blob: 8f3c1ae6ebf73caff45ba41b8094f8dc071c3959 [file] [log] [blame]
"""Adds docstrings to functions defined in the torch._C"""
import re
import torch._C
from torch._C import _add_docstr as add_docstr
def parse_kwargs(desc):
"""Maps a description of args to a dictionary of {argname: description}.
Input:
(' weight (Tensor): a weight tensor\n' +
' Some optional description')
Output: {
'weight': \
'weight (Tensor): a weight tensor\n Some optional description'
}
"""
# Split on exactly 4 spaces after a newline
regx = re.compile("\n\s{4}(?!\s)")
kwargs = [section.strip() for section in regx.split(desc)]
kwargs = [section for section in kwargs if len(section) > 0]
return {desc.split(' ')[0]: desc for desc in kwargs}
reduceops_common_args = parse_kwargs("""
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
If specified, the input tensor is casted to :attr:`dtype` before the operation
is performed. This is useful for preventing data type overflows. Default: None.
""")
factory_common_args = parse_kwargs("""
out (Tensor, optional): the output tensor
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, uses a global default (see :func:`torch.set_default_tensor_type`).
layout (:class:`torch.layout`, optional): the desired layout of returned Tensor.
Default: ``torch.strided``.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
""")
factory_like_common_args = parse_kwargs("""
input (Tensor): the size of :attr:`input` will determine size of the output tensor
layout (:class:`torch.layout`, optional): the desired layout of returned tensor.
Default: if ``None``, defaults to the layout of :attr:`input`.
dtype (:class:`torch.dtype`, optional): the desired data type of returned Tensor.
Default: if ``None``, defaults to the dtype of :attr:`input`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, defaults to the device of :attr:`input`.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
""")
factory_data_common_args = parse_kwargs("""
data (array_like): Initial data for the tensor. Can be a list, tuple,
NumPy ``ndarray``, scalar, and other types.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if ``None``, infers data type from :attr:`data`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if ``None``, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
""")
add_docstr(torch.abs,
r"""
abs(input, out=None) -> Tensor
Computes the element-wise absolute value of the given :attr:`input` tensor.
.. math::
\text{out}_{i} = |\text{input}_{i}|
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> torch.abs(torch.tensor([-1, -2, 3]))
tensor([ 1, 2, 3])
""")
add_docstr(torch.acos,
r"""
acos(input, out=None) -> Tensor
Returns a new tensor with the arccosine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \cos^{-1}(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.3348, -0.5889, 0.2005, -0.1584])
>>> torch.acos(a)
tensor([ 1.2294, 2.2004, 1.3690, 1.7298])
""")
add_docstr(torch.add,
r"""
.. function:: add(input, value, out=None)
Adds the scalar :attr:`value` to each element of the input :attr:`input`
and returns a new resulting tensor.
.. math::
\text{out} = \text{input} + \text{value}
If :attr:`input` is of type FloatTensor or DoubleTensor, :attr:`value` must be
a real number, otherwise it should be an integer.
Args:
input (Tensor): the input tensor
value (Number): the number to be added to each element of :attr:`input`
Keyword arguments:
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.0202, 1.0985, 1.3506, -0.6056])
>>> torch.add(a, 20)
tensor([ 20.0202, 21.0985, 21.3506, 19.3944])
.. function:: add(input, value=1, other, out=None)
Each element of the tensor :attr:`other` is multiplied by the scalar
:attr:`value` and added to each element of the tensor :attr:`input`.
The resulting tensor is returned.
The shapes of :attr:`input` and :attr:`other` must be
:ref:`broadcastable <broadcasting-semantics>`.
.. math::
\text{out} = \text{input} + \text{value} \times \text{other}
If :attr:`other` is of type FloatTensor or DoubleTensor, :attr:`value` must be
a real number, otherwise it should be an integer.
Args:
input (Tensor): the first input tensor
value (Number): the scalar multiplier for :attr:`other`
other (Tensor): the second input tensor
Keyword arguments:
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.9732, -0.3497, 0.6245, 0.4022])
>>> b = torch.randn(4, 1)
>>> b
tensor([[ 0.3743],
[-1.7724],
[-0.5811],
[-0.8017]])
>>> torch.add(a, 10, b)
tensor([[ 2.7695, 3.3930, 4.3672, 4.1450],
[-18.6971, -18.0736, -17.0994, -17.3216],
[ -6.7845, -6.1610, -5.1868, -5.4090],
[ -8.9902, -8.3667, -7.3925, -7.6147]])
""")
add_docstr(torch.addbmm,
r"""
addbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices stored
in :attr:`batch1` and :attr:`batch2`,
with a reduced add step (all matrix multiplications get accumulated
along the first dimension).
:attr:`mat` is added to the final result.
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the
same number of matrices.
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
:math:`(b \times m \times p)` tensor, :attr:`mat` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
.. math::
out = \beta\ \text{mat} + \alpha\ (\sum_{i=0}^{b} \text{batch1}_i \mathbin{@} \text{batch2}_i)
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and :attr:`alpha`
must be real numbers, otherwise they should be integers.
Args:
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
mat (Tensor): matrix to be added
alpha (Number, optional): multiplier for `batch1 @ batch2` (:math:`\alpha`)
batch1 (Tensor): the first batch of matrices to be multiplied
batch2 (Tensor): the second batch of matrices to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> M = torch.randn(3, 5)
>>> batch1 = torch.randn(10, 3, 4)
>>> batch2 = torch.randn(10, 4, 5)
>>> torch.addbmm(M, batch1, batch2)
tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653],
[ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743],
[ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])
""")
add_docstr(torch.addcdiv,
r"""
addcdiv(tensor, value=1, tensor1, tensor2, out=None) -> Tensor
Performs the element-wise division of :attr:`tensor1` by :attr:`tensor2`,
multiply the result by the scalar :attr:`value` and add it to :attr:`tensor`.
.. math::
\text{out}_i = \text{tensor}_i + \text{value} \times \frac{\text{tensor1}_i}{\text{tensor2}_i}
The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be
:ref:`broadcastable <broadcasting-semantics>`.
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
a real number, otherwise an integer.
Args:
tensor (Tensor): the tensor to be added
value (Number, optional): multiplier for :math:`\text{tensor1} / \text{tensor2}`
tensor1 (Tensor): the numerator tensor
tensor2 (Tensor): the denominator tensor
out (Tensor, optional): the output tensor
Example::
>>> t = torch.randn(1, 3)
>>> t1 = torch.randn(3, 1)
>>> t2 = torch.randn(1, 3)
>>> torch.addcdiv(t, 0.1, t1, t2)
tensor([[-0.2312, -3.6496, 0.1312],
[-1.0428, 3.4292, -0.1030],
[-0.5369, -0.9829, 0.0430]])
""")
add_docstr(torch.addcmul,
r"""
addcmul(tensor, value=1, tensor1, tensor2, out=None) -> Tensor
Performs the element-wise multiplication of :attr:`tensor1`
by :attr:`tensor2`, multiply the result by the scalar :attr:`value`
and add it to :attr:`tensor`.
.. math::
\text{out}_i = \text{tensor}_i + \text{value} \times \text{tensor1}_i \times \text{tensor2}_i
The shapes of :attr:`tensor`, :attr:`tensor1`, and :attr:`tensor2` must be
:ref:`broadcastable <broadcasting-semantics>`.
For inputs of type `FloatTensor` or `DoubleTensor`, :attr:`value` must be
a real number, otherwise an integer.
Args:
tensor (Tensor): the tensor to be added
value (Number, optional): multiplier for :math:`tensor1 .* tensor2`
tensor1 (Tensor): the tensor to be multiplied
tensor2 (Tensor): the tensor to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> t = torch.randn(1, 3)
>>> t1 = torch.randn(3, 1)
>>> t2 = torch.randn(1, 3)
>>> torch.addcmul(t, 0.1, t1, t2)
tensor([[-0.8635, -0.6391, 1.6174],
[-0.7617, -0.5879, 1.7388],
[-0.8353, -0.6249, 1.6511]])
""")
add_docstr(torch.addmm,
r"""
addmm(beta=1, mat, alpha=1, mat1, mat2, out=None) -> Tensor
Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`.
The matrix :attr:`mat` is added to the final result.
If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
:math:`(m \times p)` tensor, then :attr:`mat` must be
:ref:`broadcastable <broadcasting-semantics>` with a :math:`(n \times p)` tensor
and :attr:`out` will be a :math:`(n \times p)` tensor.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat1` and :attr`mat2` and the added matrix :attr:`mat` respectively.
.. math::
\text{out} = \beta\ \text{mat} + \alpha\ (\text{mat1}_i \mathbin{@} \text{mat2}_i)
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
Args:
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
mat (Tensor): matrix to be added
alpha (Number, optional): multiplier for :math:`mat1 @ mat2` (:math:`\alpha`)
mat1 (Tensor): the first matrix to be multiplied
mat2 (Tensor): the second matrix to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> M = torch.randn(2, 3)
>>> mat1 = torch.randn(2, 3)
>>> mat2 = torch.randn(3, 3)
>>> torch.addmm(M, mat1, mat2)
tensor([[-4.8716, 1.4671, -1.3746],
[ 0.7573, -3.9555, -2.8681]])
""")
add_docstr(torch.addmv,
r"""
addmv(beta=1, tensor, alpha=1, mat, vec, out=None) -> Tensor
Performs a matrix-vector product of the matrix :attr:`mat` and
the vector :attr:`vec`.
The vector :attr:`tensor` is added to the final result.
If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of
size `m`, then :attr:`tensor` must be
:ref:`broadcastable <broadcasting-semantics>` with a 1-D tensor of size `n` and
:attr:`out` will be 1-D tensor of size `n`.
:attr:`alpha` and :attr:`beta` are scaling factors on matrix-vector product between
:attr:`mat` and :attr:`vec` and the added tensor :attr:`tensor` respectively.
.. math::
\text{out} = \beta\ \text{tensor} + \alpha\ (\text{mat} \mathbin{@} \text{vec})
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers
Args:
beta (Number, optional): multiplier for :attr:`tensor` (:math:`\beta`)
tensor (Tensor): vector to be added
alpha (Number, optional): multiplier for :math:`mat @ vec` (:math:`\alpha`)
mat (Tensor): matrix to be multiplied
vec (Tensor): vector to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> M = torch.randn(2)
>>> mat = torch.randn(2, 3)
>>> vec = torch.randn(3)
>>> torch.addmv(M, mat, vec)
tensor([-0.3768, -5.5565])
""")
add_docstr(torch.addr,
r"""
addr(beta=1, mat, alpha=1, vec1, vec2, out=None) -> Tensor
Performs the outer-product of vectors :attr:`vec1` and :attr:`vec2`
and adds it to the matrix :attr:`mat`.
Optional values :attr:`beta` and :attr:`alpha` are scaling factors on the
outer product between :attr:`vec1` and :attr:`vec2` and the added matrix
:attr:`mat` respectively.
.. math::
\text{out} = \beta\ \text{mat} + \alpha\ (\text{vec1} \otimes \text{vec2})
If :attr:`vec1` is a vector of size `n` and :attr:`vec2` is a vector
of size `m`, then :attr:`mat` must be
:ref:`broadcastable <broadcasting-semantics>` with a matrix of size
:math:`(n \times m)` and :attr:`out` will be a matrix of size
:math:`(n \times m)`.
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers
Args:
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
mat (Tensor): matrix to be added
alpha (Number, optional): multiplier for :math:`\text{vec1} \otimes \text{vec2}` (:math:`\alpha`)
vec1 (Tensor): the first vector of the outer product
vec2 (Tensor): the second vector of the outer product
out (Tensor, optional): the output tensor
Example::
>>> vec1 = torch.arange(1., 4.)
>>> vec2 = torch.arange(1., 3.)
>>> M = torch.zeros(3, 2)
>>> torch.addr(M, vec1, vec2)
tensor([[ 1., 2.],
[ 2., 4.],
[ 3., 6.]])
""")
add_docstr(torch.allclose,
r"""
allclose(self, other, rtol=1e-05, atol=1e-08, equal_nan=False) -> bool
This function checks if all :attr:`self` and :attr:`other` satisfy the condition:
.. math::
\lvert \text{self} - \text{other} \rvert \leq \texttt{atol} + \texttt{rtol} \times \lvert \text{other} \rvert
elementwise, for all elements of :attr:`self` and :attr:`other`. The behaviour of this function is analogous to
`numpy.allclose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html>`_
Args:
self (Tensor): first tensor to compare
other (Tensor): second tensor to compare
atol (float, optional): absolute tolerance. Default: 1e-08
rtol (float, optional): relative tolerance. Default: 1e-05
equal_nan (float, optional): if ``True``, then two ``NaN`` s will be compared as equal. Default: ``False``
Example::
>>> torch.allclose(torch.tensor([10000., 1e-07]), torch.tensor([10000.1, 1e-08]))
False
>>> torch.allclose(torch.tensor([10000., 1e-08]), torch.tensor([10000.1, 1e-09]))
True
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]))
False
>>> torch.allclose(torch.tensor([1.0, float('nan')]), torch.tensor([1.0, float('nan')]), equal_nan=True)
True
""")
add_docstr(torch.as_tensor,
r"""
as_tensor(data, dtype=None, device=None) -> Tensor
Convert the data into a `torch.Tensor`. If the data is already a `Tensor` with the same `dtype` and `device`,
no copy will be performed, otherwise a new `Tensor` will be returned with computational graph retained if data
`Tensor` has ``requires_grad=True``. Similarly, if the data is an ``ndarray`` of the corresponding `dtype` and
the `device` is the cpu, no copy will be performed.
Args:
{data}
{dtype}
{device}
Example::
>>> a = numpy.array([1, 2, 3])
>>> t = torch.as_tensor(a)
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([-1, 2, 3])
>>> a = numpy.array([1, 2, 3])
>>> t = torch.as_tensor(a, device=torch.device('cuda'))
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([1, 2, 3])
""".format(**factory_data_common_args))
add_docstr(torch.asin,
r"""
asin(input, out=None) -> Tensor
Returns a new tensor with the arcsine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \sin^{-1}(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.5962, 1.4985, -0.4396, 1.4525])
>>> torch.asin(a)
tensor([-0.6387, nan, -0.4552, nan])
""")
add_docstr(torch.atan,
r"""
atan(input, out=None) -> Tensor
Returns a new tensor with the arctangent of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \tan^{-1}(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.2341, 0.2539, -0.6256, -0.6448])
>>> torch.atan(a)
tensor([ 0.2299, 0.2487, -0.5591, -0.5727])
""")
add_docstr(torch.atan2,
r"""
atan2(input1, input2, out=None) -> Tensor
Returns a new tensor with the arctangent of the elements of :attr:`input1`
and :attr:`input2`.
The shapes of :attr:`input1` and :attr:`input2` must be
:ref:`broadcastable <broadcasting-semantics>`.
Args:
input1 (Tensor): the first input tensor
input2 (Tensor): the second input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.9041, 0.0196, -0.3108, -2.4423])
>>> torch.atan2(a, torch.randn(4))
tensor([ 0.9833, 0.0811, -1.9743, -1.4151])
""")
add_docstr(torch.baddbmm,
r"""
baddbmm(beta=1, mat, alpha=1, batch1, batch2, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices in :attr:`batch1`
and :attr:`batch2`.
:attr:`mat` is added to the final result.
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing the same
number of matrices.
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
:math:`(b \times m \times p)` tensor, then :attr:`mat` must be
:ref:`broadcastable <broadcasting-semantics>` with a
:math:`(b \times n \times p)` tensor and :attr:`out` will be a
:math:`(b \times n \times p)` tensor. Both :attr:`alpha` and :attr:`beta` mean the
same as the scaling factors used in :meth:`torch.addbmm`.
.. math::
\text{out}_i = \beta\ \text{mat}_i + \alpha\ (\text{batch1}_i \mathbin{@} \text{batch2}_i)
For inputs of type `FloatTensor` or `DoubleTensor`, arguments :attr:`beta` and
:attr:`alpha` must be real numbers, otherwise they should be integers.
Args:
beta (Number, optional): multiplier for :attr:`mat` (:math:`\beta`)
mat (Tensor): the tensor to be added
alpha (Number, optional): multiplier for :math:`\text{batch1} \mathbin{@} \text{batch2}` (:math:`\alpha`)
batch1 (Tensor): the first batch of matrices to be multiplied
batch2 (Tensor): the second batch of matrices to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> M = torch.randn(10, 3, 5)
>>> batch1 = torch.randn(10, 3, 4)
>>> batch2 = torch.randn(10, 4, 5)
>>> torch.baddbmm(M, batch1, batch2).size()
torch.Size([10, 3, 5])
""")
add_docstr(torch.bernoulli,
r"""
bernoulli(input, *, generator=None, out=None) -> Tensor
Draws binary random numbers (0 or 1) from a Bernoulli distribution.
The :attr:`input` tensor should be a tensor containing probabilities
to be used for drawing the binary random number.
Hence, all values in :attr:`input` have to be in the range:
:math:`0 \leq \text{input}_i \leq 1`.
The :math:`\text{i}^{th}` element of the output tensor will draw a
value :math:`1` according to the :math:`\text{i}^{th}` probability value given
in :attr:`input`.
.. math::
\text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i})
The returned :attr:`out` tensor only has values 0 or 1 and is of the same
shape as :attr:`input`.
:attr:`out` can have integral ``dtype``, but :attr`input` must have floating
point ``dtype``.
Args:
input (Tensor): the input tensor of probability values for the Bernoulli distribution
out (Tensor, optional): the output tensor
Example::
>>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1]
>>> a
tensor([[ 0.1737, 0.0950, 0.3609],
[ 0.7148, 0.0289, 0.2676],
[ 0.9456, 0.8937, 0.7202]])
>>> torch.bernoulli(a)
tensor([[ 1., 0., 0.],
[ 0., 0., 0.],
[ 1., 1., 1.]])
