10.00, -6.02], |
| [3.16, 7.98, 3.01, 5.80, 4.27, -5.31]]).t() |
| |
| >>> u, s, v = torch.svd(a) |
| >>> u |
| tensor([[-0.5911, 0.2632, 0.3554, 0.3143, 0.2299], |
| [-0.3976, 0.2438, -0.2224, -0.7535, -0.3636], |
| [-0.0335, -0.6003, -0.4508, 0.2334, -0.3055], |
| [-0.4297, 0.2362, -0.6859, 0.3319, 0.1649], |
| [-0.4697, -0.3509, 0.3874, 0.1587, -0.5183], |
| [ 0.2934, 0.5763, -0.0209, 0.3791, -0.6526]]) |
| >>> s |
| tensor([ 27.4687, 22.6432, 8.5584, 5.9857, 2.0149]) |
| >>> v |
| tensor([[-0.2514, 0.8148, -0.2606, 0.3967, -0.2180], |
| [-0.3968, 0.3587, 0.7008, -0.4507, 0.1402], |
| [-0.6922, -0.2489, -0.2208, 0.2513, 0.5891], |
| [-0.3662, -0.3686, 0.3859, 0.4342, -0.6265], |
| [-0.4076, -0.0980, -0.4933, -0.6227, -0.4396]]) |
| >>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t())) |
| tensor(1.00000e-06 * |
| 9.3738) |
| """) |
| |
| add_docstr(torch.symeig, |
| r""" |
| symeig(input, eigenvectors=False, upper=True, out=None) -> (Tensor, Tensor) |
| |
| This function returns eigenvalues and eigenvectors |
| of a real symmetric matrix :attr:`input`, represented by a tuple :math:`(e, V)`. |
| |
| :attr:`input` and :math:`V` are :math:`(m \times m)` matrices and :math:`e` is a |
| :math:`m` dimensional vector. |
| |
| This function calculates all eigenvalues (and vectors) of :attr:`input` |
| such that :math:`\text{input} = V \text{diag}(e) V^T`. |
| |
| The boolean argument :attr:`eigenvectors` defines computation of |
| eigenvectors or eigenvalues only. |
| |
| If it is ``False``, only eigenvalues are computed. If it is ``True``, |
| both eigenvalues and eigenvectors are computed. |
| |
| Since the input matrix :attr:`input` is supposed to be symmetric, |
| only the upper triangular portion is used by default. |
| |
| If :attr:`upper` is ``False``, then lower triangular portion is used. |
| |
| Note: Irrespective of the original strides, the returned matrix `V` will |
| be transposed, i.e. with strides `(1, m)` instead of `(m, 1)`. |
| |
| Args: |
| input (Tensor): the input symmetric matrix |
| eigenvectors(boolean, optional): controls whether eigenvectors have to be computed |
| upper(boolean, optional): controls whether to consider upper-triangular or lower-triangular region |
| out (tuple, optional): the output tuple of (Tensor, Tensor) |
| |
| Returns: |
| (Tensor, Tensor): A tuple containing |
| |
| - **e** (*Tensor*): Shape :math:`(m)`. Each element is an eigenvalue of ``input``, |
| The eigenvalues are in ascending order. |
| - **V** (*Tensor*): Shape :math:`(m \times m)`. |
| If ``eigenvectors=False``, it's a tensor filled with zeros. |
| Otherwise, this tensor contains the orthonormal eigenvectors of the ``input``. |
| |
| Examples:: |
| |
| |
| >>> a = torch.tensor([[ 1.96, 0.00, 0.00, 0.00, 0.00], |
| [-6.49, 3.80, 0.00, 0.00, 0.00], |
| [-0.47, -6.39, 4.17, 0.00, 0.00], |
| [-7.20, 1.50, -1.51, 5.70, 0.00], |
| [-0.65, -6.34, 2.67, 1.80, -7.10]]).t() |
| >>> e, v = torch.symeig(a, eigenvectors=True) |
| >>> e |
| tensor([-11.0656, -6.2287, 0.8640, 8.8655, 16.0948]) |
| >>> v |
| tensor([[-0.2981, -0.6075, 0.4026, -0.3745, 0.4896], |
| [-0.5078, -0.2880, -0.4066, -0.3572, -0.6053], |
| [-0.0816, -0.3843, -0.6600, 0.5008, 0.3991], |
| [-0.0036, -0.4467, 0.4553, 0.6204, -0.4564], |
| [-0.8041, 0.4480, 0.1725, 0.3108, 0.1622]]) |
| """) |
| |
| add_docstr(torch.t, |
| r""" |
| t(input) -> Tensor |
| |
| Expects :attr:`input` to be a matrix (2-D tensor) and transposes dimensions 0 |
| and 1. |
| |
| Can be seen as a short-hand function for ``transpose(input, 0, 1)``. |
| |
| Args: |
| input (Tensor): the input tensor |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| tensor([[ 0.4875, 0.9158, -0.5872], |
| [ 0.3938, -0.6929, 0.6932]]) |
| >>> torch.t(x) |
| tensor([[ 0.4875, 0.3938], |
| [ 0.9158, -0.6929], |
| [-0.5872, 0.6932]]) |
| """) |
| |
| add_docstr(torch.flip, |
| r""" |
| flip(input, dims) -> Tensor |
| |
| Reverse the order of a n-D tensor along given axis in dims. |
| |
| Args: |
| input (Tensor): the input tensor |
| dims (a list or tuple): axis to flip on |
| |
| Example:: |
| |
| >>> x = torch.arange(8).view(2, 2, 2) |
| >>> x |
| tensor([[[ 0, 1], |
| [ 2, 3]], |
| |
| [[ 4, 5], |
| [ 6, 7]]]) |
| >>> torch.flip(x, [0, 1]) |
| tensor([[[ 6, 7], |
| [ 4, 5]], |
| |
| [[ 2, 3], |
| [ 0, 1]]]) |
| """) |
| |
| add_docstr(torch.rot90, |
| r""" |
| rot90(input, k, dims) -> Tensor |
| |
| Rotate a n-D tensor by 90 degrees in the plane specified by dims axis. |
| Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0. |
| |
| Args: |
| input (Tensor): the input tensor |
| k (int): number of times to rotate |
| dims (a list or tuple): axis to rotate |
| |
| Example:: |
| |
| >>> x = torch.arange(4).view(2, 2) |
| >>> x |
| tensor([[0, 1], |
| [2, 3]]) |
| >>> torch.rot90(x, 1, [0, 1]) |
| tensor([[1, 3], |
| [0, 2]]) |
| |
| >>> x = torch.arange(8).view(2, 2, 2) |
| >>> x |
| tensor([[[0, 1], |
| [2, 3]], |
| |
| [[4, 5], |
| [6, 7]]]) |
| >>> torch.rot90(x, 1, [1, 2]) |
| tensor([[[1, 3], |
| [0, 2]], |
| |
| [[5, 7], |
| [4, 6]]]) |
| """) |
| |
| add_docstr(torch.take, |
| r""" |
| take(input, indices) -> Tensor |
| |
| Returns a new tensor with the elements of :attr:`input` at the given indices. |
| The input tensor is treated as if it were viewed as a 1-D tensor. The result |
| takes the same shape as the indices. |
| |
| Args: |
| input (Tensor): the input tensor |
| indices (LongTensor): the indices into tensor |
| |
| Example:: |
| |
| >>> src = torch.tensor([[4, 3, 5], |
| [6, 7, 8]]) |
| >>> torch.take(src, torch.tensor([0, 2, 5])) |
| tensor([ 4, 5, 8]) |
| """) |
| |
| add_docstr(torch.tan, |
| r""" |
| tan(input, out=None) -> Tensor |
| |
| Returns a new tensor with the tangent of the elements of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tan(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([-1.2027, -1.7687, 0.4412, -1.3856]) |
| >>> torch.tan(a) |
| tensor([-2.5930, 4.9859, 0.4722, -5.3366]) |
| """) |
| |
| add_docstr(torch.tanh, |
| r""" |