>>> a = torch.ones(3, 3) # probability of drawing "1" is 1
>>> torch.bernoulli(a)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> a = torch.zeros(3, 3) # probability of drawing "1" is 0
>>> torch.bernoulli(a)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.],
[ 0., 0., 0.]])
""")
add_docstr(torch.bincount,
r"""
bincount(self, weights=None, minlength=0) -> Tensor
Count the frequency of each value in an array of non-negative ints.
The number of bins (size 1) is one larger than the largest value in
:attr:`input` unless :attr:`input` is empty, in which case the result is a
tensor of size 0. If :attr:`minlength` is specified, the number of bins is at least
:attr:`minlength` and if :attr:`input` is empty, then the result is tensor of size
:attr:`minlength` filled with zeros. If ``n`` is the value at position ``i``,
``out[n] += weights[i]`` if :attr:`weights` is specified else
``out[n] += 1``.
Arguments:
input (Tensor): 1-d int tensor
weights (Tensor): optional, weight for each value in the input tensor.
Should be of same size as input tensor.
minlength (int): optional, minimum number of bins. Should be non-negative.
Returns:
output (Tensor): a tensor of shape ``Size([max(input) + 1])`` if
:attr:`input` is non-empty, else ``Size(0)``
Example::
>>> input = torch.randint(0, 8, (5,), dtype=torch.int64)
>>> weights = torch.linspace(0, 1, steps=5)
>>> input, weights
(tensor([4, 3, 6, 3, 4]),
tensor([ 0.0000, 0.2500, 0.5000, 0.7500, 1.0000])
>>> torch.bincount(input)
tensor([0, 0, 0, 2, 2, 0, 1])
>>> input.bincount(weights)
tensor([0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 0.0000, 0.5000])
""")
add_docstr(torch.bmm,
r"""
bmm(batch1, batch2, out=None) -> Tensor
Performs a batch matrix-matrix product of matrices stored in :attr:`batch1`
and :attr:`batch2`.
:attr:`batch1` and :attr:`batch2` must be 3-D tensors each containing
the same number of matrices.
If :attr:`batch1` is a :math:`(b \times n \times m)` tensor, :attr:`batch2` is a
:math:`(b \times m \times p)` tensor, :attr:`out` will be a
:math:`(b \times n \times p)` tensor.
.. math::
\text{out}_i = \text{batch1}_i \mathbin{@} \text{batch2}_i
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
For broadcasting matrix products, see :func:`torch.matmul`.
Args:
batch1 (Tensor): the first batch of matrices to be multiplied
batch2 (Tensor): the second batch of matrices to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> batch1 = torch.randn(10, 3, 4)
>>> batch2 = torch.randn(10, 4, 5)
>>> res = torch.bmm(batch1, batch2)
>>> res.size()
torch.Size([10, 3, 5])
""")
add_docstr(torch.stack,
r"""
stack(seq, dim=0, out=None) -> Tensor
Concatenates sequence of tensors along a new dimension.
All tensors need to be of the same size.
Arguments:
seq (sequence of Tensors): sequence of tensors to concatenate
dim (int): dimension to insert. Has to be between 0 and the number
of dimensions of concatenated tensors (inclusive)
out (Tensor, optional): the output tensor
""")
add_docstr(torch.chunk,
r"""
chunk(tensor, chunks, dim=0) -> List of Tensors
Splits a tensor into a specific number of chunks.
Last chunk will be smaller if the tensor size along the given dimension
:attr:`dim` is not divisible by :attr:`chunks`.
Arguments:
tensor (Tensor): the tensor to split
chunks (int): number of chunks to return
dim (int): dimension along which to split the tensor
""")
add_docstr(torch.cat,
r"""
cat(seq, dim=0, out=None) -> Tensor
Concatenates the given sequence of :attr:`seq` tensors in the given dimension.
All tensors must either have the same shape (except in the concatenating
dimension) or be empty.
:func:`torch.cat` can be seen as an inverse operation for :func:`torch.split`
and :func:`torch.chunk`.
:func:`torch.cat` can be best understood via examples.
Args:
seq (sequence of Tensors): any python sequence of tensors of the same type.
Non-empty tensors provided must have the same shape, except in the
cat dimension.
dim (int, optional): the dimension over which the tensors are concatenated
out (Tensor, optional): the output tensor
Example::
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497]])
>>> torch.cat((x, x, x), 0)
tensor([[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497],
[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497],
[ 0.6580, -1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497]])
>>> torch.cat((x, x, x), 1)
tensor([[ 0.6580, -1.0969, -0.4614, 0.6580, -1.0969, -0.4614, 0.6580,
-1.0969, -0.4614],
[-0.1034, -0.5790, 0.1497, -0.1034, -0.5790, 0.1497, -0.1034,
-0.5790, 0.1497]])
""")
add_docstr(torch.ceil,
r"""
ceil(input, out=None) -> Tensor
Returns a new tensor with the ceil of the elements of :attr:`input`,
the smallest integer greater than or equal to each element.
.. math::
\text{out}_{i} = \left\lceil \text{input}_{i} \right\rceil = \left\lfloor \text{input}_{i} \right\rfloor + 1
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.6341, -1.4208, -1.0900, 0.5826])
>>> torch.ceil(a)
tensor([-0., -1., -1., 1.])
""")
add_docstr(torch.reciprocal,
r"""
reciprocal(input, out=None) -> Tensor
Returns a new tensor with the reciprocal of the elements of :attr:`input`
.. math::
\text{out}_{i} = \frac{1}{\text{input}_{i}}
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.4595, -2.1219, -1.4314, 0.7298])
>>> torch.reciprocal(a)
tensor([-2.1763, -0.4713, -0.6986, 1.3702])
""")
add_docstr(torch.clamp,
r"""
clamp(input, min, max, out=None) -> Tensor
Clamp all elements in :attr:`input` into the range `[` :attr:`min`, :attr:`max` `]` and return
a resulting tensor:
.. math::
y_i = \begin{cases}
\text{min} & \text{if } x_i < \text{min} \\
x_i & \text{if } \text{min} \leq x_i \leq \text{max} \\
\text{max} & \text{if } x_i > \text{max}
\end{cases}
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, args :attr:`min`
and :attr:`max` must be real numbers, otherwise they should be integers.
Args:
input (Tensor): the input tensor
min (Number): lower-bound of the range to be clamped to
max (Number): upper-bound of the range to be clamped to
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-1.7120, 0.1734, -0.0478, -0.0922])
>>> torch.clamp(a, min=-0.5, max=0.5)
tensor([-0.5000, 0.1734, -0.0478, -0.0922])
.. function:: clamp(input, *, min, out=None) -> Tensor
Clamps all elements in :attr:`input` to be larger or equal :attr:`min`.
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value`
should be a real number, otherwise it should be an integer.
Args:
input (Tensor): the input tensor
value (Number): minimal value of each element in the output
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.0299, -2.3184, 2.1593, -0.8883])
>>> torch.clamp(a, min=0.5)
tensor([ 0.5000, 0.5000, 2.1593, 0.5000])
.. function:: clamp(input, *, max, out=None) -> Tensor
Clamps all elements in :attr:`input` to be smaller or equal :attr:`max`.
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value`
should be a real number, otherwise it should be an integer.
Args:
input (Tensor): the input tensor
value (Number): maximal value of each element in the output
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.7753, -0.4702, -0.4599, 1.1899])
>>> torch.clamp(a, max=0.5)
tensor([ 0.5000, -0.4702, -0.4599, 0.5000])
""")
add_docstr(torch.cos,
r"""
cos(input, out=None) -> Tensor
Returns a new tensor with the cosine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \cos(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 1.4309, 1.2706, -0.8562, 0.9796])
>>> torch.cos(a)
tensor([ 0.1395, 0.2957, 0.6553, 0.5574])
""")
add_docstr(torch.cosh,
r"""
cosh(input, out=None) -> Tensor
Returns a new tensor with the hyperbolic cosine of the elements of
:attr:`input`.
.. math::
\text{out}_{i} = \cosh(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.1632, 1.1835, -0.6979, -0.7325])
>>> torch.cosh(a)
tensor([ 1.0133, 1.7860, 1.2536, 1.2805])
""")
add_docstr(torch.cross,
r"""
cross(input, other, dim=-1, out=None) -> Tensor
Returns the cross product of vectors in dimension :attr:`dim` of :attr:`input`
and :attr:`other`.
:attr:`input` and :attr:`other` must have the same size, and the size of their
:attr:`dim` dimension should be 3.
If :attr:`dim` is not given, it defaults to the first dimension found with the
size 3.
Args:
input (Tensor): the input tensor
other (Tensor): the second input tensor
dim (int, optional): the dimension to take the cross-product in.
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4, 3)
>>> a
tensor([[-0.3956, 1.1455, 1.6895],
[-0.5849, 1.3672, 0.3599],
[-1.1626, 0.7180, -0.0521],
[-0.1339, 0.9902, -2.0225]])
>>> b = torch.randn(4, 3)
>>> b
tensor([[-0.0257, -1.4725, -1.2251],
[-1.1479, -0.7005, -1.9757],
[-1.3904, 0.3726, -1.1836],
[-0.9688, -0.7153, 0.2159]])
>>> torch.cross(a, b, dim=1)
tensor([[ 1.0844, -0.5281, 0.6120],
[-2.4490, -1.5687, 1.9792],
[-0.8304, -1.3037, 0.5650],
[-1.2329, 1.9883, 1.0551]])
>>> torch.cross(a, b)
tensor([[ 1.0844, -0.5281, 0.6120],
[-2.4490, -1.5687, 1.9792],
[-0.8304, -1.3037, 0.5650],
[-1.2329, 1.9883, 1.0551]])
""")
add_docstr(torch.cumprod,
r"""
cumprod(input, dim, dtype=None) -> Tensor
Returns the cumulative product of elements of :attr:`input` in the dimension
:attr:`dim`.
For example, if :attr:`input` is a vector of size N, the result will also be
a vector of size N, with elements.
.. math::
y_i = x_1 \times x_2\times x_3\times \dots \times x_i
Args:
input (Tensor): the input tensor
dim (int): the dimension to do the operation over
{dtype}
Example::
>>> a = torch.randn(10)
>>> a
tensor([ 0.6001, 0.2069, -0.1919, 0.9792, 0.6727, 1.0062, 0.4126,
-0.2129, -0.4206, 0.1968])
>>> torch.cumprod(a, dim=0)
tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0158, -0.0065,
0.0014, -0.0006, -0.0001])
>>> a[5] = 0.0
>>> torch.cumprod(a, dim=0)
tensor([ 0.6001, 0.1241, -0.0238, -0.0233, -0.0157, -0.0000, -0.0000,
0.0000, -0.0000, -0.0000])
""".format(**reduceops_common_args))
add_docstr(torch.cumsum,
r"""
cumsum(input, dim, out=None) -> Tensor
Returns the cumulative sum of elements of :attr:`input` in the dimension
:attr:`dim`.
For example, if :attr:`input` is a vector of size N, the result will also be
a vector of size N, with elements.
.. math::
y_i = x_1 + x_2 + x_3 + \dots + x_i
Args:
input (Tensor): the input tensor
dim (int): the dimension to do the operation over
{dtype}
Example::
>>> a = torch.randn(10)
>>> a
tensor([-0.8286, -0.4890, 0.5155, 0.8443, 0.1865, -0.1752, -2.0595,
0.1850, -1.1571, -0.4243])
>>> torch.cumsum(a, dim=0)
tensor([-0.8286, -1.3175, -0.8020, 0.0423, 0.2289, 0.0537, -2.0058,
-1.8209, -2.9780, -3.4022])
""".format(**reduceops_common_args))
add_docstr(torch.diag,
r"""
diag(input, diagonal=0, out=None) -> Tensor
- If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor
with the elements of :attr:`input` as the diagonal.
- If :attr:`input` is a matrix (2-D tensor), then returns a 1-D tensor with
the diagonal elements of :attr:`input`.
The argument :attr:`diagonal` controls which diagonal to consider:
- If :attr:`diagonal` = 0, it is the main diagonal.
- If :attr:`diagonal` > 0, it is above the main diagonal.
- If :attr:`diagonal` < 0, it is below the main diagonal.
Args:
input (Tensor): the input tensor
diagonal (int, optional): the diagonal to consider
out (Tensor, optional): the output tensor
.. seealso::
:func:`torch.diagonal` always returns the diagonal of its input.
:func:`torch.diagflat` always constructs a tensor with diagonal elements
specified by the input.
Examples:
Get the square matrix where the input vector is the diagonal::
>>> a = torch.randn(3)
>>> a
tensor([ 0.5950,-0.0872, 2.3298])
>>> torch.diag(a)
tensor([[ 0.5950, 0.0000, 0.0000],
[ 0.0000,-0.0872, 0.0000],
[ 0.0000, 0.0000, 2.3298]])
>>> torch.diag(a, 1)
tensor([[ 0.0000, 0.5950, 0.0000, 0.0000],
[ 0.0000, 0.0000,-0.0872, 0.0000],
[ 0.0000, 0.0000, 0.0000, 2.3298],
[ 0.0000, 0.0000, 0.0000, 0.0000]])
Get the k-th diagonal of a given matrix::
>>> a = torch.randn(3, 3)
>>> a
tensor([[-0.4264, 0.0255,-0.1064],
[ 0.8795,-0.2429, 0.1374],
[ 0.1029,-0.6482,-1.6300]])
>>> torch.diag(a, 0)
tensor([-0.4264,-0.2429,-1.6300])
>>> torch.diag(a, 1)
tensor([ 0.0255, 0.1374])
""")
add_docstr(torch.diagflat,
r"""
diagflat(input, diagonal=0) -> Tensor
- If :attr:`input` is a vector (1-D tensor), then returns a 2-D square tensor
with the elements of :attr:`input` as the diagonal.
- If :attr:`input` is a tensor with more than one dimension, then returns a
2-D tensor with diagonal elements equal to a flattened :attr:`input`.
The argument :attr:`offset` controls which diagonal to consider:
- If :attr:`offset` = 0, it is the main diagonal.
- If :attr:`offset` > 0, it is above the main diagonal.
- If :attr:`offset` < 0, it is below the main diagonal.
Args:
input (Tensor): the input tensor
offset (int, optional): the diagonal to consider. Default: 0 (main
diagonal).
Examples::
>>> a = torch.randn(3)
>>> a
tensor([-0.2956, -0.9068, 0.1695])
>>> torch.diagflat(a)
tensor([[-0.2956, 0.0000, 0.0000],
[ 0.0000, -0.9068, 0.0000],
[ 0.0000, 0.0000, 0.1695]])
>>> torch.diagflat(a, 1)
tensor([[ 0.0000, -0.2956, 0.0000, 0.0000],
[ 0.0000, 0.0000, -0.9068, 0.0000],
[ 0.0000, 0.0000, 0.0000, 0.1695],
[ 0.0000, 0.0000, 0.0000, 0.0000]])
>>> a = torch.randn(2, 2)
>>> a
tensor([[ 0.2094, -0.3018],
[-0.1516, 1.9342]])
>>> torch.diagflat(a)
tensor([[ 0.2094, 0.0000, 0.0000, 0.0000],
[ 0.0000, -0.3018, 0.0000, 0.0000],
[ 0.0000, 0.0000, -0.1516, 0.0000],
[ 0.0000, 0.0000, 0.0000, 1.9342]])
""")
add_docstr(torch.diagonal,
r"""
diagonal(input, offset=0, dim1=0, dim2=1) -> Tensor
Returns a partial view of :attr:`input` with the its diagonal elements
with respect to :attr:`dim1` and :attr:`dim2` appended as a dimension
at the end of the shape.
The argument :attr:`offset` controls which diagonal to consider:
- If :attr:`offset` = 0, it is the main diagonal.
- If :attr:`offset` > 0, it is above the main diagonal.
- If :attr:`offset` < 0, it is below the main diagonal.
Args:
input (Tensor): the input tensor. Must be at least 2-dimensional.
offset (int, optional): which diagonal to consider. Default: 0
(main diagonal).
dim1 (int, optional): first dimension with respect to which to
take diagonal. Default: 0.
dim2 (int, optional): second dimension with respect to which to
take diagonal. Default: 1.
.. note:: To take a batch diagonal, pass in dim1=-2, dim2=-1.
Examples::
>>> a = torch.randn(3, 3)
>>> a
tensor([[-1.0854, 1.1431, -0.1752],
[ 0.8536, -0.0905, 0.0360],
[ 0.6927, -0.3735, -0.4945]])
>>> torch.diagonal(a, 0)
tensor([-1.0854, -0.0905, -0.4945])
>>> torch.diagonal(a, 1)
tensor([ 1.1431, 0.0360])
>>> x = torch.randn(2, 5, 4, 2)
>>> torch.diagonal(x, offset=-1, dim1=1, dim2=2)
tensor([[[-1.2631, 0.3755, -1.5977, -1.8172],
[-1.1065, 1.0401, -0.2235, -0.7938]],
[[-1.7325, -0.3081, 0.6166, 0.2335],
[ 1.0500, 0.7336, -0.3836, -1.1015]]])
""")
add_docstr(torch.digamma,
r"""
digamma(input) -> Tensor
Computes the logarithmic derivative of the gamma function on `input`.
.. math::
\psi(x) = \frac{d}{dx} \ln\left(\Gamma\left(x\right)\right) = \frac{\Gamma'(x)}{\Gamma(x)}
Args:
input (Tensor): the tensor to compute the digamma function on
Example::
>>> a = torch.tensor([1, 0.5])
>>> torch.digamma(a)
tensor([-0.5772, -1.9635])
""")
add_docstr(torch.dist,
r"""
dist(input, other, p=2) -> Tensor
Returns the p-norm of (:attr:`input` - :attr:`other`)
The shapes of :attr:`input` and :attr:`other` must be
:ref:`broadcastable <broadcasting-semantics>`.