| tanh(input, out=None) -> Tensor |
| |
| Returns a new tensor with the hyperbolic tangent of the elements |
| of :attr:`input`. |
| |
| .. math:: |
| \text{out}_{i} = \tanh(\text{input}_{i}) |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 0.8986, -0.7279, 1.1745, 0.2611]) |
| >>> torch.tanh(a) |
| tensor([ 0.7156, -0.6218, 0.8257, 0.2553]) |
| """) |
| |
| add_docstr(torch.topk, |
| r""" |
| topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor) |
| |
| Returns the :attr:`k` largest elements of the given :attr:`input` tensor along |
| a given dimension. |
| |
| If :attr:`dim` is not given, the last dimension of the `input` is chosen. |
| |
| If :attr:`largest` is ``False`` then the `k` smallest elements are returned. |
| |
| A tuple of `(values, indices)` is returned, where the `indices` are the indices |
| of the elements in the original `input` tensor. |
| |
| The boolean option :attr:`sorted` if ``True``, will make sure that the returned |
| `k` elements are themselves sorted |
| |
| Args: |
| input (Tensor): the input tensor |
| k (int): the k in "top-k" |
| dim (int, optional): the dimension to sort along |
| largest (bool, optional): controls whether to return largest or |
| smallest elements |
| sorted (bool, optional): controls whether to return the elements |
| in sorted order |
| out (tuple, optional): the output tuple of (Tensor, LongTensor) that can be |
| optionally given to be used as output buffers |
| |
| Example:: |
| |
| >>> x = torch.arange(1., 6.) |
| >>> x |
| tensor([ 1., 2., 3., 4., 5.]) |
| >>> torch.topk(x, 3) |
| (tensor([ 5., 4., 3.]), tensor([ 4, 3, 2])) |
| """) |
| |
| add_docstr(torch.trace, |
| r""" |
| trace(input) -> Tensor |
| |
| Returns the sum of the elements of the diagonal of the input 2-D matrix. |
| |
| Example:: |
| |
| >>> x = torch.arange(1., 10.).view(3, 3) |
| >>> x |
| tensor([[ 1., 2., 3.], |
| [ 4., 5., 6.], |
| [ 7., 8., 9.]]) |
| >>> torch.trace(x) |
| tensor(15.) |
| """) |
| |
| add_docstr(torch.transpose, |
| r""" |
| transpose(input, dim0, dim1) -> Tensor |
| |
| Returns a tensor that is a transposed version of :attr:`input`. |
| The given dimensions :attr:`dim0` and :attr:`dim1` are swapped. |
| |
| The resulting :attr:`out` tensor shares it's underlying storage with the |
| :attr:`input` tensor, so changing the content of one would change the content |
| of the other. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim0 (int): the first dimension to be transposed |
| dim1 (int): the second dimension to be transposed |
| |
| Example:: |
| |
| >>> x = torch.randn(2, 3) |
| >>> x |
| tensor([[ 1.0028, -0.9893, 0.5809], |
| [-0.1669, 0.7299, 0.4942]]) |
| >>> torch.transpose(x, 0, 1) |
| tensor([[ 1.0028, -0.1669], |
| [-0.9893, 0.7299], |
| [ 0.5809, 0.4942]]) |
| """) |
| |
| add_docstr(torch.tril, |
| r""" |
| tril(input, diagonal=0, out=None) -> Tensor |
| |
| Returns the lower triangular part of the matrix (2-D tensor) :attr:`input`, |
| the other elements of the result tensor :attr:`out` are set to 0. |
| |
| The lower triangular part of the matrix is defined as the elements on and |
| below the diagonal. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider. If |
| :attr:`diagonal` = 0, all elements on and below the main diagonal are |
| retained. A positive value includes just as many diagonals above the main |
| diagonal, and similarly a negative value excludes just as many diagonals below |
| the main diagonal. The main diagonal are the set of indices |
| :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where |
| :math:`d_{1}, d_{2}` are the dimensions of the matrix. |
| |
| Args: |
| input (Tensor): the input tensor |
| diagonal (int, optional): the diagonal to consider |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| tensor([[-1.0813, -0.8619, 0.7105], |
| [ 0.0935, 0.1380, 2.2112], |
| [-0.3409, -0.9828, 0.0289]]) |
| >>> torch.tril(a) |
| tensor([[-1.0813, 0.0000, 0.0000], |
| [ 0.0935, 0.1380, 0.0000], |
| [-0.3409, -0.9828, 0.0289]]) |
| |
| >>> b = torch.randn(4, 6) |
| >>> b |
| tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461], |
| [ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145], |
| [ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864], |
| [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]]) |
| >>> torch.tril(b, diagonal=1) |
| tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000], |
| [ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000], |
| [-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]]) |
| >>> torch.tril(b, diagonal=-1) |
| tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000], |
| [-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]]) |
| """) |
| |
| add_docstr(torch.triu, |
| r""" |
| triu(input, diagonal=0, out=None) -> Tensor |
| |
| Returns the upper triangular part of the matrix (2-D tensor) :attr:`input`, |
| the other elements of the result tensor :attr:`out` are set to 0. |
| |
| The upper triangular part of the matrix is defined as the elements on and |
| above the diagonal. |
| |
| The argument :attr:`diagonal` controls which diagonal to consider. If |
| :attr:`diagonal` = 0, all elements on and below the main diagonal are |
| retained. A positive value excludes just as many diagonals above the main |
| diagonal, and similarly a negative value includes just as many diagonals below |
| the main diagonal. The main diagonal are the set of indices |
| :math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where |
| :math:`d_{1}, d_{2}` are the dimensions of the matrix. |
| |
| Args: |
| input (Tensor): the input tensor |
| diagonal (int, optional): the diagonal to consider |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(3, 3) |
| >>> a |
| tensor([[ 0.2309, 0.5207, 2.0049], |
| [ 0.2072, -1.0680, 0.6602], |
| [ 0.3480, -0.5211, -0.4573]]) |
| >>> torch.triu(a) |
| tensor([[ 0.2309, 0.5207, 2.0049], |
| [ 0.0000, -1.0680, 0.6602], |
| [ 0.0000, 0.0000, -0.4573]]) |
| >>> torch.triu(a, diagonal=1) |
| tensor([[ 0.0000, 0.5207, 2.0049], |
| [ 0.0000, 0.0000, 0.6602], |
| [ 0.0000, 0.0000, 0.0000]]) |
| >>> torch.triu(a, diagonal=-1) |
| tensor([[ 0.2309, 0.5207, 2.0049], |
| [ 0.2072, -1.0680, 0.6602], |
| [ 0.0000, -0.5211, -0.4573]]) |
| |
| >>> b = torch.randn(4, 6) |
| >>> b |
| tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235], |
| [-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857], |
| [ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410], |
| [-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]]) |
| >>> torch.tril(b, diagonal=1) |
| tensor([[ 0.5876, -0.0794, 0.0000, 0.0000, 0.0000, 0.0000], |
| [-0.2447, 0.9556, -1.2919, 0.0000, 0.0000, 0.0000], |
| [ 0.4333, 0.3146, 0.6576, -1.0432, 0.0000, 0.0000], |
| [-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.0000]]) |
| >>> torch.tril(b, diagonal=-1) |
| tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [-0.2447, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], |
| [ 0.4333, 0.3146, 0.0000, 0.0000, 0.0000, 0.0000], |
| [-0.9888, 1.0679, -1.3337, 0.0000, 0.0000, 0.0000]]) |
| """) |
| |
| add_docstr(torch.trtrs, |
| r""" |
| trtrs(b, A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor) |
| |
| Solves a system of equations with a triangular coefficient matrix :math:`A` |
| and multiple right-hand sides :attr:`b`. |
| |
| In particular, solves :math:`AX = b` and assumes :math:`A` is upper-triangular |
| with the default keyword arguments. |
| |
| Args: |
| A (Tensor): the input triangular coefficient matrix |
| b (Tensor): multiple right-hand sides. Each column of :math:`b` is a |
| right-hand side for the system of equations. |
| upper (bool, optional): whether to solve the upper-triangular system |
| of equations (default) or the lower-triangular system of equations. Default: True. |
| transpose (bool, optional): whether :math:`A` should be transposed before |
| being sent into the solver. Default: False. |
| unitriangular (bool, optional): whether :math:`A` is unit triangular. |
| If True, the diagonal elements of :math:`A` are assumed to be |
| 1 and not referenced from :math:`A`. Default: False. |
| |
| Returns: |
| A tuple :math:`(X, M)` where :math:`M` is a clone of :math:`A` and :math:`X` |
| is the solution to :math:`AX = b` (or whatever variant of the system of |
| equations, depending on the keyword arguments.) |
| |
| Shape: |
| - A: :math:`(N, N)` |
| - b: :math:`(N, C)` |
| - output[0]: :math:`(N, C)` |
| - output[1]: :math:`(N, N)` |
| |
| Examples:: |
| |
| >>> A = torch.randn(2, 2).triu() |
| >>> A |
| tensor([[ 1.1527, -1.0753], |
| [ 0.0000, 0.7986]]) |
| >>> b = torch.randn(2, 3) |
| >>> b |
| tensor([[-0.0210, 2.3513, -1.5492], |
| [ 1.5429, 0.7403, -1.0243]]) |
| >>> torch.trtrs(b, A) |
| (tensor([[ 1.7840, 2.9045, -2.5405], |
| [ 1.9319, 0.9269, -1.2826]]), tensor([[ 1.1527, -1.0753], |
| [ 0.0000, 0.7986]])) |
| """) |
| |
| add_docstr(torch.trunc, |
| r""" |
| trunc(input, out=None) -> Tensor |
| |
| Returns a new tensor with the truncated integer values of |
| the elements of :attr:`input`. |
| |
| Args: |
| input (Tensor): the input tensor |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4) |
| >>> a |
| tensor([ 3.4742, 0.5466, -0.8008, -0.9079]) |
| >>> torch.trunc(a) |
| tensor([ 3., 0., -0., -0.]) |
| """) |
| |
| add_docstr(torch.unsqueeze, |
| r""" |
| unsqueeze(input, dim, out=None) -> Tensor |
| |
| Returns a new tensor with a dimension of size one inserted at the |
| specified position. |
| |
| The returned tensor shares the same underlying data with this tensor. |
| |
| A :attr:`dim` value within the range ``[-input.dim() - 1, input.dim() + 1)`` |
| can be used. Negative :attr:`dim` will correspond to :meth:`unsqueeze` |
| applied at :attr:`dim` = ``dim + input.dim() + 1``. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the index at which to insert the singleton dimension |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> x = torch.tensor([1, 2, 3, 4]) |
| >>> torch.unsqueeze(x, 0) |
| tensor([[ 1, 2, 3, 4]]) |
| >>> torch.unsqueeze(x, 1) |
| tensor([[ 1], |
| [ 2], |
| [ 3], |
| [ 4]]) |
| """) |
| |
| add_docstr(torch.var, |
| r""" |
| .. function:: var(input, unbiased=True) -> Tensor |
| |
| Returns the variance of all elements in the :attr:`input` tensor. |
| |
| If :attr:`unbiased` is ``False``, then the variance will be calculated via the |
| biased estimator. Otherwise, Bessel's correction will be used. |
| |
| Args: |
| input (Tensor): the input tensor |
| unbiased (bool): whether to use the unbiased estimation or not |
| |
| Example:: |
| |
| >>> a = torch.randn(1, 3) |
| >>> a |
| tensor([[-0.3425, -1.2636, -0.4864]]) |
| >>> torch.var(a) |
| tensor(0.2455) |
| |
| |
| .. function:: var(input, dim, keepdim=False, unbiased=True, out=None) -> Tensor |
| |
| Returns the variance of each row of the :attr:`input` tensor in the given |
| dimension :attr:`dim`. |
| |
| If :attr:`keepdim` is ``True``, the output tensors are of the same size |
| as :attr:`input` except in the dimension :attr:`dim` where they are of size 1. |
| Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in |
| the outputs tensor having 1 fewer dimension than :attr:`input`. |
| |
| If :attr:`unbiased` is ``False``, then the variance will be calculated via the |
| biased estimator. Otherwise, Bessel's correction will be used. |
| |
| Args: |
| input (Tensor): the input tensor |
| dim (int): the dimension to reduce |
| keepdim (bool): whether the output tensor has :attr:`dim` retained or not |
| unbiased (bool): whether to use the unbiased estimation or not |
| out (Tensor, optional): the output tensor |
| |
| Example:: |
| |
| >>> a = torch.randn(4, 4) |
| >>> a |
| tensor([[-0.3567, 1.7385, -1.3042, 0.7423], |
| [ 1.3436, -0.1015, -0.9834, -0.8438], |
| [ 0.6056, 0.1089, -0.3112, -1.4085], |
| [-0.7700, 0.6074, -0.1469, 0.7777]]) |
| >>> torch.var(a, 1) |
| tensor([ 1.7444, 1.1363, 0.7356, 0.5112]) |
| """) |
| |
| add_docstr(torch.zeros, |
| r""" |
| zeros(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with the scalar value `0`, with the shape defined |