Args:
input (Tensor): the input tensor
other (Tensor): the Right-hand-side input tensor
p (float, optional): the norm to be computed
Example::
>>> x = torch.randn(4)
>>> x
tensor([-1.5393, -0.8675, 0.5916, 1.6321])
>>> y = torch.randn(4)
>>> y
tensor([ 0.0967, -1.0511, 0.6295, 0.8360])
>>> torch.dist(x, y, 3.5)
tensor(1.6727)
>>> torch.dist(x, y, 3)
tensor(1.6973)
>>> torch.dist(x, y, 0)
tensor(inf)
>>> torch.dist(x, y, 1)
tensor(2.6537)
""")
add_docstr(torch.div,
r"""
.. function:: div(input, value, out=None) -> Tensor
Divides each element of the input :attr:`input` with the scalar :attr:`value`
and returns a new resulting tensor.
.. math::
\text{out}_i = \frac{\text{input}_i}{\text{value}}
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value`
should be a real number, otherwise it should be an integer
Args:
input (Tensor): the input tensor
value (Number): the number to be divided to each element of :attr:`input`
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(5)
>>> a
tensor([ 0.3810, 1.2774, -0.2972, -0.3719, 0.4637])
>>> torch.div(a, 0.5)
tensor([ 0.7620, 2.5548, -0.5944, -0.7439, 0.9275])
.. function:: div(input, other, out=None) -> Tensor
Each element of the tensor :attr:`input` is divided by each element
of the tensor :attr:`other`. The resulting tensor is returned. The shapes of
:attr:`input` and :attr:`other` must be
:ref:`broadcastable <broadcasting-semantics>`.
.. math::
\text{out}_i = \frac{\text{input}_i}{\text{other}_i}
Args:
input (Tensor): the numerator tensor
other (Tensor): the denominator tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.3711, -1.9353, -0.4605, -0.2917],
[ 0.1815, -1.0111, 0.9805, -1.5923],
[ 0.1062, 1.4581, 0.7759, -1.2344],
[-0.1830, -0.0313, 1.1908, -1.4757]])
>>> b = torch.randn(4)
>>> b
tensor([ 0.8032, 0.2930, -0.8113, -0.2308])
>>> torch.div(a, b)
tensor([[-0.4620, -6.6051, 0.5676, 1.2637],
[ 0.2260, -3.4507, -1.2086, 6.8988],
[ 0.1322, 4.9764, -0.9564, 5.3480],
[-0.2278, -0.1068, -1.4678, 6.3936]])
""")
add_docstr(torch.dot,
r"""
dot(tensor1, tensor2) -> Tensor
Computes the dot product (inner product) of two tensors.
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
Example::
>>> torch.dot(torch.tensor([2, 3]), torch.tensor([2, 1]))
tensor(7)
""")
add_docstr(torch.eig,
r"""
eig(a, eigenvectors=False, out=None) -> (Tensor, Tensor)
Computes the eigenvalues and eigenvectors of a real square matrix.
Args:
a (Tensor): the square matrix of shape :math:`(n \times n)` for which the eigenvalues and eigenvectors
will be computed
eigenvectors (bool): ``True`` to compute both eigenvalues and eigenvectors;
otherwise, only eigenvalues will be computed
out (tuple, optional): the output tensors
Returns:
(Tensor, Tensor): A tuple containing
- **e** (*Tensor*): Shape :math:`(n \times 2)`. Each row is an eigenvalue of ``a``,
where the first element is the real part and the second element is the imaginary part.
The eigenvalues are not necessarily ordered.
- **v** (*Tensor*): If ``eigenvectors=False``, it's an empty tensor.
Otherwise, this tensor of shape :math:`(n \times n)` can be used to compute normalized (unit length)
eigenvectors of corresponding eigenvalues ``e`` as follows.
If the corresponding e[j] is a real number, column v[:, j] is the eigenvector corresponding to
eigenvalue e[j].
If the corresponding e[j] and e[j + 1] eigenvalues form a complex conjugate pair, then the true eigenvectors
can be computed as
:math:`\text{eigenvector}[j] = v[:, j] + i \times v[:, j + 1]`,
:math:`\text{eigenvector}[j + 1] = v[:, j] - i \times v[:, j + 1]`.
""")
add_docstr(torch.eq,
r"""
eq(input, other, out=None) -> Tensor
Computes element-wise equality
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
out (Tensor, optional): the output tensor. Must be a `ByteTensor`
Returns:
Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true
Example::
>>> torch.eq(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ 1, 0],
[ 0, 1]], dtype=torch.uint8)
""")
add_docstr(torch.equal,
r"""
equal(tensor1, tensor2) -> bool
``True`` if two tensors have the same size and elements, ``False`` otherwise.
Example::
>>> torch.equal(torch.tensor([1, 2]), torch.tensor([1, 2]))
True
""")
add_docstr(torch.erf,
r"""
erf(tensor, out=None) -> Tensor
Computes the error function of each element. The error function is defined as follows:
.. math::
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
Args:
tensor (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> torch.erf(torch.tensor([0, -1., 10.]))
tensor([ 0.0000, -0.8427, 1.0000])
""")
add_docstr(torch.erfc,
r"""
erfc(tensor, out=None) -> Tensor
Computes the complementary error function of each element. The complementary error function is defined as follows:
.. math::
\mathrm{erfc}(x) = 1 - \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt
Args:
tensor (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> torch.erfc(torch.tensor([0, -1., 10.]))
tensor([ 1.0000, 1.8427, 0.0000])
""")
add_docstr(torch.erfinv,
r"""
erfinv(tensor, out=None) -> Tensor
Computes the inverse error function of each element. The inverse error function is defined
in the range :math:`(-1, 1)` as:
.. math::
\mathrm{erfinv}(\mathrm{erf}(x)) = x
Args:
tensor (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> torch.erfinv(torch.tensor([0, 0.5, -1.]))
tensor([ 0.0000, 0.4769, -inf])
""")
add_docstr(torch.exp,
r"""
exp(tensor, out=None) -> Tensor
Returns a new tensor with the exponential of the elements
of :attr:`input`.
.. math::
y_{i} = e^{x_{i}}
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Args:
tensor (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> torch.exp(torch.tensor([0, math.log(2)]))
tensor([ 1., 2.])
""")
add_docstr(torch.expm1,
r"""
expm1(tensor, out=None) -> Tensor
Returns a new tensor with the exponential of the elements minus 1
of :attr:`input`.
.. math::
y_{i} = e^{x_{i}} - 1
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Args:
tensor (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> torch.expm1(torch.tensor([0, math.log(2)]))
tensor([ 0., 1.])
""")
add_docstr(torch.eye,
r"""
eye(n, m=None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a 2-D tensor with ones on the diagonal and zeros elsewhere.
Args:
n (int): the number of rows
m (int, optional): the number of columns with default being :attr:`n`
{out}
{dtype}
{layout}
{device}
{requires_grad}
Returns:
Tensor: A 2-D tensor with ones on the diagonal and zeros elsewhere
Example::
>>> torch.eye(3)
tensor([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
""".format(**factory_common_args))
add_docstr(torch.floor,
r"""
floor(input, out=None) -> Tensor
Returns a new tensor with the floor of the elements of :attr:`input`,
the largest integer less than or equal to each element.
.. math::
\text{out}_{i} = \left\lfloor \text{input}_{i} \right\rfloor
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.8166, 1.5308, -0.2530, -0.2091])
>>> torch.floor(a)
tensor([-1., 1., -1., -1.])
""")
add_docstr(torch.fmod,
r"""
fmod(input, divisor, out=None) -> Tensor
Computes the element-wise remainder of division.
The dividend and divisor may contain both for integer and floating point
numbers. The remainder has the same sign as the dividend :attr:`input`.
When :attr:`divisor` is a tensor, the shapes of :attr:`input` and
:attr:`divisor` must be :ref:`broadcastable <broadcasting-semantics>`.
Args:
input (Tensor): the dividend
divisor (Tensor or float): the divisor, which may be either a number or a tensor of the same shape as the dividend
out (Tensor, optional): the output tensor
Example::
>>> torch.fmod(torch.tensor([-3., -2, -1, 1, 2, 3]), 2)
tensor([-1., -0., -1., 1., 0., 1.])
>>> torch.fmod(torch.tensor([1., 2, 3, 4, 5]), 1.5)
tensor([ 1.0000, 0.5000, 0.0000, 1.0000, 0.5000])
""")
add_docstr(torch.frac,
r"""
frac(tensor, out=None) -> Tensor
Computes the fractional portion of each element in :attr:`tensor`.
.. math::
\text{out}_{i} = \text{input}_{i} - \left\lfloor \text{input}_{i} \right\rfloor
Example::
>>> torch.frac(torch.tensor([1, 2.5, -3.2]))
tensor([ 0.0000, 0.5000, -0.2000])
""")
add_docstr(torch.from_numpy,
r"""
from_numpy(ndarray) -> Tensor
Creates a :class:`Tensor` from a :class:`numpy.ndarray`.
The returned tensor and :attr:`ndarray` share the same memory. Modifications to
the tensor will be reflected in the :attr:`ndarray` and vice versa. The returned
tensor is not resizable.
Example::
>>> a = numpy.array([1, 2, 3])
>>> t = torch.from_numpy(a)
>>> t
tensor([ 1, 2, 3])
>>> t[0] = -1
>>> a
array([-1, 2, 3])
""")
add_docstr(torch.flatten,
r"""
flatten(input, start_dim=0, end_dim=-1) -> Tensor
Flattens a contiguous range of dims in a tensor.
Args:
input (Tensor): the input tensor
start_dim (int): the first dim to flatten
end_dim (int): the last dim to flatten
Example::
>>> t = torch.tensor([[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]]])
>>> torch.flatten(t)
tensor([1, 2, 3, 4, 5, 6, 7, 8])
>>> torch.flatten(t, start_dim=1)
tensor([[1, 2, 3, 4],
[5, 6, 7, 8]])
""")
add_docstr(torch.gather,
r"""
gather(input, dim, index, out=None) -> Tensor
Gathers values along an axis specified by `dim`.
For a 3-D tensor the output is specified by::
out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0
out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1
out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2
If :attr:`input` is an n-dimensional tensor with size
:math:`(x_0, x_1..., x_{i-1}, x_i, x_{i+1}, ..., x_{n-1})`
and ``dim = i``, then :attr:`index` must be an :math:`n`-dimensional tensor with
size :math:`(x_0, x_1, ..., x_{i-1}, y, x_{i+1}, ..., x_{n-1})` where :math:`y \geq 1`
and :attr:`out` will have the same size as :attr:`index`.
Args:
input (Tensor): the source tensor
dim (int): the axis along which to index
index (LongTensor): the indices of elements to gather
out (Tensor, optional): the destination tensor
Example::
>>> t = torch.tensor([[1,2],[3,4]])
>>> torch.gather(t, 1, torch.tensor([[0,0],[1,0]]))
tensor([[ 1, 1],
[ 4, 3]])
""")
add_docstr(torch.ge,
r"""
ge(input, other, out=None) -> Tensor
Computes :math:`\text{input} \geq \text{other}` element-wise.
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
out (Tensor, optional): the output tensor that must be a `ByteTensor`
Returns:
Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true
Example::
>>> torch.ge(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ 1, 1],
[ 0, 1]], dtype=torch.uint8)
""")
add_docstr(torch.gels,
r"""
gels(B, A, out=None) -> Tensor
Computes the solution to the least squares and least norm problems for a full
rank matrix :math:`A` of size :math:`(m \times n)` and a matrix :math:`B` of
size :math:`(m \times k)`.
If :math:`m \geq n`, :func:`gels` solves the least-squares problem:
.. math::
\begin{array}{ll}
\min_X & \|AX-B\|_2.
\end{array}
If :math:`m < n`, :func:`gels` solves the least-norm problem:
.. math::
\begin{array}{ll}
\min_X & \|X\|_2 & \text{subject to} & AX = B.
\end{array}
Returned tensor :math:`X` has shape :math:`(\max(m, n) \times k)`. The first :math:`n`
rows of :math:`X` contains the solution. If :math:`m \geq n`, the residual sum of squares
for the solution in each column is given by the sum of squares of elements in the
remaining :math:`m - n` rows of that column.
Args:
B (Tensor): the matrix :math:`B`
A (Tensor): the :math:`m` by :math:`n` matrix :math:`A`
out (tuple, optional): the optional destination tensor
Returns:
(Tensor, Tensor): A tuple containing:
- **X** (*Tensor*): the least squares solution
- **qr** (*Tensor*): the details of the QR factorization
.. note::
The returned matrices will always be transposed, irrespective of the strides
of the input matrices. That is, they will have stride `(1, m)` instead of
`(m, 1)`.
Example::
>>> A = torch.tensor([[1., 1, 1],
[2, 3, 4],
[3, 5, 2],
[4, 2, 5],
[5, 4, 3]])
>>> B = torch.tensor([[-10., -3],
[ 12, 14],
[ 14, 12],
[ 16, 16],
[ 18, 16]])
>>> X, _ = torch.gels(B, A)
>>> X
tensor([[ 2.0000, 1.0000],
[ 1.0000, 1.0000],
[ 1.0000, 2.0000],
[ 10.9635, 4.8501],
[ 8.9332, 5.2418]])
""")
add_docstr(torch.geqrf,
r"""
geqrf(input, out=None) -> (Tensor, Tensor)
This is a low-level function for calling LAPACK directly.
You'll generally want to use :func:`torch.qr` instead.
Computes a QR decomposition of :attr:`input`, but without constructing
:math:`Q` and :math:`R` as explicit separate matrices.
Rather, this directly calls the underlying LAPACK function `?geqrf`
which produces a sequence of 'elementary reflectors'.
See `LAPACK documentation for geqrf`_ for further details.
Args:
input (Tensor): the input matrix
out (tuple, optional): the output tuple of (Tensor, Tensor)
.. _LAPACK documentation for geqrf:
https://software.intel.com/en-us/node/521004
""")
add_docstr(torch.ger,
r"""
ger(vec1, vec2, out=None) -> Tensor
Outer product of :attr:`vec1` and :attr:`vec2`.
If :attr:`vec1` is a vector of size :math:`n` and :attr:`vec2` is a vector of
size :math:`m`, then :attr:`out` must be a matrix of size :math:`(n \times m)`.
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
Args:
vec1 (Tensor): 1-D input vector
vec2 (Tensor): 1-D input vector
out (Tensor, optional): optional output matrix
Example::
>>> v1 = torch.arange(1., 5.)
>>> v2 = torch.arange(1., 4.)
>>> torch.ger(v1, v2)
tensor([[ 1., 2., 3.],
[ 2., 4., 6.],
[ 3., 6., 9.],
[ 4., 8., 12.]])
""")
add_docstr(torch.gesv,
r"""
torch.gesv(B, A) -> (Tensor, Tensor)
This function returns the solution to the system of linear
equations represented by :math:`AX = B` and the LU factorization of
A, in order as a tuple `X, LU`.
`LU` contains `L` and `U` factors for LU factorization of `A`.
`torch.gesv(B, A)` can take in 2D inputs `B, A` or inputs that are
batches of 2D matrices. If the inputs are batches, then returns
batched outputs `X, LU`.
.. note::
The :attr:`out` keyword only supports 2D matrix inputs, that is,
`B, A` must be 2D matrices.
.. note::
Irrespective of the original strides, the returned matrices
`X` and `LU` will be transposed, i.e. with strides like
`B.contiguous().transpose(-1, -2).strides()` and
`A.contiguous().transpose(-1, -2).strides()` respectively.
Args:
B (Tensor): input matrix of size :math:`(*, m, k)` , where :math:`*`
is zero or more batch dimensions.
A (Tensor): input square matrix of size :math:`(*, m, m)`, where
:math:`*` is zero or more batch dimensions.
out ((Tensor, Tensor), optional): optional output tuple.
Example::
>>> A = torch.tensor([[6.80, -2.11, 5.66, 5.97, 8.23],
[-6.05, -3.30, 5.36, -4.44, 1.08],
[-0.45, 2.58, -2.70, 0.27, 9.04],
[8.32, 2.71, 4.35, -7.17, 2.14],
[-9.67, -5.14, -7.26, 6.08, -6.87]]).t()
>>> B = torch.tensor([[4.02, 6.19, -8.22, -7.57, -3.03],
[-1.56, 4.00, -8.67, 1.75, 2.86],
[9.81, -4.09, -4.57, -8.61, 8.99]]).t()
>>> X, LU = torch.gesv(B, A)
>>> torch.dist(B, torch.mm(A, X))
tensor(1.00000e-06 *
7.0977)
>>> # Batched solver example
>>> A = torch.randn(2, 3, 1, 4, 4)
>>> B = torch.randn(2, 3, 1, 4, 6)
>>> X, LU = torch.gesv(B, A)
>>> torch.dist(B, A.matmul(X))
tensor(1.00000e-06 *
3.6386)
""")
add_docstr(torch.get_default_dtype,
r"""
get_default_dtype() -> :class:`torch.dtype`
Get the current default floating point :class:`torch.dtype`.
Example::
>>> torch.get_default_dtype() # initial default for floating point is torch.float32
torch.float32
>>> torch.set_default_dtype(torch.float64)
>>> torch.get_default_dtype() # default is now changed to torch.float64
torch.float64
>>> torch.set_default_tensor_type(torch.FloatTensor) # setting tensor type also affects this
>>> torch.get_default_dtype() # changed to torch.float32, the dtype for torch.FloatTensor
torch.float32
""")
add_docstr(torch.get_num_threads,
r"""
get_num_threads() -> int
Gets the number of OpenMP threads used for parallelizing CPU operations
""")
add_docstr(torch.gt,
r"""
gt(input, other, out=None) -> Tensor
Computes :math:`\text{input} > \text{other}` element-wise.
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
out (Tensor, optional): the output tensor that must be a `ByteTensor`
Returns:
Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true
Example::
>>> torch.gt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ 0, 1],
[ 0, 0]], dtype=torch.uint8)
""")
add_docstr(torch.histc,
r"""
histc(input, bins=100, min=0, max=0, out=None) -> Tensor
Computes the histogram of a tensor.