| by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.zeros(2, 3) |
| tensor([[ 0., 0., 0.], |
| [ 0., 0., 0.]]) |
| |
| >>> torch.zeros(5) |
| tensor([ 0., 0., 0., 0., 0.]) |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.zeros_like, |
| r""" |
| zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with the scalar value `0`, with the same size as |
| :attr:`input`. ``torch.zeros_like(input)`` is equivalent to |
| ``torch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| .. warning:: |
| As of 0.4, this function does not support an :attr:`out` keyword. As an alternative, |
| the old ``torch.zeros_like(input, out=output)`` is equivalent to |
| ``torch.zeros(input.size(), out=output)``. |
| |
| Args: |
| {input} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> input = torch.empty(2, 3) |
| >>> torch.zeros_like(input) |
| tensor([[ 0., 0., 0.], |
| [ 0., 0., 0.]]) |
| """.format(**factory_like_common_args)) |
| |
| add_docstr(torch.btrifact_with_info, |
| r""" |
| btrifact_with_info(A, pivot=True) -> (Tensor, IntTensor, IntTensor) |
| |
| Batch LU factorization with additional error information. |
| |
| This is a version of :meth:`torch.btrifact` that always creates an info |
| `IntTensor`, and returns it as the third return value. |
| |
| Arguments: |
| A (Tensor): the tensor to factor |
| pivot (bool, optional): controls whether pivoting is done |
| |
| Returns: |
| A tuple containing factorization, pivots, and an `IntTensor` where non-zero |
| values indicate whether factorization for each minibatch sample succeeds. |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> A_LU, pivots, info = A.btrifact_with_info() |
| >>> if info.nonzero().size(0) == 0: |
| >>> print('LU factorization succeeded for all samples!') |
| LU factorization succeeded for all samples! |
| """) |
| |
| add_docstr(torch.btrisolve, |
| r""" |
| btrisolve(b, LU_data, LU_pivots) -> Tensor |
| |
| Batch LU solve. |
| |
| Returns the LU solve of the linear system :math:`Ax = b`. |
| |
| Arguments: |
| b (Tensor): the RHS tensor |
| LU_data (Tensor): the pivoted LU factorization of A from :meth:`btrifact`. |
| LU_pivots (IntTensor): the pivots of the LU factorization |
| |
| Example:: |
| |
| >>> A = torch.randn(2, 3, 3) |
| >>> b = torch.randn(2, 3) |
| >>> A_LU = torch.btrifact(A) |
| >>> x = torch.btrisolve(b, *A_LU) |
| >>> torch.norm(torch.bmm(A, x.unsqueeze(2)) - b.unsqueeze(2)) |
| tensor(1.00000e-07 * |
| 2.8312) |
| """) |
| |
| add_docstr(torch.empty, |
| r""" |
| empty(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor filled with uninitialized data. The shape of the tensor is |
| defined by the variable argument :attr:`sizes`. |
| |
| Args: |
| sizes (int...): a sequence of integers defining the shape of the output tensor. |
| Can be a variable number of arguments or a collection like a list or tuple. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.empty(2, 3) |
| tensor(1.00000e-08 * |
| [[ 6.3984, 0.0000, 0.0000], |
| [ 0.0000, 0.0000, 0.0000]]) |
| |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.empty_like, |
| r""" |
| empty_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor |
| |
| Returns an uninitialized tensor with the same size as :attr:`input`. |
| ``torch.empty_like(input)`` is equivalent to |
| ``torch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| Args: |
| {input} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> input = torch.empty((2,3), dtype=torch.int64) |
| >>> input.new(input.size()) |
| tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13], |
| [ 7.5751e+18, 7.1428e+18, 7.5955e+18]]) |
| """.format(**factory_like_common_args)) |
| |
| add_docstr(torch.full, |
| r""" |
| full(size, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor of size :attr:`size` filled with :attr:`fill_value`. |
| |
| Args: |
| size (int...): a list, tuple, or :class:`torch.Size` of integers defining the |
| shape of the output tensor. |
| fill_value: the number to fill the output tensor with. |
| {out} |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| |
| Example:: |
| |
| >>> torch.full((2, 3), 3.141592) |
| tensor([[ 3.1416, 3.1416, 3.1416], |
| [ 3.1416, 3.1416, 3.1416]]) |
| |
| """.format(**factory_common_args)) |
| |
| add_docstr(torch.full_like, |
| r""" |
| full_like(input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| |
| Returns a tensor with the same size as :attr:`input` filled with :attr:`fill_value`. |
| ``torch.full_like(input, fill_value)`` is equivalent to |
| ``torch.full_like(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)``. |
| |
| Args: |
| {input} |
| fill_value: the number to fill the output tensor with. |
| {dtype} |
| {layout} |
| {device} |
| {requires_grad} |
| """.format(**factory_like_common_args)) |
| |
| add_docstr(torch.det, |
| r""" |
| det(A) -> Tensor |
| |
| Calculates determinant of a 2D square tensor. |
| |
| .. note:: |
| Backward through :meth:`det` internally uses SVD results when :attr:`A` is |
| not invertible. In this case, double backward through :meth:`det` will be |
| unstable in when :attr:`A` doesn't have distinct singular values. See |
| :meth:`~torch.svd` for details. |
| |
| Arguments: |
| A (Tensor): The input 2D square tensor |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> torch.det(A) |
| tensor(3.7641) |
| """) |
| |
| add_docstr(torch.where, |
| r""" |
| where(condition, x, y) -> Tensor |
| |
| Return a tensor of elements selected from either :attr:`x` or :attr:`y`, depending on :attr:`condition`. |
| |
| The operation is defined as: |
| |
| .. math:: |
| out_i = \begin{cases} |
| x_i & \text{if } \text{condition}_i \\ |
| y_i & \text{otherwise} \\ |
| \end{cases} |
| |
| .. note:: |
| The tensors :attr:`condition`, :attr:`x`, :attr:`y` must be :ref:`broadcastable <broadcasting-semantics>`. |
| |
| Arguments: |
| condition (ByteTensor): When True (nonzero), yield x, otherwise yield y |
| x (Tensor): values selected at indices where :attr:`condition` is ``True`` |
| y (Tensor): values selected at indices where :attr:`condition` is ``False`` |
| |
| Returns: |
| Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`x`, :attr:`y` |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 2) |
| >>> y = torch.ones(3, 2) |
| >>> x |
| tensor([[-0.4620, 0.3139], |
| [ 0.3898, -0.7197], |
| [ 0.0478, -0.1657]]) |
| >>> torch.where(x > 0, x, y) |
| tensor([[ 1.0000, 0.3139], |
| [ 0.3898, 1.0000], |
| [ 0.0478, 1.0000]]) |
| """) |
| |
| add_docstr(torch.logdet, |
| r""" |
| logdet(A) -> Tensor |
| |
| Calculates log determinant of a 2D square tensor. |
| |
| .. note:: |
| Result is ``-inf`` if :attr:`A` has zero log determinant, and is ``nan`` if |
| :attr:`A` has negative determinant. |
| |
| .. note:: |
| Backward through :meth:`logdet` internally uses SVD results when :attr:`A` |
| is not invertible. In this case, double backward through :meth:`logdet` will |
| be unstable in when :attr:`A` doesn't have distinct singular values. See |
| :meth:`~torch.svd` for details. |
| |
| Arguments: |
| A (Tensor): The input 2D square tensor |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> torch.det(A) |
| tensor(0.2611) |
| >>> torch.logdet(A) |
| tensor(-1.3430) |
| """) |
| |
| add_docstr(torch.slogdet, |
| r""" |
| slogdet(A) -> (Tensor, Tensor) |
| |
| Calculates the sign and log value of a 2D square tensor's determinant. |
| |
| .. note:: |
| If ``A`` has zero determinant, this returns ``(0, -inf)``. |
| |
| .. note:: |
| Backward through :meth:`slogdet` internally uses SVD results when :attr:`A` |
| is not invertible. In this case, double backward through :meth:`slogdet` |
| will be unstable in when :attr:`A` doesn't have distinct singular values. |
| See :meth:`~torch.svd` for details. |
| |
| Arguments: |
| A (Tensor): The input 2D square tensor |
| |
| Returns: |
| A tuple containing the sign of the determinant, and the log value of the |
| absolute determinant. |
| |
| Example:: |
| |
| >>> A = torch.randn(3, 3) |
| >>> torch.det(A) |
| tensor(-4.8215) |
| >>> torch.logdet(A) |
| tensor(nan) |
| >>> torch.slogdet(A) |
| (tensor(-1.), tensor(1.5731)) |
| """) |
| |
| add_docstr(torch.pinverse, |
| r""" |
| pinverse(input, rcond=1e-15) -> Tensor |
| |
| Calculates the pseudo-inverse (also known as the Moore-Penrose inverse) of a 2D tensor. |
| Please look at `Moore-Penrose inverse`_ for more details |
| |
| .. note:: |
| This method is implemented using the Singular Value Decomposition. |
| |
| .. note:: |
| The pseudo-inverse is not necessarily a continuous function in the elements of the matrix `[1]`_. |
| Therefore, derivatives are not always existent, and exist for a constant rank only `[2]`_. |
| However, this method is backprop-able due to the implementation by using SVD results, and |
| could be unstable. Double-backward will also be unstable due to the usage of SVD internally. |
| See :meth:`~torch.svd` for more details. |
| |
| Arguments: |
| input (Tensor): The input 2D tensor of dimensions :math:`m \times n` |
| rcond (float): A floating point value to determine the cutoff for small singular values. |
| Default: 1e-15 |
| |
| Returns: |
| The pseudo-inverse of :attr:`input` of dimensions :math:`n \times m` |
| |
| Example:: |
| |
| >>> input = torch.randn(3, 5) |
| >>> input |
| tensor([[ 0.5495, 0.0979, -1.4092, -0.1128, 0.4132], |
| [-1.1143, -0.3662, 0.3042, 1.6374, -0.9294], |
| [-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]]) |
| >>> torch.pinverse(input) |
| tensor([[ 0.0600, -0.1933, -0.2090], |
| [-0.0903, -0.0817, -0.4752], |
| [-0.7124, -0.1631, -0.2272], |
| [ 0.1356, 0.3933, -0.5023], |
| [-0.0308, -0.1725, -0.5216]]) |
| |
| .. _Moore-Penrose inverse: https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse |
| |
| .. _[1]: https://epubs.siam.org/doi/10.1137/0117004 |
| |
| .. _[2]: https://www.jstor.org/stable/2156365 |
| """) |
| |
| add_docstr(torch.fft, |
| r""" |
| fft(input, signal_ndim, normalized=False) -> Tensor |
| |
| Complex-to-complex Discrete Fourier Transform |
| |
| This method computes the complex-to-complex discrete Fourier transform. |
| Ignoring the batch dimensions, it computes the following expression: |
| |
| .. math:: |
| X[\omega_1, \dots, \omega_d] = |
| \sum_{n_1=0}^{N_1} \dots \sum_{n_d=0}^{N_d} x[n_1, \dots, n_d] |
| e^{-j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}}, |
| |
| where :math:`d` = :attr:`signal_ndim` is number of dimensions for the |
| signal, and :math:`N_i` is the size of signal dimension :math:`i`. |
| |
| This method supports 1D, 2D and 3D complex-to-complex transforms, indicated |
| by :attr:`signal_ndim`. :attr:`input` must be a tensor with last dimension |
| of size 2, representing the real and imaginary components of complex |
| numbers, and should have at least ``signal_ndim + 1`` dimensions with optionally |
| arbitrary number of leading batch dimensions. If :attr:`normalized` is set to |
| ``True``, this normalizes the result by dividing it with |
| :math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is unitary. |
| |
| Returns the real and the imaginary parts together as one tensor of the same |
| shape of :attr:`input`. |
| |
| The inverse of this function is :func:`~torch.ifft`. |
| |
| .. note:: |
| For CUDA tensors, an LRU cache is used for cuFFT plans to speed up |
| repeatedly running FFT methods on tensors of same geometry with same |
| same configuration. |
| |
| Changing ``torch.backends.cuda.cufft_plan_cache.max_size`` (default 1023) |
| controls the capacity of this cache. Some cuFFT plans may allocate GPU |
| memory. You may use ``torch.backends.cuda.cufft_plan_cache.size`` to query |
| the number of plans currently in cache, and |
| ``torch.backends.cuda.cufft_plan_cache.clear()`` to clear the cache. |
| |
| .. warning:: |
| For CPU tensors, this method is currently only available with MKL. Use |
| :func:`torch.backends.mkl.is_available` to check if MKL is installed. |
| |
| Arguments: |
| input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1`` |