The elements are sorted into equal width bins between :attr:`min` and
:attr:`max`. If :attr:`min` and :attr:`max` are both zero, the minimum and
maximum values of the data are used.
Args:
input (Tensor): the input tensor
bins (int): number of histogram bins
min (int): lower end of the range (inclusive)
max (int): upper end of the range (inclusive)
out (Tensor, optional): the output tensor
Returns:
Tensor: Histogram represented as a tensor
Example::
>>> torch.histc(torch.tensor([1., 2, 1]), bins=4, min=0, max=3)
tensor([ 0., 2., 1., 0.])
""")
add_docstr(torch.index_select,
r"""
index_select(input, dim, index, out=None) -> Tensor
Returns a new tensor which indexes the :attr:`input` tensor along dimension
:attr:`dim` using the entries in :attr:`index` which is a `LongTensor`.
The returned tensor has the same number of dimensions as the original tensor
(:attr:`input`). The :attr:`dim`\ th dimension has the same size as the length
of :attr:`index`; other dimensions have the same size as in the original tensor.
.. note:: The returned tensor does **not** use the same storage as the original
tensor. If :attr:`out` has a different shape than expected, we
silently change it to the correct shape, reallocating the underlying
storage if necessary.
Args:
input (Tensor): the input tensor
dim (int): the dimension in which we index
index (LongTensor): the 1-D tensor containing the indices to index
out (Tensor, optional): the output tensor
Example::
>>> x = torch.randn(3, 4)
>>> x
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
[-0.4664, 0.2647, -0.1228, -1.1068],
[-1.1734, -0.6571, 0.7230, -0.6004]])
>>> indices = torch.tensor([0, 2])
>>> torch.index_select(x, 0, indices)
tensor([[ 0.1427, 0.0231, -0.5414, -1.0009],
[-1.1734, -0.6571, 0.7230, -0.6004]])
>>> torch.index_select(x, 1, indices)
tensor([[ 0.1427, -0.5414],
[-0.4664, -0.1228],
[-1.1734, 0.7230]])
""")
add_docstr(torch.inverse,
r"""
inverse(input, out=None) -> Tensor
Takes the inverse of the square matrix :attr:`input`.
.. note::
Irrespective of the original strides, the returned matrix will be
transposed, i.e. with strides `(1, m)` instead of `(m, 1)`
Args:
input (Tensor): the input 2-D square tensor
out (Tensor, optional): the optional output tensor
Example::
>>> x = torch.rand(4, 4)
>>> y = torch.inverse(x)
>>> z = torch.mm(x, y)
>>> z
tensor([[ 1.0000, -0.0000, -0.0000, 0.0000],
[ 0.0000, 1.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 1.0000, 0.0000],
[ 0.0000, -0.0000, -0.0000, 1.0000]])
>>> torch.max(torch.abs(z - torch.eye(4))) # Max nonzero
tensor(1.00000e-07 *
1.1921)
""")
add_docstr(torch.kthvalue,
r"""
kthvalue(input, k, dim=None, keepdim=False, out=None) -> (Tensor, LongTensor)
Returns the :attr:`k` th smallest element of the given :attr:`input` tensor
along a given dimension.
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
A tuple of `(values, indices)` is returned, where the `indices` is the indices
of the kth-smallest element in the original `input` tensor in dimension `dim`.
If :attr:`keepdim` is ``True``, both the :attr:`values` and :attr:`indices` tensors
are the same size as :attr:`input`, except in the dimension :attr:`dim` where
they are of size 1. Otherwise, :attr:`dim` is squeezed
(see :func:`torch.squeeze`), resulting in both the :attr:`values` and
:attr:`indices` tensors having 1 fewer dimension than the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
k (int): k for the k-th smallest element
dim (int, optional): the dimension to find the kth value along
keepdim (bool): whether the output tensors have :attr:`dim` retained or not
out (tuple, optional): the output tuple of (Tensor, LongTensor)
can be optionally given to be used as output buffers
Example::
>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1., 2., 3., 4., 5.])
>>> torch.kthvalue(x, 4)
(tensor(4.), tensor(3))
>>> x=torch.arange(1.,7.).resize_(2,3)
>>> x
tensor([[ 1., 2., 3.],
[ 4., 5., 6.]])
>>> torch.kthvalue(x,2,0,True)
(tensor([[ 4., 5., 6.]]), tensor([[ 1, 1, 1]]))
""")
add_docstr(torch.le,
r"""
le(input, other, out=None) -> Tensor
Computes :math:`\text{input} \leq \text{other}` element-wise.
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
out (Tensor, optional): the output tensor that must be a `ByteTensor`
Returns:
Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true
Example::
>>> torch.le(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ 1, 0],
[ 1, 1]], dtype=torch.uint8)
""")
add_docstr(torch.lerp,
r"""
lerp(start, end, weight, out=None)
Does a linear interpolation of two tensors :attr:`start` and :attr:`end` based
on a scalar :attr:`weight` and returns the resulting :attr:`out` tensor.
.. math::
\text{out}_i = \text{start}_i + \text{weight} \times (\text{end}_i - \text{start}_i)
The shapes of :attr:`start` and :attr:`end` must be
:ref:`broadcastable <broadcasting-semantics>`.
Args:
start (Tensor): the tensor with the starting points
end (Tensor): the tensor with the ending points
weight (float): the weight for the interpolation formula
out (Tensor, optional): the output tensor
Example::
>>> start = torch.arange(1., 5.)
>>> end = torch.empty(4).fill_(10)
>>> start
tensor([ 1., 2., 3., 4.])
>>> end
tensor([ 10., 10., 10., 10.])
>>> torch.lerp(start, end, 0.5)
tensor([ 5.5000, 6.0000, 6.5000, 7.0000])
""")
add_docstr(torch.linspace,
r"""
linspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a one-dimensional tensor of :attr:`steps`
equally spaced points between :attr:`start` and :attr:`end`.
The output tensor is 1-D of size :attr:`steps`.
Args:
start (float): the starting value for the set of points
end (float): the ending value for the set of points
steps (int): number of points to sample between :attr:`start`
and :attr:`end`. Default: ``100``.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.linspace(3, 10, steps=5)
tensor([ 3.0000, 4.7500, 6.5000, 8.2500, 10.0000])
>>> torch.linspace(-10, 10, steps=5)
tensor([-10., -5., 0., 5., 10.])
>>> torch.linspace(start=-10, end=10, steps=5)
tensor([-10., -5., 0., 5., 10.])
""".format(**factory_common_args))
add_docstr(torch.log,
r"""
log(input, out=None) -> Tensor
Returns a new tensor with the natural logarithm of the elements
of :attr:`input`.
.. math::
y_{i} = \log_{e} (x_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(5)
>>> a
tensor([-0.7168, -0.5471, -0.8933, -1.4428, -0.1190])
>>> torch.log(a)
tensor([ nan, nan, nan, nan, nan])
""")
add_docstr(torch.log10,
r"""
log10(input, out=None) -> Tensor
Returns a new tensor with the logarithm to the base 10 of the elements
of :attr:`input`.
.. math::
y_{i} = \log_{10} (x_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.rand(5)
>>> a
tensor([ 0.5224, 0.9354, 0.7257, 0.1301, 0.2251])
>>> torch.log10(a)
tensor([-0.2820, -0.0290, -0.1392, -0.8857, -0.6476])
""")
add_docstr(torch.log1p,
r"""
log1p(input, out=None) -> Tensor
Returns a new tensor with the natural logarithm of (1 + :attr:`input`).
.. math::
y_i = \log_{e} (x_i + 1)
.. note:: This function is more accurate than :func:`torch.log` for small
values of :attr:`input`
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(5)
>>> a
tensor([-1.0090, -0.9923, 1.0249, -0.5372, 0.2492])
>>> torch.log1p(a)
tensor([ nan, -4.8653, 0.7055, -0.7705, 0.2225])
""")
add_docstr(torch.log2,
r"""
log2(input, out=None) -> Tensor
Returns a new tensor with the logarithm to the base 2 of the elements
of :attr:`input`.
.. math::
y_{i} = \log_{2} (x_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.rand(5)
>>> a
tensor([ 0.8419, 0.8003, 0.9971, 0.5287, 0.0490])
>>> torch.log2(a)
tensor([-0.2483, -0.3213, -0.0042, -0.9196, -4.3504])
""")
add_docstr(torch.logspace,
r"""
logspace(start, end, steps=100, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a one-dimensional tensor of :attr:`steps` points
logarithmically spaced between :math:`10^{{\text{{start}}}}` and :math:`10^{{\text{{end}}}}`.
The output tensor is 1-D of size :attr:`steps`.
Args:
start (float): the starting value for the set of points
end (float): the ending value for the set of points
steps (int): number of points to sample between :attr:`start`
and :attr:`end`. Default: ``100``.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.logspace(start=-10, end=10, steps=5)
tensor([ 1.0000e-10, 1.0000e-05, 1.0000e+00, 1.0000e+05, 1.0000e+10])
>>> torch.logspace(start=0.1, end=1.0, steps=5)
tensor([ 1.2589, 2.1135, 3.5481, 5.9566, 10.0000])
""".format(**factory_common_args))
add_docstr(torch.logsumexp,
r"""
logsumexp(input, dim, keepdim=False, out=None)
Returns the log of summed exponentials of each row of the :attr:`input`
tensor in the given dimension :attr:`dim`. The computation is numerically
stabilized.
For summation index :math:`j` given by `dim` and other indices :math:`i`, the result is
.. math::
\text{logsumexp}(x)_{i} = \log \sum_j \exp(x_{ij})
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the output tensor having 1 fewer dimension than :attr:`input`.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints): the dimension or dimensions to reduce
keepdim (bool): whether the output tensor has :attr:`dim` retained or not
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(3, 3)
>>> torch.logsumexp(a, 1)
tensor([ 0.8442, 1.4322, 0.8711])
""")
add_docstr(torch.lt,
r"""
lt(input, other, out=None) -> Tensor
Computes :math:`\text{input} < \text{other}` element-wise.
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
out (Tensor, optional): the output tensor that must be a `ByteTensor`
Returns:
Tensor: A `torch.ByteTensor` containing a 1 at each location where comparison is true
Example::
>>> torch.lt(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ 0, 0],
[ 1, 0]], dtype=torch.uint8)
""")
add_docstr(torch.masked_select,
r"""
masked_select(input, mask, out=None) -> Tensor
Returns a new 1-D tensor which indexes the :attr:`input` tensor according to
the binary mask :attr:`mask` which is a `ByteTensor`.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor don't need
to match, but they must be :ref:`broadcastable <broadcasting-semantics>`.
.. note:: The returned tensor does **not** use the same storage
as the original tensor
Args:
input (Tensor): the input data
mask (ByteTensor): the tensor containing the binary mask to index with
out (Tensor, optional): the output tensor
Example::
>>> x = torch.randn(3, 4)
>>> x
tensor([[ 0.3552, -2.3825, -0.8297, 0.3477],
[-1.2035, 1.2252, 0.5002, 0.6248],
[ 0.1307, -2.0608, 0.1244, 2.0139]])
>>> mask = x.ge(0.5)
>>> mask
tensor([[ 0, 0, 0, 0],
[ 0, 1, 1, 1],
[ 0, 0, 0, 1]], dtype=torch.uint8)
>>> torch.masked_select(x, mask)
tensor([ 1.2252, 0.5002, 0.6248, 2.0139])
""")
add_docstr(torch.matrix_rank,
r"""
matrix_rank(input, tol=None, bool symmetric=False) -> Tensor
Returns the numerical rank of a 2-D tensor. The method to compute the
matrix rank is done using SVD by default. If :attr:`symmetric` is ``True``,
then :attr:`input` is assumed to be symmetric, and the computation of the
rank is done by obtaining the eigenvalues.
:attr:`tol` is the threshold below which the singular values (or the eigenvalues
when :attr:`symmetric` is ``True``) are considered to be 0. If :attr:`tol` is not
specified, :attr:`tol` is set to ``S.max() * max(S.size()) * eps`` where `S` is the
singular values (or the eigenvalues when :attr:`symmetric` is ``True``), and ``eps``
is the epsilon value for the datatype of :attr:`input`.
Args:
input (Tensor): the input 2-D tensor
tol (float, optional): the tolerance value. Default: ``None``
symmetric(bool, optional): indicates whether :attr:`input` is symmetric.
Default: ``False``
Example::
>>> a = torch.eye(10)
>>> torch.matrix_rank(a)
tensor(10)
>>> b = torch.eye(10)
>>> b[0, 0] = 0
>>> torch.matrix_rank(b)
tensor(9)
""")
add_docstr(torch.matrix_power,
r"""
matrix_power(input, n) -> Tensor
Returns the matrix raised to the power :attr:`n` for square matrices.
For batch of matrices, each individual matrix is raised to the power :attr:`n`.
If :attr:`n` is negative, then the inverse of the matrix (if invertible) is
raised to the power :attr:`n`. If :attr:`n` is 0, then an identity matrix
is returned.
Args:
input (Tensor): the input tensor
n (int): the power to raise the matrix to
Example::
>>> a = torch.randn(2, 2, 2)
>>> a
tensor([[[-1.9975, -1.9610],
[ 0.9592, -2.3364]],
[[-1.2534, -1.3429],
[ 0.4153, -1.4664]]])
>>> torch.matrix_power(a, 3)
tensor([[[ 3.9392, -23.9916],
[ 11.7357, -0.2070]],
[[ 0.2468, -6.7168],
[ 2.0774, -0.8187]]])
""")
add_docstr(torch.max,
r"""
.. function:: max(input) -> Tensor
Returns the maximum value of all elements in the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6763, 0.7445, -2.2369]])
>>> torch.max(a)
tensor(0.7445)
.. function:: max(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)
Returns the maximum value of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`. The second return value is the index location of each
maximum value found (argmax).
If :attr:`keepdim` is ``True``, the output tensors are of the same size
as :attr:`input` except in the dimension :attr:`dim` where they are of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting
in the output tensors having 1 fewer dimension than :attr:`input`.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce
keepdim (bool): whether the output tensors have :attr:`dim` retained or not
out (tuple, optional): the result tuple of two output tensors (max, max_indices)
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[-1.2360, -0.2942, -0.1222, 0.8475],
[ 1.1949, -1.1127, -2.2379, -0.6702],
[ 1.5717, -0.9207, 0.1297, -1.8768],
[-0.6172, 1.0036, -0.6060, -0.2432]])
>>> torch.max(a, 1)
(tensor([ 0.8475, 1.1949, 1.5717, 1.0036]), tensor([ 3, 0, 0, 1]))
.. function:: max(input, other, out=None) -> Tensor
Each element of the tensor :attr:`input` is compared with the corresponding
element of the tensor :attr:`other` and an element-wise maximum is taken.
The shapes of :attr:`input` and :attr:`other` don't need to match,
but they must be :ref:`broadcastable <broadcasting-semantics>`.
.. math::
\text{out}_i = \max(\text{tensor}_i, \text{other}_i)
.. note:: When the shapes do not match, the shape of the returned output tensor
follows the :ref:`broadcasting rules <broadcasting-semantics>`.
Args:
input (Tensor): the input tensor
other (Tensor): the second input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.2942, -0.7416, 0.2653, -0.1584])
>>> b = torch.randn(4)
>>> b
tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
>>> torch.max(a, b)
tensor([ 0.8722, -0.7416, 0.2653, -0.1584])
""")
add_docstr(torch.mean,
r"""
.. function:: mean(input) -> Tensor
Returns the mean value of all elements in the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.2294, -0.5481, 1.3288]])
>>> torch.mean(a)
tensor(0.3367)
.. function:: mean(input, dim, keepdim=False, out=None) -> Tensor
Returns the mean value of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in the
output tensor having 1 fewer dimension.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce
keepdim (bool, optional): whether the output tensor has :attr:`dim` retained or not
out (Tensor): the output tensor
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.3841, 0.6320, 0.4254, -0.7384],
[-0.9644, 1.0131, -0.6549, -1.4279],
[-0.2951, -1.3350, -0.7694, 0.5600],
[ 1.0842, -0.9580, 0.3623, 0.2343]])
>>> torch.mean(a, 1)
tensor([-0.0163, -0.5085, -0.4599, 0.1807])
>>> torch.mean(a, 1, True)
tensor([[-0.0163],
[-0.5085],
[-0.4599],
[ 0.1807]])
""")
add_docstr(torch.median,
r"""
.. function:: median(input) -> Tensor
Returns the median value of all elements in the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 1.5219, -1.5212, 0.2202]])
>>> torch.median(a)
tensor(0.2202)
.. function:: median(input, dim=-1, keepdim=False, values=None, indices=None) -> (Tensor, LongTensor)
Returns the median value of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`. Also returns the index location of the median value
as a `LongTensor`.
By default, :attr:`dim` is the last dimension of the :attr:`input` tensor.
If :attr:`keepdim` is ``True``, the output tensors are of the same size
as :attr:`input` except in the dimension :attr:`dim` where they are of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the outputs tensor having 1 fewer dimension than :attr:`input`.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce
keepdim (bool): whether the output tensors have :attr:`dim` retained or not
values (Tensor, optional): the output tensor
indices (Tensor, optional): the output index tensor
Example::
>>> a = torch.randn(4, 5)
>>> a
tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131],
[ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270],
[-0.2751, 0.7303, 0.2192, 0.3321, 0.2488],
[ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]])
>>> torch.median(a, 1)
(tensor([-0.3982, 0.2270, 0.2488, 0.4742]), tensor([ 1, 4, 4, 3]))
""")
add_docstr(torch.min,
r"""
.. function:: min(input) -> Tensor
Returns the minimum value of all elements in the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.6750, 1.0857, 1.7197]])
>>> torch.min(a)
tensor(0.6750)
.. function:: min(input, dim, keepdim=False, out=None) -> (Tensor, LongTensor)
Returns the minimum value of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`. The second return value is the index location of each
minimum value found (argmin).