| dimensions |
| signal_ndim (int): the number of dimensions in each signal. |
| :attr:`signal_ndim` can only be 1, 2 or 3 |
| normalized (bool, optional): controls whether to return normalized results. |
| Default: ``False`` |
| |
| Returns: |
| Tensor: A tensor containing the complex-to-complex Fourier transform result |
| |
| Example:: |
| |
| >>> # unbatched 2D FFT |
| >>> x = torch.randn(4, 3, 2) |
| >>> torch.fft(x, 2) |
| tensor([[[-0.0876, 1.7835], |
| [-2.0399, -2.9754], |
| [ 4.4773, -5.0119]], |
| |
| [[-1.5716, 2.7631], |
| [-3.8846, 5.2652], |
| [ 0.2046, -0.7088]], |
| |
| [[ 1.9938, -0.5901], |
| [ 6.5637, 6.4556], |
| [ 2.9865, 4.9318]], |
| |
| [[ 7.0193, 1.1742], |
| [-1.3717, -2.1084], |
| [ 2.0289, 2.9357]]]) |
| >>> # batched 1D FFT |
| >>> torch.fft(x, 1) |
| tensor([[[ 1.8385, 1.2827], |
| [-0.1831, 1.6593], |
| [ 2.4243, 0.5367]], |
| |
| [[-0.9176, -1.5543], |
| [-3.9943, -2.9860], |
| [ 1.2838, -2.9420]], |
| |
| [[-0.8854, -0.6860], |
| [ 2.4450, 0.0808], |
| [ 1.3076, -0.5768]], |
| |
| [[-0.1231, 2.7411], |
| [-0.3075, -1.7295], |
| [-0.5384, -2.0299]]]) |
| >>> # arbitrary number of batch dimensions, 2D FFT |
| >>> x = torch.randn(3, 3, 5, 5, 2) |
| >>> y = torch.fft(x, 2) |
| >>> y.shape |
| torch.Size([3, 3, 5, 5, 2]) |
| |
| """) |
| |
| add_docstr(torch.ifft, |
| r""" |
| ifft(input, signal_ndim, normalized=False) -> Tensor |
| |
| Complex-to-complex Inverse Discrete Fourier Transform |
| |
| This method computes the complex-to-complex inverse discrete Fourier |
| transform. Ignoring the batch dimensions, it computes the following |
| expression: |
| |
| .. math:: |
| X[\omega_1, \dots, \omega_d] = |
| \frac{1}{\prod_{i=1}^d N_i} \sum_{n_1=0}^{N_1} \dots \sum_{n_d=0}^{N_d} x[n_1, \dots, n_d] |
| e^{\ j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}}, |
| |
| where :math:`d` = :attr:`signal_ndim` is number of dimensions for the |
| signal, and :math:`N_i` is the size of signal dimension :math:`i`. |
| |
| The argument specifications are almost identical with :func:`~torch.fft`. |
| However, if :attr:`normalized` is set to ``True``, this instead returns the |
| results multiplied by :math:`\sqrt{\prod_{i=1}^d N_i}`, to become a unitary |
| operator. Therefore, to invert a :func:`~torch.fft`, the :attr:`normalized` |
| argument should be set identically for :func:`~torch.fft`. |
| |
| Returns the real and the imaginary parts together as one tensor of the same |
| shape of :attr:`input`. |
| |
| The inverse of this function is :func:`~torch.fft`. |
| |
| .. note:: |
| For CUDA tensors, an LRU cache is used for cuFFT plans to speed up |
| repeatedly running FFT methods on tensors of same geometry with same |
| same configuration. |
| |
| Changing ``torch.backends.cuda.cufft_plan_cache.max_size`` (default 1023) |
| controls the capacity of this cache. Some cuFFT plans may allocate GPU |
| memory. You may use ``torch.backends.cuda.cufft_plan_cache.size`` to query |
| the number of plans currently in cache, and |
| ``torch.backends.cuda.cufft_plan_cache.clear()`` to clear the cache. |
| |
| .. warning:: |
| For CPU tensors, this method is currently only available with MKL. Use |
| :func:`torch.backends.mkl.is_available` to check if MKL is installed. |
| |
| Arguments: |
| input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1`` |
| dimensions |
| signal_ndim (int): the number of dimensions in each signal. |
| :attr:`signal_ndim` can only be 1, 2 or 3 |
| normalized (bool, optional): controls whether to return normalized results. |
| Default: ``False`` |
| |
| Returns: |
| Tensor: A tensor containing the complex-to-complex inverse Fourier transform result |
| |
| Example:: |
| |
| >>> x = torch.randn(3, 3, 2) |
| >>> x |
| tensor([[[ 1.2766, 1.3680], |
| [-0.8337, 2.0251], |
| [ 0.9465, -1.4390]], |
| |
| [[-0.1890, 1.6010], |
| [ 1.1034, -1.9230], |
| [-0.9482, 1.0775]], |
| |
| [[-0.7708, -0.8176], |
| [-0.1843, -0.2287], |
| [-1.9034, -0.2196]]]) |
| >>> y = torch.fft(x, 2) |
| >>> torch.ifft(y, 2) # recover x |
| tensor([[[ 1.2766, 1.3680], |
| [-0.8337, 2.0251], |
| [ 0.9465, -1.4390]], |
| |
| [[-0.1890, 1.6010], |
| [ 1.1034, -1.9230], |
| [-0.9482, 1.0775]], |
| |
| [[-0.7708, -0.8176], |
| [-0.1843, -0.2287], |
| [-1.9034, -0.2196]]]) |
| |
| """) |
| |
| add_docstr(torch.rfft, |
| r""" |
| rfft(input, signal_ndim, normalized=False, onesided=True) -> Tensor |
| |
| Real-to-complex Discrete Fourier Transform |
| |
| This method computes the real-to-complex discrete Fourier transform. It is |
| mathematically equivalent with :func:`~torch.fft` with differences only in |
| formats of the input and output. |
| |
| This method supports 1D, 2D and 3D real-to-complex transforms, indicated |
| by :attr:`signal_ndim`. :attr:`input` must be a tensor with at least |
| ``signal_ndim`` dimensions with optionally arbitrary number of leading batch |
| dimensions. If :attr:`normalized` is set to ``True``, this normalizes the result |
| by dividing it with :math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is |
| unitary, where :math:`N_i` is the size of signal dimension :math:`i`. |
| |
| The real-to-complex Fourier transform results follow conjugate symmetry: |
| |
| .. math:: |
| X[\omega_1, \dots, \omega_d] = X^*[N_1 - \omega_1, \dots, N_d - \omega_d], |
| |
| where the index arithmetic is computed modulus the size of the corresponding |
| dimension, :math:`\ ^*` is the conjugate operator, and |
| :math:`d` = :attr:`signal_ndim`. :attr:`onesided` flag controls whether to avoid |
| redundancy in the output results. If set to ``True`` (default), the output will |
| not be full complex result of shape :math:`(*, 2)`, where :math:`*` is the shape |
| of :attr:`input`, but instead the last dimension will be halfed as of size |
| :math:`\lfloor \frac{N_d}{2} \rfloor + 1`. |
| |
| The inverse of this function is :func:`~torch.irfft`. |
| |
| .. note:: |
| For CUDA tensors, an LRU cache is used for cuFFT plans to speed up |
| repeatedly running FFT methods on tensors of same geometry with same |