If :attr:`keepdim` is ``True``, the output tensors are of the same size as
:attr:`input` except in the dimension :attr:`dim` where they are of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the output tensors having 1 fewer dimension than :attr:`input`.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce
keepdim (bool): whether the output tensors have :attr:`dim` retained or not
out (tuple, optional): the tuple of two output tensors (min, min_indices)
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.6248, 1.1334, -1.1899, -0.2803],
[-1.4644, -0.2635, -0.3651, 0.6134],
[ 0.2457, 0.0384, 1.0128, 0.7015],
[-0.1153, 2.9849, 2.1458, 0.5788]])
>>> torch.min(a, 1)
(tensor([-1.1899, -1.4644, 0.0384, -0.1153]), tensor([ 2, 0, 1, 0]))
.. function:: min(input, other, out=None) -> Tensor
Each element of the tensor :attr:`input` is compared with the corresponding
element of the tensor :attr:`other` and an element-wise minimum is taken.
The resulting tensor is returned.
The shapes of :attr:`input` and :attr:`other` don't need to match,
but they must be :ref:`broadcastable <broadcasting-semantics>`.
.. math::
\text{out}_i = \min(\text{tensor}_i, \text{other}_i)
.. note:: When the shapes do not match, the shape of the returned output tensor
follows the :ref:`broadcasting rules <broadcasting-semantics>`.
Args:
input (Tensor): the input tensor
other (Tensor): the second input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.8137, -1.1740, -0.6460, 0.6308])
>>> b = torch.randn(4)
>>> b
tensor([-0.1369, 0.1555, 0.4019, -0.1929])
>>> torch.min(a, b)
tensor([-0.1369, -1.1740, -0.6460, -0.1929])
""")
add_docstr(torch.mm,
r"""
mm(mat1, mat2, out=None) -> Tensor
Performs a matrix multiplication of the matrices :attr:`mat1` and :attr:`mat2`.
If :attr:`mat1` is a :math:`(n \times m)` tensor, :attr:`mat2` is a
:math:`(m \times p)` tensor, :attr:`out` will be a :math:`(n \times p)` tensor.
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
For broadcasting matrix products, see :func:`torch.matmul`.
Args:
mat1 (Tensor): the first matrix to be multiplied
mat2 (Tensor): the second matrix to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> mat1 = torch.randn(2, 3)
>>> mat2 = torch.randn(3, 3)
>>> torch.mm(mat1, mat2)
tensor([[ 0.4851, 0.5037, -0.3633],
[-0.0760, -3.6705, 2.4784]])
""")
add_docstr(torch.matmul,
r"""
matmul(tensor1, tensor2, out=None) -> Tensor
Matrix product of two tensors.
The behavior depends on the dimensionality of the tensors as follows:
- If both tensors are 1-dimensional, the dot product (scalar) is returned.
- If both arguments are 2-dimensional, the matrix-matrix product is returned.
- If the first argument is 1-dimensional and the second argument is 2-dimensional,
a 1 is prepended to its dimension for the purpose of the matrix multiply.
After the matrix multiply, the prepended dimension is removed.
- If the first argument is 2-dimensional and the second argument is 1-dimensional,
the matrix-vector product is returned.
- If both arguments are at least 1-dimensional and at least one argument is
N-dimensional (where N > 2), then a batched matrix multiply is returned. If the first
argument is 1-dimensional, a 1 is prepended to its dimension for the purpose of the
batched matrix multiply and removed after. If the second argument is 1-dimensional, a
1 is appended to its dimension for the purpose of the batched matrix multiple and removed after.
The non-matrix (i.e. batch) dimensions are :ref:`broadcasted <broadcasting-semantics>` (and thus
must be broadcastable). For example, if :attr:`tensor1` is a
:math:`(j \times 1 \times n \times m)` tensor and :attr:`tensor2` is a :math:`(k \times m \times p)`
tensor, :attr:`out` will be an :math:`(j \times k \times n \times p)` tensor.
.. note::
The 1-dimensional dot product version of this function does not support an :attr:`out` parameter.
Arguments:
tensor1 (Tensor): the first tensor to be multiplied
tensor2 (Tensor): the second tensor to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> # vector x vector
>>> tensor1 = torch.randn(3)
>>> tensor2 = torch.randn(3)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([])
>>> # matrix x vector
>>> tensor1 = torch.randn(3, 4)
>>> tensor2 = torch.randn(4)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([3])
>>> # batched matrix x broadcasted vector
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(4)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3])
>>> # batched matrix x batched matrix
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(10, 4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3, 5])
>>> # batched matrix x broadcasted matrix
>>> tensor1 = torch.randn(10, 3, 4)
>>> tensor2 = torch.randn(4, 5)
>>> torch.matmul(tensor1, tensor2).size()
torch.Size([10, 3, 5])
""")
add_docstr(torch.mode,
r"""
mode(input, dim=-1, keepdim=False, values=None, indices=None) -> (Tensor, LongTensor)
Returns the mode value of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`. Also returns the index location of the mode value
as a `LongTensor`.
By default, :attr:`dim` is the last dimension of the :attr:`input` tensor.
If :attr:`keepdim` is ``True``, the output tensors are of the same size as
:attr:`input` except in the dimension :attr:`dim` where they are of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting
in the output tensors having 1 fewer dimension than :attr:`input`.
.. note:: This function is not defined for ``torch.cuda.Tensor`` yet.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce
keepdim (bool): whether the output tensors have :attr:`dim` retained or not
values (Tensor, optional): the output tensor
indices (Tensor, optional): the output index tensor
Example::
>>> a = torch.randn(4, 5)
>>> a
tensor([[-1.2808, -1.0966, -1.5946, -0.1148, 0.3631],
[ 1.1395, 1.1452, -0.6383, 0.3667, 0.4545],
[-0.4061, -0.3074, 0.4579, -1.3514, 1.2729],
[-1.0130, 0.3546, -1.4689, -0.1254, 0.0473]])
>>> torch.mode(a, 1)
(tensor([-1.5946, -0.6383, -1.3514, -1.4689]), tensor([ 2, 2, 3, 2]))
""")
add_docstr(torch.mul,
r"""
.. function:: mul(input, value, out=None)
Multiplies each element of the input :attr:`input` with the scalar
:attr:`value` and returns a new resulting tensor.
.. math::
\text{out}_i = \text{value} \times \text{input}_i
If :attr:`input` is of type `FloatTensor` or `DoubleTensor`, :attr:`value`
should be a real number, otherwise it should be an integer
Args:
input (Tensor): the input tensor
value (Number): the number to be multiplied to each element of :attr:`input`
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(3)
>>> a
tensor([ 0.2015, -0.4255, 2.6087])
>>> torch.mul(a, 100)
tensor([ 20.1494, -42.5491, 260.8663])
.. function:: mul(input, other, out=None)
Each element of the tensor :attr:`input` is multiplied by each element of the
Tensor :attr:`other`. The resulting tensor is returned.
The shapes of :attr:`input` and :attr:`other` must be
:ref:`broadcastable <broadcasting-semantics>`.
.. math::
\text{out}_i = \text{input}_i \times \text{other}_i
Args:
input (Tensor): the first multiplicand tensor
other (Tensor): the second multiplicand tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4, 1)
>>> a
tensor([[ 1.1207],
[-0.3137],
[ 0.0700],
[ 0.8378]])
>>> b = torch.randn(1, 4)
>>> b
tensor([[ 0.5146, 0.1216, -0.5244, 2.2382]])
>>> torch.mul(a, b)
tensor([[ 0.5767, 0.1363, -0.5877, 2.5083],
[-0.1614, -0.0382, 0.1645, -0.7021],
[ 0.0360, 0.0085, -0.0367, 0.1567],
[ 0.4312, 0.1019, -0.4394, 1.8753]])
""")
add_docstr(torch.multinomial,
r"""
multinomial(input, num_samples, replacement=False, out=None) -> LongTensor
Returns a tensor where each row contains :attr:`num_samples` indices sampled
from the multinomial probability distribution located in the corresponding row
of tensor :attr:`input`.
.. note::
The rows of :attr:`input` do not need to sum to one (in which case we use
the values as weights), but must be non-negative, finite and have
a non-zero sum.
Indices are ordered from left to right according to when each was sampled
(first samples are placed in first column).
If :attr:`input` is a vector, :attr:`out` is a vector of size :attr:`num_samples`.
If :attr:`input` is a matrix with `m` rows, :attr:`out` is an matrix of shape
:math:`(m \times \text{num\_samples})`.
If replacement is ``True``, samples are drawn with replacement.
If not, they are drawn without replacement, which means that when a
sample index is drawn for a row, it cannot be drawn again for that row.
This implies the constraint that :attr:`num_samples` must be lower than
:attr:`input` length (or number of columns of :attr:`input` if it is a matrix).
Args:
input (Tensor): the input tensor containing probabilities
num_samples (int): number of samples to draw
replacement (bool, optional): whether to draw with replacement or not
out (Tensor, optional): the output tensor
Example::
>>> weights = torch.tensor([0, 10, 3, 0], dtype=torch.float) # create a tensor of weights
>>> torch.multinomial(weights, 4)
tensor([ 1, 2, 0, 0])
>>> torch.multinomial(weights, 4, replacement=True)
tensor([ 2, 1, 1, 1])
""")
add_docstr(torch.mv,
r"""
mv(mat, vec, out=None) -> Tensor
Performs a matrix-vector product of the matrix :attr:`mat` and the vector
:attr:`vec`.
If :attr:`mat` is a :math:`(n \times m)` tensor, :attr:`vec` is a 1-D tensor of
size :math:`m`, :attr:`out` will be 1-D of size :math:`n`.
.. note:: This function does not :ref:`broadcast <broadcasting-semantics>`.
Args:
mat (Tensor): matrix to be multiplied
vec (Tensor): vector to be multiplied
out (Tensor, optional): the output tensor
Example::
>>> mat = torch.randn(2, 3)
>>> vec = torch.randn(3)
>>> torch.mv(mat, vec)
tensor([ 1.0404, -0.6361])
""")
add_docstr(torch.mvlgamma,
r"""
mvlgamma(input, p) -> Tensor
Computes the multivariate log-gamma function with dimension :math:`p` element-wise, given by
.. math::
\log(\Gamma_{p}(a)) = C + \displaystyle \sum_{i=1}^{p} \log\left(\Gamma\left(a - \frac{i - 1}{2}\right)\right)
where :math:`C = \log(\pi) \times \frac{p (p - 1)}{2}` and :math:`\Gamma(\cdot)` is the Gamma function.
If any of the elements are less than or equal to :math:`\frac{p - 1}{2}`, then an error
is thrown.
Args:
input (Tensor): the tensor to compute the multivariate log-gamma function
p (int): the number of dimensions
Example::
>>> a = torch.empty(2, 3).uniform_(1, 2)
>>> a
tensor([[1.6835, 1.8474, 1.1929],
[1.0475, 1.7162, 1.4180]])
>>> torch.mvlgamma(a, 2)
tensor([[0.3928, 0.4007, 0.7586],
[1.0311, 0.3901, 0.5049]])
""")
add_docstr(torch.narrow,
r"""
narrow(input, dimension, start, length) -> Tensor
Returns a new tensor that is a narrowed version of :attr:`input` tensor. The
dimension :attr:`dim` is input from :attr:`start` to :attr:`start + length`. The
returned tensor and :attr:`self` tensor share the same underlying storage.
Args:
input (Tensor): the tensor to narrow
dimension (int): the dimension along which to narrow
start (int): the starting dimension
length (int): the distance to the ending dimension
Example::
>>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> torch.narrow(x, 0, 0, 2)
tensor([[ 1, 2, 3],
[ 4, 5, 6]])
>>> torch.narrow(x, 1, 1, 2)
tensor([[ 2, 3],
[ 5, 6],
[ 8, 9]])
""")
add_docstr(torch.ne,
r"""
ne(input, other, out=None) -> Tensor
Computes :math:`input \neq other` element-wise.
The second argument can be a number or a tensor whose shape is
:ref:`broadcastable <broadcasting-semantics>` with the first argument.
Args:
input (Tensor): the tensor to compare
other (Tensor or float): the tensor or value to compare
out (Tensor, optional): the output tensor that must be a `ByteTensor`
Returns:
Tensor: A ``torch.ByteTensor`` containing a 1 at each location where comparison is true.
Example::
>>> torch.ne(torch.tensor([[1, 2], [3, 4]]), torch.tensor([[1, 1], [4, 4]]))
tensor([[ 0, 1],
[ 1, 0]], dtype=torch.uint8)
""")
add_docstr(torch.neg,
r"""
neg(input, out=None) -> Tensor
Returns a new tensor with the negative of the elements of :attr:`input`.
.. math::
\text{out} = -1 \times \text{input}
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(5)
>>> a
tensor([ 0.0090, -0.2262, -0.0682, -0.2866, 0.3940])
>>> torch.neg(a)
tensor([-0.0090, 0.2262, 0.0682, 0.2866, -0.3940])
""")
add_docstr(torch.nonzero,
r"""
nonzero(input, out=None) -> LongTensor
Returns a tensor containing the indices of all non-zero elements of
:attr:`input`. Each row in the result contains the indices of a non-zero
element in :attr:`input`.
If :attr:`input` has `n` dimensions, then the resulting indices tensor
:attr:`out` is of size :math:`(z \times n)`, where :math:`z` is the total number of
non-zero elements in the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
out (LongTensor, optional): the output tensor containing indices
Example::
>>> torch.nonzero(torch.tensor([1, 1, 1, 0, 1]))
tensor([[ 0],
[ 1],
[ 2],
[ 4]])
>>> torch.nonzero(torch.tensor([[0.6, 0.0, 0.0, 0.0],
[0.0, 0.4, 0.0, 0.0],
[0.0, 0.0, 1.2, 0.0],
[0.0, 0.0, 0.0,-0.4]]))
tensor([[ 0, 0],
[ 1, 1],
[ 2, 2],
[ 3, 3]])
""")
add_docstr(torch.normal,
r"""
.. function:: normal(mean, std, out=None) -> Tensor
Returns a tensor of random numbers drawn from separate normal distributions
whose mean and standard deviation are given.
The :attr:`mean` is a tensor with the mean of
each output element's normal distribution
The :attr:`std` is a tensor with the standard deviation of
each output element's normal distribution
The shapes of :attr:`mean` and :attr:`std` don't need to match, but the
total number of elements in each tensor need to be the same.
.. note:: When the shapes do not match, the shape of :attr:`mean`
is used as the shape for the returned output tensor
Args:
mean (Tensor): the tensor of per-element means
std (Tensor): the tensor of per-element standard deviations
out (Tensor, optional): the output tensor
Example::
>>> torch.normal(mean=torch.arange(1., 11.), std=torch.arange(1, 0, -0.1))
tensor([ 1.0425, 3.5672, 2.7969, 4.2925, 4.7229, 6.2134,
8.0505, 8.1408, 9.0563, 10.0566])
.. function:: normal(mean=0.0, std, out=None) -> Tensor
Similar to the function above, but the means are shared among all drawn
elements.
Args:
mean (float, optional): the mean for all distributions
std (Tensor): the tensor of per-element standard deviations
out (Tensor, optional): the output tensor
Example::
>>> torch.normal(mean=0.5, std=torch.arange(1., 6.))
tensor([-1.2793, -1.0732, -2.0687, 5.1177, -1.2303])
.. function:: normal(mean, std=1.0, out=None) -> Tensor
Similar to the function above, but the standard-deviations are shared among
all drawn elements.
Args:
mean (Tensor): the tensor of per-element means
std (float, optional): the standard deviation for all distributions
out (Tensor, optional): the output tensor
Example::
>>> torch.normal(mean=torch.arange(1., 6.))
tensor([ 1.1552, 2.6148, 2.6535, 5.8318, 4.2361])
""")
add_docstr(torch.numel,
r"""
numel(input) -> int
Returns the total number of elements in the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
Example::
>>> a = torch.randn(1, 2, 3, 4, 5)
>>> torch.numel(a)
120
>>> a = torch.zeros(4,4)
>>> torch.numel(a)
16
""")
add_docstr(torch.ones,
r"""
ones(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with the scalar value `1`, with the shape defined
by the variable argument :attr:`sizes`.
Args:
sizes (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.ones(2, 3)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
>>> torch.ones(5)
tensor([ 1., 1., 1., 1., 1.])
""".format(**factory_common_args))
add_docstr(torch.ones_like,
r"""
ones_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with the scalar value `1`, with the same size as
:attr:`input`. ``torch.ones_like(input)`` is equivalent to
``torch.ones(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
.. warning::
As of 0.4, this function does not support an :attr:`out` keyword. As an alternative,
the old ``torch.ones_like(input, out=output)`` is equivalent to
``torch.ones(input.size(), out=output)``.
Args:
{input}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> input = torch.empty(2, 3)
>>> torch.ones_like(input)
tensor([[ 1., 1., 1.],
[ 1., 1., 1.]])
""".format(**factory_like_common_args))
add_docstr(torch.orgqr,
r"""
orgqr(a, tau) -> Tensor
Computes the orthogonal matrix `Q` of a QR factorization, from the `(a, tau)`
tuple returned by :func:`torch.geqrf`.
This directly calls the underlying LAPACK function `?orgqr`.
See `LAPACK documentation for orgqr`_ for further details.
Args:
a (Tensor): the `a` from :func:`torch.geqrf`.
tau (Tensor): the `tau` from :func:`torch.geqrf`.
.. _LAPACK documentation for orgqr:
https://software.intel.com/en-us/mkl-developer-reference-c-orgqr
""")
add_docstr(torch.ormqr,
r"""
ormqr(a, tau, mat, left=True, transpose=False) -> (Tensor, Tensor)
Multiplies `mat` by the orthogonal `Q` matrix of the QR factorization
formed by :func:`torch.geqrf` that is represented by `(a, tau)`.
This directly calls the underlying LAPACK function `?ormqr`.
See `LAPACK documentation for ormqr`_ for further details.
Args:
a (Tensor): the `a` from :func:`torch.geqrf`.
tau (Tensor): the `tau` from :func:`torch.geqrf`.
mat (Tensor): the matrix to be multiplied.
.. _LAPACK documentation for ormqr:
https://software.intel.com/en-us/mkl-developer-reference-c-ormqr
""")
add_docstr(torch.potrf, r"""
potrf(a, upper=True, out=None) -> Tensor
Computes the Cholesky decomposition of a symmetric positive-definite
matrix :math:`A`.
If :attr:`upper` is ``True``, the returned matrix `U` is upper-triangular, and
the decomposition has the form:
.. math::
A = U^TU
If :attr:`upper` is ``False``, the returned matrix `L` is lower-triangular, and
the decomposition has the form:
.. math::
A = LL^T
Args:
a (Tensor): the input 2-D tensor, a symmetric positive-definite matrix
upper (bool, optional): flag that indicates whether to return the
upper or lower triangular matrix
out (Tensor, optional): the output matrix
Example::
>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) # make symmetric positive definite
>>> u = torch.potrf(a)
>>> a
tensor([[ 2.4112, -0.7486, 1.4551],
[-0.7486, 1.3544, 0.1294],
[ 1.4551, 0.1294, 1.6724]])
>>> u
tensor([[ 1.5528, -0.4821, 0.9371],
[ 0.0000, 1.0592, 0.5486],
[ 0.0000, 0.0000, 0.7023]])
>>> torch.mm(u.t(), u)
tensor([[ 2.4112, -0.7486, 1.4551],
[-0.7486, 1.3544, 0.1294],
[ 1.4551, 0.1294, 1.6724]])
""")
add_docstr(torch.potri, r"""
potri(u, upper=True, out=None) -> Tensor
Computes the inverse of a positive semidefinite matrix given its
Cholesky factor :attr:`u`: returns matrix `inv`
If :attr:`upper` is ``True`` or not provided, :attr:`u` is upper
triangular such that the returned tensor is
.. math::
inv = (u^T u)^{-1}
If :attr:`upper` is ``False``, :attr:`u` is lower triangular
such that the returned tensor is
.. math::
inv = (uu^{T})^{-1}
Args:
u (Tensor): the input 2-D tensor, a upper or lower triangular
Cholesky factor
upper (bool, optional): whether to return a upper (default) or lower triangular matrix
out (Tensor, optional): the output tensor for `inv`
Example::
>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) # make symmetric positive definite
>>> u = torch.potrf(a)
>>> a
tensor([[ 0.9935, -0.6353, 1.5806],
[ -0.6353, 0.8769, -1.7183],
[ 1.5806, -1.7183, 10.6618]])
>>> torch.potri(u)
tensor([[ 1.9314, 1.2251, -0.0889],
[ 1.2251, 2.4439, 0.2122],
[-0.0889, 0.2122, 0.1412]])
>>> a.inverse()
tensor([[ 1.9314, 1.2251, -0.0889],
[ 1.2251, 2.4439, 0.2122],
[-0.0889, 0.2122, 0.1412]])
""")
add_docstr(torch.potrs, r"""
potrs(b, u, upper=True, out=None) -> Tensor
Solves a linear system of equations with a positive semidefinite
matrix to be inverted given its Cholesky factor matrix :attr:`u`.
If :attr:`upper` is ``True`` or not provided, :attr:`u` is upper triangular
and `c` is returned such that:
.. math::
c = (u^T u)^{-1} b
If :attr:`upper` is ``False``, :attr:`u` is and lower triangular and `c` is
returned such that:
.. math::
c = (u u^T)^{-1} b
.. note:: :attr:`b` is always a 2-D tensor, use `b.unsqueeze(1)` to convert a vector.
Args:
b (Tensor): the right hand side 2-D tensor
u (Tensor): the input 2-D tensor, a upper or lower triangular Cholesky factor
upper (bool, optional): whether to return a upper (default) or lower triangular matrix
out (Tensor, optional): the output tensor for `c`
Example::
>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) # make symmetric positive definite
>>> u = torch.potrf(a)
>>> a
tensor([[ 0.7747, -1.9549, 1.3086],
[-1.9549, 6.7546, -5.4114],
[ 1.3086, -5.4114, 4.8733]])
>>> b = torch.randn(3, 2)
>>> b
tensor([[-0.6355, 0.9891],
[ 0.1974, 1.4706],
[-0.4115, -0.6225]])
>>> torch.potrs(b,u)
tensor([[ -8.1625, 19.6097],
[ -5.8398, 14.2387],
[ -4.3771, 10.4173]])
>>> torch.mm(a.inverse(),b)
tensor([[ -8.1626, 19.6097],
[ -5.8398, 14.2387],
[ -4.3771, 10.4173]])
""")
add_docstr(torch.pow,
r"""
.. function:: pow(input, exponent, out=None) -> Tensor
Takes the power of each element in :attr:`input` with :attr:`exponent` and
returns a tensor with the result.
:attr:`exponent` can be either a single ``float`` number or a `Tensor`
with the same number of elements as :attr:`input`.
When :attr:`exponent` is a scalar value, the operation applied is:
.. math::
\text{out}_i = x_i ^ \text{exponent}
When :attr:`exponent` is a tensor, the operation applied is:
.. math::
\text{out}_i = x_i ^ {\text{exponent}_i}
When :attr:`exponent` is a tensor, the shapes of :attr:`input`
and :attr:`exponent` must be :ref:`broadcastable <broadcasting-semantics>`.
Args:
input (Tensor): the input tensor
exponent (float or tensor): the exponent value
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.4331, 1.2475, 0.6834, -0.2791])
>>> torch.pow(a, 2)
tensor([ 0.1875, 1.5561, 0.4670, 0.0779])
>>> exp = torch.arange(1., 5.)
>>> a = torch.arange(1., 5.)
>>> a
tensor([ 1., 2., 3., 4.])
>>> exp
tensor([ 1., 2., 3., 4.])
>>> torch.pow(a, exp)
tensor([ 1., 4., 27., 256.])
.. function:: pow(base, input, out=None) -> Tensor
:attr:`base` is a scalar ``float`` value, and :attr:`input` is a tensor.
The returned tensor :attr:`out` is of the same shape as :attr:`input`
The operation applied is:
.. math::
out_i = base ^ {input_i}
Args:
base (float): the scalar base value for the power operation
input (Tensor): the exponent tensor
out (Tensor, optional): the output tensor
Example::
>>> exp = torch.arange(1., 5.)
>>> base = 2
>>> torch.pow(base, exp)
tensor([ 2., 4., 8., 16.])
""")
add_docstr(torch.prod,
r"""
.. function:: prod(input, dtype=None) -> Tensor
Returns the product of all elements in the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
{dtype}
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[-0.8020, 0.5428, -1.5854]])
>>> torch.prod(a)
tensor(0.6902)
.. function:: prod(input, dim, keepdim=False, dtype=None) -> Tensor
Returns the product of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`.
If :attr:`keepdim` is ``True``, the output tensor is of the same size as
:attr:`input` except in the dimension :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting
in the output tensor having 1 fewer dimension than :attr:`input`.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce
keepdim (bool): whether the output tensor has :attr:`dim` retained or not
{dtype}
Example::
>>> a = torch.randn(4, 2)
>>> a
tensor([[ 0.5261, -0.3837],
[ 1.1857, -0.2498],
[-1.1646, 0.0705],
[ 1.1131, -1.0629]])
>>> torch.prod(a, 1)
tensor([-0.2018, -0.2962, -0.0821, -1.1831])
""".format(**reduceops_common_args))
add_docstr(torch.pstrf, r"""
pstrf(a, upper=True, out=None) -> (Tensor, Tensor)
Computes the pivoted Cholesky decomposition of a positive semidefinite
matrix :attr:`a`. returns matrices `u` and `piv`.
If :attr:`upper` is ``True`` or not provided, `u` is upper triangular
such that :math:`a = p^T u^T u p`, with `p` the permutation given by `piv`.
If :attr:`upper` is ``False``, `u` is lower triangular such that
:math:`a = p^T u u^T p`.
Args:
a (Tensor): the input 2-D tensor
upper (bool, optional): whether to return a upper (default) or lower triangular matrix
out (tuple, optional): tuple of `u` and `piv` tensors
Example::
>>> a = torch.randn(3, 3)
>>> a = torch.mm(a, a.t()) # make symmetric positive definite
>>> a
tensor([[ 3.5405, -0.4577, 0.8342],
[-0.4577, 1.8244, -0.1996],
[ 0.8342, -0.1996, 3.7493]])
>>> u,piv = torch.pstrf(a)
>>> u
tensor([[ 1.9363, 0.4308, -0.1031],
[ 0.0000, 1.8316, -0.2256],
[ 0.0000, 0.0000, 1.3277]])
>>> piv
tensor([ 2, 0, 1], dtype=torch.int32)
>>> p = torch.eye(3).index_select(0,piv.long()).index_select(0,piv.long()).t() # make pivot permutation
>>> torch.mm(torch.mm(p.t(),torch.mm(u.t(),u)),p) # reconstruct
tensor([[ 3.5405, -0.4577, 0.8342],
[-0.4577, 1.8244, -0.1996],
[ 0.8342, -0.1996, 3.7493]])
""")
add_docstr(torch.qr,
r"""
qr(input, out=None) -> (Tensor, Tensor)
Computes the QR decomposition of a matrix :attr:`input`, and returns matrices
`Q` and `R` such that :math:`\text{input} = Q R`, with :math:`Q` being an
orthogonal matrix and :math:`R` being an upper triangular matrix.
This returns the thin (reduced) QR factorization.
.. note:: precision may be lost if the magnitudes of the elements of :attr:`input`
are large
.. note:: While it should always give you a valid decomposition, it may not
give you the same one across platforms - it will depend on your
LAPACK implementation.
.. note:: Irrespective of the original strides, the returned matrix :math:`Q` will be
transposed, i.e. with strides `(1, m)` instead of `(m, 1)`.
Args:
input (Tensor): the input 2-D tensor
out (tuple, optional): tuple of `Q` and `R` tensors
Example::
>>> a = torch.tensor([[12., -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> q, r = torch.qr(a)
>>> q
tensor([[-0.8571, 0.3943, 0.3314],
[-0.4286, -0.9029, -0.0343],
[ 0.2857, -0.1714, 0.9429]])
>>> r
tensor([[ -14.0000, -21.0000, 14.0000],
[ 0.0000, -175.0000, 70.0000],
[ 0.0000, 0.0000, -35.0000]])
>>> torch.mm(q, r).round()
tensor([[ 12., -51., 4.],
[ 6., 167., -68.],
[ -4., 24., -41.]])
>>> torch.mm(q.t(), q).round()
tensor([[ 1., 0., 0.],
[ 0., 1., -0.],
[ 0., -0., 1.]])
""")
add_docstr(torch.rand,
r"""
rand(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with random numbers from a uniform distribution
on the interval :math:`[0, 1)`
The shape of the tensor is defined by the variable argument :attr:`sizes`.
Args:
sizes (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.rand(4)
tensor([ 0.5204, 0.2503, 0.3525, 0.5673])
>>> torch.rand(2, 3)
tensor([[ 0.8237, 0.5781, 0.6879],
[ 0.3816, 0.7249, 0.0998]])
""".format(**factory_common_args))
add_docstr(torch.rand_like,
r"""
rand_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor
Returns a tensor with the same size as :attr:`input` that is filled with
random numbers from a uniform distribution on the interval :math:`[0, 1)`.
``torch.rand_like(input)`` is equivalent to
``torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
Args:
{input}
{dtype}
{layout}
{device}
{requires_grad}
""".format(**factory_like_common_args))
add_docstr(torch.randint,
r"""
randint(low=0, high, size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with random integers generated uniformly
between :attr:`low` (inclusive) and :attr:`high` (exclusive).
The shape of the tensor is defined by the variable argument :attr:`size`.
.. note:
With the global dtype default (`torch.float32`), this function returns
a tensor with dtype `torch.float32`, NOT an integer dtype.
Args:
low (int, optional): Lowest integer to be drawn from the distribution. Default: 0.
high (int): One above the highest integer to be drawn from the distribution.
size (tuple): a tuple defining the shape of the output tensor.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.randint(3, 5, (3,))
tensor([ 4., 3., 4.])
>>> torch.randint(10, (2,2))
tensor([[ 0., 2.],
[ 5., 5.]])
>>> torch.randint(3, 10, (2,2))
tensor([[ 4., 5.],
[ 6., 7.]])
""".format(**factory_common_args))
add_docstr(torch.randint_like,
r"""
randint_like(input, low=0, high, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor with the same shape as Tensor :attr:`input` filled with
random integers generated uniformly between :attr:`low` (inclusive) and
:attr:`high` (exclusive).
.. note:
With the global dtype default (`torch.float32`), this function returns
a tensor with dtype `torch.float32`, NOT an integer dtype.
Args:
{input}
low (int, optional): Lowest integer to be drawn from the distribution. Default: 0.
high (int): One above the highest integer to be drawn from the distribution.
{dtype}
{layout}
{device}
{requires_grad}
""".format(**factory_like_common_args))
add_docstr(torch.randn,
r"""
randn(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with random numbers from a normal distribution
with mean `0` and variance `1` (also called the standard normal
distribution).
.. math::
\text{{out}}_{{i}} \sim \mathcal{{N}}(0, 1)
The shape of the tensor is defined by the variable argument :attr:`sizes`.
Args:
sizes (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.randn(4)
tensor([-2.1436, 0.9966, 2.3426, -0.6366])
>>> torch.randn(2, 3)
tensor([[ 1.5954, 2.8929, -1.0923],
[ 1.1719, -0.4709, -0.1996]])
""".format(**factory_common_args))
add_docstr(torch.randn_like,
r"""
randn_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor
Returns a tensor with the same size as :attr:`input` that is filled with
random numbers from a normal distribution with mean 0 and variance 1.
``torch.randn_like(input)`` is equivalent to
``torch.randn(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
Args:
{input}
{dtype}
{layout}
{device}
{requires_grad}
""".format(**factory_like_common_args))
add_docstr(torch.randperm,
r"""
randperm(n, out=None, dtype=torch.int64, layout=torch.strided, device=None, requires_grad=False) -> LongTensor
Returns a random permutation of integers from ``0`` to ``n - 1``.
Args:
n (int): the upper bound (exclusive)
{out}
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: ``torch.int64``.
{layout}
{device}
{requires_grad}
Example::
>>> torch.randperm(4)
tensor([ 2, 1, 0, 3])
""".format(**factory_common_args))
add_docstr(torch.tensor,
r"""
tensor(data, dtype=None, device=None, requires_grad=False) -> Tensor
Constructs a tensor with :attr:`data`.
.. warning::
:func:`torch.tensor` always copies :attr:`data`. If you have a Tensor
``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
or :func:`torch.Tensor.detach`.
If you have a NumPy ``ndarray`` and want to avoid a copy, use
:func:`torch.from_numpy`.
.. warning::
When data is a tensor `x`, :func:`torch.tensor` reads out 'the data' from whatever it is passed,
and constructs a leaf variable. Therefore ``torch.tensor(x)`` is equivalent to ``x.clone().detach()``
and ``torch.tensor(x, requires_grad=True)`` is equivalent to ``x.clone().detach().requires_grad_(True)``.
The equivalents using ``clone()`` and ``detach()`` are recommended.
Args:
{data}
{dtype}
{device}
{requires_grad}
Example::
>>> torch.tensor([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
tensor([[ 0.1000, 1.2000],
[ 2.2000, 3.1000],
[ 4.9000, 5.2000]])
>>> torch.tensor([0, 1]) # Type inference on data
tensor([ 0, 1])
>>> torch.tensor([[0.11111, 0.222222, 0.3333333]],
dtype=torch.float64,
device=torch.device('cuda:0')) # creates a torch.cuda.DoubleTensor
tensor([[ 0.1111, 0.2222, 0.3333]], dtype=torch.float64, device='cuda:0')
>>> torch.tensor(3.14159) # Create a scalar (zero-dimensional tensor)
tensor(3.1416)
>>> torch.tensor([]) # Create an empty tensor (of size (0,))
tensor([])
""".format(**factory_data_common_args))
add_docstr(torch.range,
r"""
range(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1`
with values from :attr:`start` to :attr:`end` with step :attr:`step`. Step is
the gap between two values in the tensor.
.. math::
\text{out}_{i+1} = \text{out}_i + \text{step}.
""" + r"""
.. warning::
This function is deprecated in favor of :func:`torch.arange`.
Args:
start (float): the starting value for the set of points. Default: ``0``.
end (float): the ending value for the set of points
step (float): the gap between each pair of adjacent points. Default: ``1``.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.range(1, 4)
tensor([ 1., 2., 3., 4.])
>>> torch.range(1, 4, 0.5)
tensor([ 1.0000, 1.5000, 2.0000, 2.5000, 3.0000, 3.5000, 4.0000])
""".format(**factory_common_args))
add_docstr(torch.arange,
r"""
arange(start=0, end, step=1, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a 1-D tensor of size :math:`\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor`
with values from the interval ``[start, end)`` taken with common difference
:attr:`step` beginning from `start`.
Note that non-integer :attr:`step` is subject to floating point rounding errors when
comparing against :attr:`end`; to avoid inconsistency, we advise adding a small epsilon to :attr:`end`
in such cases.
.. math::
\text{out}_{{i+1}} = \text{out}_{i} + \text{step}
""" + r"""
Args:
start (Number): the starting value for the set of points. Default: ``0``.
end (Number): the ending value for the set of points
step (Number): the gap between each pair of adjacent points. Default: ``1``.