| same configuration. |
| |
| Changing ``torch.backends.cuda.cufft_plan_cache.max_size`` (default 1023) |
| controls the capacity of this cache. Some cuFFT plans may allocate GPU |
| memory. You may use ``torch.backends.cuda.cufft_plan_cache.size`` to query |
| the number of plans currently in cache, and |
| ``torch.backends.cuda.cufft_plan_cache.clear()`` to clear the cache. |
| |
| .. warning:: |
| For CPU tensors, this method is currently only available with MKL. Use |
| :func:`torch.backends.mkl.is_available` to check if MKL is installed. |
| |
| Arguments: |
| input (Tensor): the input tensor of at least :attr:`signal_ndim` dimensions |
| signal_ndim (int): the number of dimensions in each signal. |
| :attr:`signal_ndim` can only be 1, 2 or 3 |
| normalized (bool, optional): controls whether to return normalized results. |
| Default: ``False`` |
| onesided (bool, optional): controls whether to return half of results to |
| avoid redundancy. Default: ``True`` |
| |
| Returns: |
| Tensor: A tensor containing the real-to-complex Fourier transform result |
| |
| Example:: |
| |
| >>> x = torch.randn(5, 5) |
| >>> torch.rfft(x, 2).shape |
| torch.Size([5, 3, 2]) |
| >>> torch.rfft(x, 2, onesided=False).shape |
| torch.Size([5, 5, 2]) |
| |
| """) |
| |
| |
| add_docstr(torch.irfft, |
| r""" |
| irfft(input, signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor |
| |
| Complex-to-real Inverse Discrete Fourier Transform |
| |
| This method computes the complex-to-real inverse discrete Fourier transform. |
| It is mathematically equivalent with :func:`ifft` with differences only in |
| formats of the input and output. |
| |
| The argument specifications are almost identical with :func:`~torch.ifft`. |
| Similar to :func:`~torch.ifft`, if :attr:`normalized` is set to ``True``, |
| this normalizes the result by multiplying it with |
| :math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is unitary, where |
| :math:`N_i` is the size of signal dimension :math:`i`. |
| |
| Due to the conjugate symmetry, :attr:`input` do not need to contain the full |
| complex frequency values. Roughly half of the values will be sufficient, as |
| is the case when :attr:`input` is given by :func:`~torch.rfft` with |
| ``rfft(signal, onesided=True)``. In such case, set the :attr:`onesided` |
| argument of this method to ``True``. Moreover, the original signal shape |
| information can sometimes be lost, optionally set :attr:`signal_sizes` to be |
| the size of the original signal (without the batch dimensions if in batched |
| mode) to recover it with correct shape. |
| |
| Therefore, to invert an :func:`~torch.rfft`, the :attr:`normalized` and |
| :attr:`onesided` arguments should be set identically for :func:`~torch.irfft`, |
| and preferrably a :attr:`signal_sizes` is given to avoid size mismatch. See the |
| example below for a case of size mismatch. |
| |
| See :func:`~torch.rfft` for details on conjugate symmetry. |
| |
| The inverse of this function is :func:`~torch.rfft`. |
| |
| .. warning:: |
| Generally speaking, the input of this function should contain values |
| following conjugate symmetry. Note that even if :attr:`onesided` is |
| ``True``, often symmetry on some part is still needed. When this |
| requirement is not satisfied, the behavior of :func:`~torch.irfft` is |
| undefined. Since :func:`torch.autograd.gradcheck` estimates numerical |
| Jacobian with point perturbations, :func:`~torch.irfft` will almost |
| certainly fail the check. |
| |
| .. note:: |
| For CUDA tensors, an LRU cache is used for cuFFT plans to speed up |
| repeatedly running FFT methods on tensors of same geometry with same |
| same configuration. |
| |
| Changing ``torch.backends.cuda.cufft_plan_cache.max_size`` (default 1023) |
| controls the capacity of this cache. Some cuFFT plans may allocate GPU |
| memory. You may use ``torch.backends.cuda.cufft_plan_cache.size`` to query |
| the number of plans currently in cache, and |
| ``torch.backends.cuda.cufft_plan_cache.clear()`` to clear the cache. |
| |
| .. warning:: |
| For CPU tensors, this method is currently only available with MKL. Use |
| :func:`torch.backends.mkl.is_available` to check if MKL is installed. |
| |
| Arguments: |
| input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1`` |
| dimensions |
| signal_ndim (int): the number of dimensions in each signal. |
| :attr:`signal_ndim` can only be 1, 2 or 3 |
| normalized (bool, optional): controls whether to return normalized results. |
| Default: ``False`` |
| onesided (bool, optional): controls whether :attr:`input` was halfed to avoid |
| redundancy, e.g., by :func:`rfft`. Default: ``True`` |
| signal_sizes (list or :class:`torch.Size`, optional): the size of the original |
| signal (without batch dimension). Default: ``None`` |
| |
| Returns: |
| Tensor: A tensor containing the complex-to-real inverse Fourier transform result |
| |
| Example:: |
| |
| >>> x = torch.randn(4, 4) |
| >>> torch.rfft(x, 2, onesided=True).shape |
| torch.Size([4, 3, 2]) |
| >>> |
| >>> # notice that with onesided=True, output size does not determine the original signal size |
| >>> x = torch.randn(4, 5) |
| |
| >>> torch.rfft(x, 2, onesided=True).shape |
| torch.Size([4, 3, 2]) |
| >>> |
| >>> # now we use the original shape to recover x |
| >>> x |
| tensor([[-0.8992, 0.6117, -1.6091, -0.4155, -0.8346], |
| [-2.1596, -0.0853, 0.7232, 0.1941, -0.0789], |
| [-2.0329, 1.1031, 0.6869, -0.5042, 0.9895], |
| [-0.1884, 0.2858, -1.5831, 0.9917, -0.8356]]) |
| >>> y = torch.rfft(x, 2, onesided=True) |
| >>> torch.irfft(y, 2, onesided=True, signal_sizes=x.shape) # recover x |
| tensor([[-0.8992, 0.6117, -1.6091, -0.4155, -0.8346], |
| [-2.1596, -0.0853, 0.7232, 0.1941, -0.0789], |
| [-2.0329, 1.1031, 0.6869, -0.5042, 0.9895], |
| [-0.1884, 0.2858, -1.5831, 0.9917, -0.8356]]) |
| |
| """) |
| |
| |
| add_docstr(torch.hann_window, |
| """ |
| hann_window(window_length, periodic=True, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ + r""" |
| Hann window function. |
| |
| .. math:: |
| w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] = |
| \sin^2 \left( \frac{\pi n}{N - 1} \right), |
| |
| where :math:`N` is the full window size. |
| |
| The input :attr:`window_length` is a positive integer controlling the |
| returned window size. :attr:`periodic` flag determines whether the returned |
| window trims off the last duplicate value from the symmetric window and is |
| ready to be used as a periodic window with functions like |
| :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in |
| above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have |
| ``torch.hann_window(L, periodic=True)`` equal to |
| ``torch.hann_window(L + 1, periodic=False)[:-1])``. |
| |
| .. note:: |
| If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. |
| """ + r""" |
| Arguments: |
| window_length (int): the size of returned window |
| periodic (bool, optional): If True, returns a window to be used as periodic |
| function. If False, return a symmetric window. |
| {dtype} Only floating point types are supported. |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window |
| |
| """.format(**factory_common_args)) |
| |
| |
| add_docstr(torch.hamming_window, |
| """ |
| hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ + r""" |
| Hamming window function. |
| |
| .. math:: |
| w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right), |
| |
| where :math:`N` is the full window size. |
| |
| The input :attr:`window_length` is a positive integer controlling the |
| returned window size. :attr:`periodic` flag determines whether the returned |
| window trims off the last duplicate value from the symmetric window and is |
| ready to be used as a periodic window with functions like |
| :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in |
| above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have |
| ``torch.hamming_window(L, periodic=True)`` equal to |
| ``torch.hamming_window(L + 1, periodic=False)[:-1])``. |
| |
| .. note:: |
| If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. |
| |
| .. note:: |
| This is a generalized version of :meth:`torch.hann_window`. |
| """ + r""" |
| Arguments: |
| window_length (int): the size of returned window |
| periodic (bool, optional): If True, returns a window to be used as periodic |
| function. If False, return a symmetric window. |
| {dtype} Only floating point types are supported. |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window |
| |
| """.format(**factory_common_args)) |
| |
| |
| add_docstr(torch.bartlett_window, |
| """ |
| bartlett_window(window_length, periodic=True, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ + r""" |
| Bartlett window function. |
| |
| .. math:: |
| w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases} |
| \frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\ |
| 2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\ |
| \end{cases}, |
| |
| where :math:`N` is the full window size. |
| |
| The input :attr:`window_length` is a positive integer controlling the |
| returned window size. :attr:`periodic` flag determines whether the returned |
| window trims off the last duplicate value from the symmetric window and is |
| ready to be used as a periodic window with functions like |
| :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in |
| above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have |
| ``torch.bartlett_window(L, periodic=True)`` equal to |
| ``torch.bartlett_window(L + 1, periodic=False)[:-1])``. |
| |
| .. note:: |
| If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. |
| """ + r""" |
| Arguments: |
| window_length (int): the size of returned window |
| periodic (bool, optional): If True, returns a window to be used as periodic |
| function. If False, return a symmetric window. |
| {dtype} Only floating point types are supported. |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window |
| |
| """.format(**factory_common_args)) |
| |
| |
| add_docstr(torch.blackman_window, |
| """ |
| blackman_window(window_length, periodic=True, dtype=None, \ |
| layout=torch.strided, device=None, requires_grad=False) -> Tensor |
| """ + r""" |
| Blackman window function. |
| |
| .. math:: |
| w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right) |
| |
| where :math:`N` is the full window size. |
| |
| The input :attr:`window_length` is a positive integer controlling the |
| returned window size. :attr:`periodic` flag determines whether the returned |
| window trims off the last duplicate value from the symmetric window and is |
| ready to be used as a periodic window with functions like |
| :meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in |
| above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have |
| ``torch.blackman_window(L, periodic=True)`` equal to |
| ``torch.blackman_window(L + 1, periodic=False)[:-1])``. |
| |
| .. note:: |
| If :attr:`window_length` :math:`=1`, the returned window contains a single value 1. |
| """ + r""" |
| Arguments: |
| window_length (int): the size of returned window |
| periodic (bool, optional): If True, returns a window to be used as periodic |
| function. If False, return a symmetric window. |
| {dtype} Only floating point types are supported. |
| layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only |
| ``torch.strided`` (dense layout) is supported. |
| {device} |
| {requires_grad} |
| |
| Returns: |
| Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window |
| |
| """.format(**factory_common_args)) |
| |
| |
| add_docstr(torch.unbind, |
| r""" |
| unbind(tensor, dim=0) -> seq |
| |
| Removes a tensor dimension. |
| |
| Returns a tuple of all slices along a given dimension, already without it. |
| |
| Arguments: |
| tensor (Tensor): the tensor to unbind |
| dim (int): dimension to remove |
| |
| Example:: |
| |
| >>> torch.unbind(torch.tensor([[1, 2, 3], |
| >>> [4, 5, 6], |
| >>> [7, 8, 9]])) |
| (tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9])) |
| """) |