{out}
{dtype} If `dtype` is not given, infer the data type from the other input
arguments. If any of `start`, `end`, or `stop` are floating-point, the
`dtype` is inferred to be the default dtype, see
:meth:`~torch.get_default_dtype`. Otherwise, the `dtype` is inferred to
be `torch.int64`.
{layout}
{device}
{requires_grad}
Example::
>>> torch.arange(5)
tensor([ 0, 1, 2, 3, 4])
>>> torch.arange(1, 4)
tensor([ 1, 2, 3])
>>> torch.arange(1, 2.5, 0.5)
tensor([ 1.0000, 1.5000, 2.0000])
""".format(**factory_common_args))
add_docstr(torch.remainder,
r"""
remainder(input, divisor, out=None) -> Tensor
Computes the element-wise remainder of division.
The divisor and dividend may contain both for integer and floating point
numbers. The remainder has the same sign as the divisor.
When :attr:`divisor` is a tensor, the shapes of :attr:`input` and
:attr:`divisor` must be :ref:`broadcastable <broadcasting-semantics>`.
Args:
input (Tensor): the dividend
divisor (Tensor or float): the divisor that may be either a number or a
Tensor of the same shape as the dividend
out (Tensor, optional): the output tensor
Example::
>>> torch.remainder(torch.tensor([-3., -2, -1, 1, 2, 3]), 2)
tensor([ 1., 0., 1., 1., 0., 1.])
>>> torch.remainder(torch.tensor([1., 2, 3, 4, 5]), 1.5)
tensor([ 1.0000, 0.5000, 0.0000, 1.0000, 0.5000])
.. seealso::
:func:`torch.fmod`, which computes the element-wise remainder of
division equivalently to the C library function ``fmod()``.
""")
add_docstr(torch.renorm,
r"""
renorm(input, p, dim, maxnorm, out=None) -> Tensor
Returns a tensor where each sub-tensor of :attr:`input` along dimension
:attr:`dim` is normalized such that the `p`-norm of the sub-tensor is lower
than the value :attr:`maxnorm`
.. note:: If the norm of a row is lower than `maxnorm`, the row is unchanged
Args:
input (Tensor): the input tensor
p (float): the power for the norm computation
dim (int): the dimension to slice over to get the sub-tensors
maxnorm (float): the maximum norm to keep each sub-tensor under
out (Tensor, optional): the output tensor
Example::
>>> x = torch.ones(3, 3)
>>> x[1].fill_(2)
tensor([ 2., 2., 2.])
>>> x[2].fill_(3)
tensor([ 3., 3., 3.])
>>> x
tensor([[ 1., 1., 1.],
[ 2., 2., 2.],
[ 3., 3., 3.]])
>>> torch.renorm(x, 1, 0, 5)
tensor([[ 1.0000, 1.0000, 1.0000],
[ 1.6667, 1.6667, 1.6667],
[ 1.6667, 1.6667, 1.6667]])
""")
add_docstr(torch.reshape,
r"""
reshape(input, shape) -> Tensor
Returns a tensor with the same data and number of elements as :attr:`input`,
but with the specified shape. When possible, the returned tensor will be a view
of :attr:`input`. Otherwise, it will be a copy. Contiguous inputs and inputs
with compatible strides can be reshaped without copying, but you should not
depend on the copying vs. viewing behavior.
See :meth:`torch.Tensor.view` on when it is possible to return a view.
A single dimension may be -1, in which case it's inferred from the remaining
dimensions and the number of elements in :attr:`input`.
Args:
input (Tensor): the tensor to be reshaped
shape (tuple of ints): the new shape
Example::
>>> a = torch.arange(4.)
>>> torch.reshape(a, (2, 2))
tensor([[ 0., 1.],
[ 2., 3.]])
>>> b = torch.tensor([[0, 1], [2, 3]])
>>> torch.reshape(b, (-1,))
tensor([ 0, 1, 2, 3])
""")
add_docstr(torch.round,
r"""
round(input, out=None) -> Tensor
Returns a new tensor with each of the elements of :attr:`input` rounded
to the closest integer.
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.9920, 0.6077, 0.9734, -1.0362])
>>> torch.round(a)
tensor([ 1., 1., 1., -1.])
""")
add_docstr(torch.rsqrt,
r"""
rsqrt(input, out=None) -> Tensor
Returns a new tensor with the reciprocal of the square-root of each of
the elements of :attr:`input`.
.. math::
\text{out}_{i} = \frac{1}{\sqrt{\text{input}_{i}}}
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.0370, 0.2970, 1.5420, -0.9105])
>>> torch.rsqrt(a)
tensor([ nan, 1.8351, 0.8053, nan])
""")
add_docstr(torch.set_flush_denormal,
r"""
set_flush_denormal(mode) -> bool
Disables denormal floating numbers on CPU.
Returns ``True`` if your system supports flushing denormal numbers and it
successfully configures flush denormal mode. :meth:`~torch.set_flush_denormal`
is only supported on x86 architectures supporting SSE3.
Args:
mode (bool): Controls whether to enable flush denormal mode or not
Example::
>>> torch.set_flush_denormal(True)
True
>>> torch.tensor([1e-323], dtype=torch.float64)
tensor([ 0.], dtype=torch.float64)
>>> torch.set_flush_denormal(False)
True
>>> torch.tensor([1e-323], dtype=torch.float64)
tensor(9.88131e-324 *
[ 1.0000], dtype=torch.float64)
""")
add_docstr(torch.set_num_threads,
r"""
set_num_threads(int)
Sets the number of OpenMP threads used for parallelizing CPU operations
""")
add_docstr(torch.sigmoid,
r"""
sigmoid(input, out=None) -> Tensor
Returns a new tensor with the sigmoid of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \frac{1}{1 + e^{-\text{input}_{i}}}
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.9213, 1.0887, -0.8858, -1.7683])
>>> torch.sigmoid(a)
tensor([ 0.7153, 0.7481, 0.2920, 0.1458])
""")
add_docstr(torch.sign,
r"""
sign(input, out=None) -> Tensor
Returns a new tensor with the sign of the elements of :attr:`input`.
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 1.0382, -1.4526, -0.9709, 0.4542])
>>> torch.sign(a)
tensor([ 1., -1., -1., 1.])
""")
add_docstr(torch.sin,
r"""
sin(input, out=None) -> Tensor
Returns a new tensor with the sine of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \sin(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-0.5461, 0.1347, -2.7266, -0.2746])
>>> torch.sin(a)
tensor([-0.5194, 0.1343, -0.4032, -0.2711])
""")
add_docstr(torch.sinh,
r"""
sinh(input, out=None) -> Tensor
Returns a new tensor with the hyperbolic sine of the elements of
:attr:`input`.
.. math::
\text{out}_{i} = \sinh(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.5380, -0.8632, -0.1265, 0.9399])
>>> torch.sinh(a)
tensor([ 0.5644, -0.9744, -0.1268, 1.0845])
""")
add_docstr(torch.sort,
r"""
sort(input, dim=None, descending=False, out=None) -> (Tensor, LongTensor)
Sorts the elements of the :attr:`input` tensor along a given dimension
in ascending order by value.
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
If :attr:`descending` is ``True`` then the elements are sorted in descending
order by value.
A tuple of (sorted_tensor, sorted_indices) is returned, where the
sorted_indices are the indices of the elements in the original `input` tensor.
Args:
input (Tensor): the input tensor
dim (int, optional): the dimension to sort along
descending (bool, optional): controls the sorting order (ascending or descending)
out (tuple, optional): the output tuple of (`Tensor`, `LongTensor`) that can
be optionally given to be used as output buffers
Example::
>>> x = torch.randn(3, 4)
>>> sorted, indices = torch.sort(x)
>>> sorted
tensor([[-0.2162, 0.0608, 0.6719, 2.3332],
[-0.5793, 0.0061, 0.6058, 0.9497],
[-0.5071, 0.3343, 0.9553, 1.0960]])
>>> indices
tensor([[ 1, 0, 2, 3],
[ 3, 1, 0, 2],
[ 0, 3, 1, 2]])
>>> sorted, indices = torch.sort(x, 0)
>>> sorted
tensor([[-0.5071, -0.2162, 0.6719, -0.5793],
[ 0.0608, 0.0061, 0.9497, 0.3343],
[ 0.6058, 0.9553, 1.0960, 2.3332]])
>>> indices
tensor([[ 2, 0, 0, 1],
[ 0, 1, 1, 2],
[ 1, 2, 2, 0]])
""")
add_docstr(torch.sparse_coo_tensor,
r"""
sparse_coo_tensor(indices, values, size=None, dtype=None, device=None, requires_grad=False) -> Tensor
Constructs a sparse tensors in COO(rdinate) format with non-zero elements at the given :attr:`indices`
with the given :attr:`values`. A sparse tensor can be `uncoalesced`, in that case, there are duplicate
coordinates in the indices, and the value at that index is the sum of all duplicate value entries:
`torch.sparse`_.
Args:
indices (array_like): Initial data for the tensor. Can be a list, tuple,
NumPy ``ndarray``, scalar, and other types. Will be cast to a :class:`torch.LongTensor`
internally. The indices are the coordinates of the non-zero values in the matrix, and thus
should be two-dimensional where the first dimension is the number of tensor dimensions and
the second dimension is the number of non-zero values.
values (array_like): Initial values for the tensor. Can be a list, tuple,
NumPy ``ndarray``, scalar, and other types.
size (list, tuple, or :class:`torch.Size`, optional): Size of the sparse tensor. If not
provided the size will be inferred as the minimum size big enough to hold all non-zero
elements.
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
Default: if None, infers data type from :attr:`values`.
device (:class:`torch.device`, optional): the desired device of returned tensor.
Default: if None, uses the current device for the default tensor type
(see :func:`torch.set_default_tensor_type`). :attr:`device` will be the CPU
for CPU tensor types and the current CUDA device for CUDA tensor types.
requires_grad (bool, optional): If autograd should record operations on the
returned tensor. Default: ``False``.
Example::
>>> i = torch.LongTensor([[0, 1, 1],
[2, 0, 2]])
>>> v = torch.FloatTensor([3, 4, 5])
>>> torch.sparse_coo_tensor(i, v, torch.Size([2,4]))
torch.sparse.FloatTensor of size (2,4) with indices:
tensor([[ 0, 1, 1],
[ 2, 0, 2]])
and values:
tensor([ 3., 4., 5.])
>>> torch.sparse_coo_tensor(i, v) # Shape inference
torch.sparse.FloatTensor of size (2,3) with indices:
tensor([[ 0, 1, 1],
[ 2, 0, 2]])
and values:
tensor([ 3., 4., 5.])
>>> torch.sparse_coo_tensor(i, v, torch.Size([2,4]), dtype=torch.float64,
device=torch.device('cuda:0'))
torch.cuda.sparse.DoubleTensor of size (2,4) with indices:
tensor([[ 0, 1, 1],
[ 2, 0, 2]], device='cuda:0')
and values:
tensor([ 3., 4., 5.], dtype=torch.float64, device='cuda:0')
>>> torch.sparse_coo_tensor([], [], torch.Size([])) # Create an empty tensor (of size (0,))
torch.sparse.FloatTensor of size () with indices:
tensor([], dtype=torch.int64)
and values:
tensor([])
.. _torch.sparse: https://pytorch.org/docs/stable/sparse.html
""")
add_docstr(torch.sqrt,
r"""
sqrt(input, out=None) -> Tensor
Returns a new tensor with the square-root of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \sqrt{\text{input}_{i}}
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-2.0755, 1.0226, 0.0831, 0.4806])
>>> torch.sqrt(a)
tensor([ nan, 1.0112, 0.2883, 0.6933])
""")
add_docstr(torch.squeeze,
r"""
squeeze(input, dim=None, out=None) -> Tensor
Returns a tensor with all the dimensions of :attr:`input` of size `1` removed.
For example, if `input` is of shape:
:math:`(A \times 1 \times B \times C \times 1 \times D)` then the `out` tensor
will be of shape: :math:`(A \times B \times C \times D)`.
When :attr:`dim` is given, a squeeze operation is done only in the given
dimension. If `input` is of shape: :math:`(A \times 1 \times B)`,
``squeeze(input, 0)`` leaves the tensor unchanged, but ``squeeze(input, 1)``
will squeeze the tensor to the shape :math:`(A \times B)`.
.. note:: The returned tensor shares the storage with the input tensor,
so changing the contents of one will change the contents of the other.
Args:
input (Tensor): the input tensor
dim (int, optional): if given, the input will be squeezed only in
this dimension
out (Tensor, optional): the output tensor
Example::
>>> x = torch.zeros(2, 1, 2, 1, 2)
>>> x.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x)
>>> y.size()
torch.Size([2, 2, 2])
>>> y = torch.squeeze(x, 0)
>>> y.size()
torch.Size([2, 1, 2, 1, 2])
>>> y = torch.squeeze(x, 1)
>>> y.size()
torch.Size([2, 2, 1, 2])
""")
add_docstr(torch.std,
r"""
.. function:: std(input, unbiased=True) -> Tensor
Returns the standard-deviation of all elements in the :attr:`input` tensor.
If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated
via the biased estimator. Otherwise, Bessel's correction will be used.
Args:
input (Tensor): the input tensor
unbiased (bool): whether to use the unbiased estimation or not
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[-0.8166, -1.3802, -0.3560]])
>>> torch.std(a)
tensor(0.5130)
.. function:: std(input, dim, keepdim=False, unbiased=True, out=None) -> Tensor
Returns the standard-deviation of each row of the :attr:`input` tensor in the
given dimension :attr:`dim`.
If :attr:`keepdim` is ``True``, the output tensor is of the same size as
:attr:`input` except in the dimension :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting
in the output tensor having 1 fewer dimension than :attr:`input`.
If :attr:`unbiased` is ``False``, then the standard-deviation will be calculated
via the biased estimator. Otherwise, Bessel's correction will be used.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce
keepdim (bool): whether the output tensor has :attr:`dim` retained or not
unbiased (bool): whether to use the unbiased estimation or not
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.2035, 1.2959, 1.8101, -0.4644],
[ 1.5027, -0.3270, 0.5905, 0.6538],
[-1.5745, 1.3330, -0.5596, -0.6548],
[ 0.1264, -0.5080, 1.6420, 0.1992]])
>>> torch.std(a, dim=1)
tensor([ 1.0311, 0.7477, 1.2204, 0.9087])
""")
add_docstr(torch.sum,
r"""
.. function:: sum(input, dtype=None) -> Tensor
Returns the sum of all elements in the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
{dtype}
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[ 0.1133, -0.9567, 0.2958]])
>>> torch.sum(a)
tensor(-0.5475)
.. function:: sum(input, dim, keepdim=False, dtype=None) -> Tensor
Returns the sum of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`. If :attr::`dim` is a list of dimensions,
reduce over all of them.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension :attr:`dim` where it is of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the output tensor having 1 fewer dimension than :attr:`input`.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints): the dimension or dimensions to reduce
keepdim (bool): whether the output tensor has :attr:`dim` retained or not
{dtype}
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0569, -0.2475, 0.0737, -0.3429],
[-0.2993, 0.9138, 0.9337, -1.6864],
[ 0.1132, 0.7892, -0.1003, 0.5688],
[ 0.3637, -0.9906, -0.4752, -1.5197]])
>>> torch.sum(a, 1)
tensor([-0.4598, -0.1381, 1.3708, -2.6217])
>>> b = torch.arange(4 * 5 * 6).view(4, 5, 6)
>>> torch.sum(b, (2, 1))
tensor([ 435., 1335., 2235., 3135.])
""".format(**reduceops_common_args))
add_docstr(torch.svd,
r"""
svd(input, some=True, out=None) -> (Tensor, Tensor, Tensor)
`U, S, V = torch.svd(A)` returns the singular value decomposition of a
real matrix `A` of size `(n x m)` such that :math:`A = USV^T`.
`U` is of shape :math:`(n \times n)`.
`S` is a diagonal matrix of shape :math:`(n \times m)`, represented as a vector
of size :math:`\min(n, m)` containing the non-negative diagonal entries.
`V` is of shape :math:`(m \times m)`.
If :attr:`some` is ``True`` (default), the returned `U` and `V` matrices will
contain only :math:`min(n, m)` orthonormal columns.
.. note:: The implementation of SVD on CPU uses the LAPACK routine `?gesdd` (a divide-and-conquer
algorithm) instead of `?gesvd` for speed. Analogously, the SVD on GPU uses the MAGMA routine
`gesdd` as well.
.. note:: Irrespective of the original strides, the returned matrix `U`
will be transposed, i.e. with strides `(1, n)` instead of `(n, 1)`.
.. note:: Extra care needs to be taken when backward through `U` and `V`
outputs. Such operation is really only stable when :attr:`input` is
full rank with all distinct singular values. Otherwise, ``NaN`` can
appear as the gradients are not properly defined. Also, notice that
double backward will usually do an additional backward through `U` and
`V` even if the original backward is only on `S`.
.. note:: When :attr:`some` = ``False``, the gradients on ``U[:, min(n, m):]``
and ``V[:, min(n, m):]`` will be ignored in backward as those vectors
can be arbitrary bases of the subspaces.
Args:
input (Tensor): the input 2-D tensor
some (bool, optional): controls the shape of returned `U` and `V`
out (tuple, optional): the output tuple of tensors
Example::
>>> a = torch.tensor([[8.79, 6.11, -9.15, 9.57, -3.49, 9.84],
[9.93, 6.91, -7.93, 1.64, 4.02, 0.15],
[9.83, 5.04, 4.86, 8.83, 9.80, -8.99],
[5.45, -0.27, 4.85, 0.74, 10.00, -6.02],
[3.16, 7.98, 3.01, 5.80, 4.27, -5.31]]).t()
>>> u, s, v = torch.svd(a)
>>> u
tensor([[-0.5911, 0.2632, 0.3554, 0.3143, 0.2299],
[-0.3976, 0.2438, -0.2224, -0.7535, -0.3636],
[-0.0335, -0.6003, -0.4508, 0.2334, -0.3055],
[-0.4297, 0.2362, -0.6859, 0.3319, 0.1649],
[-0.4697, -0.3509, 0.3874, 0.1587, -0.5183],
[ 0.2934, 0.5763, -0.0209, 0.3791, -0.6526]])
>>> s
tensor([ 27.4687, 22.6432, 8.5584, 5.9857, 2.0149])
>>> v
tensor([[-0.2514, 0.8148, -0.2606, 0.3967, -0.2180],
[-0.3968, 0.3587, 0.7008, -0.4507, 0.1402],
[-0.6922, -0.2489, -0.2208, 0.2513, 0.5891],
[-0.3662, -0.3686, 0.3859, 0.4342, -0.6265],
[-0.4076, -0.0980, -0.4933, -0.6227, -0.4396]])
>>> torch.dist(a, torch.mm(torch.mm(u, torch.diag(s)), v.t()))
tensor(1.00000e-06 *
9.3738)
""")
add_docstr(torch.symeig,
r"""
symeig(input, eigenvectors=False, upper=True, out=None) -> (Tensor, Tensor)
This function returns eigenvalues and eigenvectors
of a real symmetric matrix :attr:`input`, represented by a tuple :math:`(e, V)`.
:attr:`input` and :math:`V` are :math:`(m \times m)` matrices and :math:`e` is a
:math:`m` dimensional vector.
This function calculates all eigenvalues (and vectors) of :attr:`input`
such that :math:`\text{input} = V \text{diag}(e) V^T`.
The boolean argument :attr:`eigenvectors` defines computation of
eigenvectors or eigenvalues only.
If it is ``False``, only eigenvalues are computed. If it is ``True``,
both eigenvalues and eigenvectors are computed.
Since the input matrix :attr:`input` is supposed to be symmetric,
only the upper triangular portion is used by default.
If :attr:`upper` is ``False``, then lower triangular portion is used.
Note: Irrespective of the original strides, the returned matrix `V` will
be transposed, i.e. with strides `(1, m)` instead of `(m, 1)`.
Args:
input (Tensor): the input symmetric matrix
eigenvectors(boolean, optional): controls whether eigenvectors have to be computed
upper(boolean, optional): controls whether to consider upper-triangular or lower-triangular region
out (tuple, optional): the output tuple of (Tensor, Tensor)
Returns:
(Tensor, Tensor): A tuple containing
- **e** (*Tensor*): Shape :math:`(m)`. Each element is an eigenvalue of ``input``,
The eigenvalues are in ascending order.
- **V** (*Tensor*): Shape :math:`(m \times m)`.
If ``eigenvectors=False``, it's a tensor filled with zeros.
Otherwise, this tensor contains the orthonormal eigenvectors of the ``input``.
Examples::
>>> a = torch.tensor([[ 1.96, 0.00, 0.00, 0.00, 0.00],
[-6.49, 3.80, 0.00, 0.00, 0.00],
[-0.47, -6.39, 4.17, 0.00, 0.00],
[-7.20, 1.50, -1.51, 5.70, 0.00],
[-0.65, -6.34, 2.67, 1.80, -7.10]]).t()
>>> e, v = torch.symeig(a, eigenvectors=True)
>>> e
tensor([-11.0656, -6.2287, 0.8640, 8.8655, 16.0948])
>>> v
tensor([[-0.2981, -0.6075, 0.4026, -0.3745, 0.4896],
[-0.5078, -0.2880, -0.4066, -0.3572, -0.6053],
[-0.0816, -0.3843, -0.6600, 0.5008, 0.3991],
[-0.0036, -0.4467, 0.4553, 0.6204, -0.4564],
[-0.8041, 0.4480, 0.1725, 0.3108, 0.1622]])
""")
add_docstr(torch.t,
r"""
t(input) -> Tensor
Expects :attr:`input` to be a matrix (2-D tensor) and transposes dimensions 0
and 1.
Can be seen as a short-hand function for ``transpose(input, 0, 1)``.
Args:
input (Tensor): the input tensor
Example::
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 0.4875, 0.9158, -0.5872],
[ 0.3938, -0.6929, 0.6932]])
>>> torch.t(x)
tensor([[ 0.4875, 0.3938],
[ 0.9158, -0.6929],
[-0.5872, 0.6932]])
""")
add_docstr(torch.flip,
r"""
flip(input, dims) -> Tensor
Reverse the order of a n-D tensor along given axis in dims.
Args:
input (Tensor): the input tensor
dims (a list or tuple): axis to flip on
Example::
>>> x = torch.arange(8).view(2, 2, 2)
>>> x
tensor([[[ 0, 1],
[ 2, 3]],
[[ 4, 5],
[ 6, 7]]])
>>> torch.flip(x, [0, 1])
tensor([[[ 6, 7],
[ 4, 5]],
[[ 2, 3],
[ 0, 1]]])
""")
add_docstr(torch.rot90,
r"""
rot90(input, k, dims) -> Tensor
Rotate a n-D tensor by 90 degrees in the plane specified by dims axis.
Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0.
Args:
input (Tensor): the input tensor
k (int): number of times to rotate
dims (a list or tuple): axis to rotate
Example::
>>> x = torch.arange(4).view(2, 2)
>>> x
tensor([[0, 1],
[2, 3]])
>>> torch.rot90(x, 1, [0, 1])
tensor([[1, 3],
[0, 2]])
>>> x = torch.arange(8).view(2, 2, 2)
>>> x
tensor([[[0, 1],
[2, 3]],
[[4, 5],
[6, 7]]])
>>> torch.rot90(x, 1, [1, 2])
tensor([[[1, 3],
[0, 2]],
[[5, 7],
[4, 6]]])
""")
add_docstr(torch.take,
r"""
take(input, indices) -> Tensor
Returns a new tensor with the elements of :attr:`input` at the given indices.
The input tensor is treated as if it were viewed as a 1-D tensor. The result
takes the same shape as the indices.
Args:
input (Tensor): the input tensor
indices (LongTensor): the indices into tensor
Example::
>>> src = torch.tensor([[4, 3, 5],
[6, 7, 8]])
>>> torch.take(src, torch.tensor([0, 2, 5]))
tensor([ 4, 5, 8])
""")
add_docstr(torch.tan,
r"""
tan(input, out=None) -> Tensor
Returns a new tensor with the tangent of the elements of :attr:`input`.
.. math::
\text{out}_{i} = \tan(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([-1.2027, -1.7687, 0.4412, -1.3856])
>>> torch.tan(a)
tensor([-2.5930, 4.9859, 0.4722, -5.3366])
""")
add_docstr(torch.tanh,
r"""
tanh(input, out=None) -> Tensor
Returns a new tensor with the hyperbolic tangent of the elements
of :attr:`input`.
.. math::
\text{out}_{i} = \tanh(\text{input}_{i})
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 0.8986, -0.7279, 1.1745, 0.2611])
>>> torch.tanh(a)
tensor([ 0.7156, -0.6218, 0.8257, 0.2553])
""")
add_docstr(torch.topk,
r"""
topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)
Returns the :attr:`k` largest elements of the given :attr:`input` tensor along
a given dimension.
If :attr:`dim` is not given, the last dimension of the `input` is chosen.
If :attr:`largest` is ``False`` then the `k` smallest elements are returned.
A tuple of `(values, indices)` is returned, where the `indices` are the indices
of the elements in the original `input` tensor.
The boolean option :attr:`sorted` if ``True``, will make sure that the returned
`k` elements are themselves sorted
Args:
input (Tensor): the input tensor
k (int): the k in "top-k"
dim (int, optional): the dimension to sort along
largest (bool, optional): controls whether to return largest or
smallest elements
sorted (bool, optional): controls whether to return the elements
in sorted order
out (tuple, optional): the output tuple of (Tensor, LongTensor) that can be
optionally given to be used as output buffers
Example::
>>> x = torch.arange(1., 6.)
>>> x
tensor([ 1., 2., 3., 4., 5.])
>>> torch.topk(x, 3)
(tensor([ 5., 4., 3.]), tensor([ 4, 3, 2]))
""")
add_docstr(torch.trace,
r"""
trace(input) -> Tensor
Returns the sum of the elements of the diagonal of the input 2-D matrix.
Example::
>>> x = torch.arange(1., 10.).view(3, 3)
>>> x
tensor([[ 1., 2., 3.],
[ 4., 5., 6.],
[ 7., 8., 9.]])
>>> torch.trace(x)
tensor(15.)
""")
add_docstr(torch.transpose,
r"""
transpose(input, dim0, dim1) -> Tensor
Returns a tensor that is a transposed version of :attr:`input`.
The given dimensions :attr:`dim0` and :attr:`dim1` are swapped.
The resulting :attr:`out` tensor shares it's underlying storage with the
:attr:`input` tensor, so changing the content of one would change the content
of the other.
Args:
input (Tensor): the input tensor
dim0 (int): the first dimension to be transposed
dim1 (int): the second dimension to be transposed
Example::
>>> x = torch.randn(2, 3)
>>> x
tensor([[ 1.0028, -0.9893, 0.5809],
[-0.1669, 0.7299, 0.4942]])
>>> torch.transpose(x, 0, 1)
tensor([[ 1.0028, -0.1669],
[-0.9893, 0.7299],
[ 0.5809, 0.4942]])
""")
add_docstr(torch.tril,
r"""
tril(input, diagonal=0, out=None) -> Tensor
Returns the lower triangular part of the matrix (2-D tensor) :attr:`input`,
the other elements of the result tensor :attr:`out` are set to 0.
The lower triangular part of the matrix is defined as the elements on and
below the diagonal.
The argument :attr:`diagonal` controls which diagonal to consider. If
:attr:`diagonal` = 0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main
diagonal, and similarly a negative value excludes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
Args:
input (Tensor): the input tensor
diagonal (int, optional): the diagonal to consider
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(3, 3)
>>> a
tensor([[-1.0813, -0.8619, 0.7105],
[ 0.0935, 0.1380, 2.2112],
[-0.3409, -0.9828, 0.0289]])
>>> torch.tril(a)
tensor([[-1.0813, 0.0000, 0.0000],
[ 0.0935, 0.1380, 0.0000],
[-0.3409, -0.9828, 0.0289]])
>>> b = torch.randn(4, 6)
>>> b
tensor([[ 1.2219, 0.5653, -0.2521, -0.2345, 1.2544, 0.3461],
[ 0.4785, -0.4477, 0.6049, 0.6368, 0.8775, 0.7145],
[ 1.1502, 3.2716, -1.1243, -0.5413, 0.3615, 0.6864],
[-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0978]])
>>> torch.tril(b, diagonal=1)
tensor([[ 1.2219, 0.5653, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.4785, -0.4477, 0.6049, 0.0000, 0.0000, 0.0000],
[ 1.1502, 3.2716, -1.1243, -0.5413, 0.0000, 0.0000],
[-0.0614, -0.7344, -1.3164, -0.7648, -1.4024, 0.0000]])
>>> torch.tril(b, diagonal=-1)
tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.4785, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 1.1502, 3.2716, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.0614, -0.7344, -1.3164, 0.0000, 0.0000, 0.0000]])
""")
add_docstr(torch.triu,
r"""
triu(input, diagonal=0, out=None) -> Tensor
Returns the upper triangular part of the matrix (2-D tensor) :attr:`input`,
the other elements of the result tensor :attr:`out` are set to 0.
The upper triangular part of the matrix is defined as the elements on and
above the diagonal.
The argument :attr:`diagonal` controls which diagonal to consider. If
:attr:`diagonal` = 0, all elements on and below the main diagonal are
retained. A positive value excludes just as many diagonals above the main
diagonal, and similarly a negative value includes just as many diagonals below
the main diagonal. The main diagonal are the set of indices
:math:`\lbrace (i, i) \rbrace` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where
:math:`d_{1}, d_{2}` are the dimensions of the matrix.
Args:
input (Tensor): the input tensor
diagonal (int, optional): the diagonal to consider
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(3, 3)
>>> a
tensor([[ 0.2309, 0.5207, 2.0049],
[ 0.2072, -1.0680, 0.6602],
[ 0.3480, -0.5211, -0.4573]])
>>> torch.triu(a)
tensor([[ 0.2309, 0.5207, 2.0049],
[ 0.0000, -1.0680, 0.6602],
[ 0.0000, 0.0000, -0.4573]])
>>> torch.triu(a, diagonal=1)
tensor([[ 0.0000, 0.5207, 2.0049],
[ 0.0000, 0.0000, 0.6602],
[ 0.0000, 0.0000, 0.0000]])
>>> torch.triu(a, diagonal=-1)
tensor([[ 0.2309, 0.5207, 2.0049],
[ 0.2072, -1.0680, 0.6602],
[ 0.0000, -0.5211, -0.4573]])
>>> b = torch.randn(4, 6)
>>> b
tensor([[ 0.5876, -0.0794, -1.8373, 0.6654, 0.2604, 1.5235],
[-0.2447, 0.9556, -1.2919, 1.3378, -0.1768, -1.0857],
[ 0.4333, 0.3146, 0.6576, -1.0432, 0.9348, -0.4410],
[-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.2830]])
>>> torch.tril(b, diagonal=1)
tensor([[ 0.5876, -0.0794, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.2447, 0.9556, -1.2919, 0.0000, 0.0000, 0.0000],
[ 0.4333, 0.3146, 0.6576, -1.0432, 0.0000, 0.0000],
[-0.9888, 1.0679, -1.3337, -1.6556, 0.4798, 0.0000]])
>>> torch.tril(b, diagonal=-1)
tensor([[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.2447, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[ 0.4333, 0.3146, 0.0000, 0.0000, 0.0000, 0.0000],
[-0.9888, 1.0679, -1.3337, 0.0000, 0.0000, 0.0000]])
""")
add_docstr(torch.trtrs,
r"""
trtrs(b, A, upper=True, transpose=False, unitriangular=False) -> (Tensor, Tensor)
Solves a system of equations with a triangular coefficient matrix :math:`A`
and multiple right-hand sides :attr:`b`.
In particular, solves :math:`AX = b` and assumes :math:`A` is upper-triangular
with the default keyword arguments.
Args:
A (Tensor): the input triangular coefficient matrix
b (Tensor): multiple right-hand sides. Each column of :math:`b` is a
right-hand side for the system of equations.
upper (bool, optional): whether to solve the upper-triangular system
of equations (default) or the lower-triangular system of equations. Default: True.
transpose (bool, optional): whether :math:`A` should be transposed before
being sent into the solver. Default: False.
unitriangular (bool, optional): whether :math:`A` is unit triangular.
If True, the diagonal elements of :math:`A` are assumed to be
1 and not referenced from :math:`A`. Default: False.
Returns:
A tuple :math:`(X, M)` where :math:`M` is a clone of :math:`A` and :math:`X`
is the solution to :math:`AX = b` (or whatever variant of the system of
equations, depending on the keyword arguments.)
Shape:
- A: :math:`(N, N)`
- b: :math:`(N, C)`
- output[0]: :math:`(N, C)`
- output[1]: :math:`(N, N)`
Examples::
>>> A = torch.randn(2, 2).triu()
>>> A
tensor([[ 1.1527, -1.0753],
[ 0.0000, 0.7986]])
>>> b = torch.randn(2, 3)
>>> b
tensor([[-0.0210, 2.3513, -1.5492],
[ 1.5429, 0.7403, -1.0243]])
>>> torch.trtrs(b, A)
(tensor([[ 1.7840, 2.9045, -2.5405],
[ 1.9319, 0.9269, -1.2826]]), tensor([[ 1.1527, -1.0753],
[ 0.0000, 0.7986]]))
""")
add_docstr(torch.trunc,
r"""
trunc(input, out=None) -> Tensor
Returns a new tensor with the truncated integer values of
the elements of :attr:`input`.
Args:
input (Tensor): the input tensor
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4)
>>> a
tensor([ 3.4742, 0.5466, -0.8008, -0.9079])
>>> torch.trunc(a)
tensor([ 3., 0., -0., -0.])
""")
add_docstr(torch.unsqueeze,
r"""
unsqueeze(input, dim, out=None) -> Tensor
Returns a new tensor with a dimension of size one inserted at the
specified position.
The returned tensor shares the same underlying data with this tensor.
A :attr:`dim` value within the range ``[-input.dim() - 1, input.dim() + 1)``
can be used. Negative :attr:`dim` will correspond to :meth:`unsqueeze`
applied at :attr:`dim` = ``dim + input.dim() + 1``.
Args:
input (Tensor): the input tensor
dim (int): the index at which to insert the singleton dimension
out (Tensor, optional): the output tensor
Example::
>>> x = torch.tensor([1, 2, 3, 4])
>>> torch.unsqueeze(x, 0)
tensor([[ 1, 2, 3, 4]])
>>> torch.unsqueeze(x, 1)
tensor([[ 1],
[ 2],
[ 3],
[ 4]])
""")
add_docstr(torch.var,
r"""
.. function:: var(input, unbiased=True) -> Tensor
Returns the variance of all elements in the :attr:`input` tensor.
If :attr:`unbiased` is ``False``, then the variance will be calculated via the
biased estimator. Otherwise, Bessel's correction will be used.
Args:
input (Tensor): the input tensor
unbiased (bool): whether to use the unbiased estimation or not
Example::
>>> a = torch.randn(1, 3)
>>> a
tensor([[-0.3425, -1.2636, -0.4864]])
>>> torch.var(a)
tensor(0.2455)
.. function:: var(input, dim, keepdim=False, unbiased=True, out=None) -> Tensor
Returns the variance of each row of the :attr:`input` tensor in the given
dimension :attr:`dim`.
If :attr:`keepdim` is ``True``, the output tensors are of the same size
as :attr:`input` except in the dimension :attr:`dim` where they are of size 1.
Otherwise, :attr:`dim` is squeezed (see :func:`torch.squeeze`), resulting in
the outputs tensor having 1 fewer dimension than :attr:`input`.
If :attr:`unbiased` is ``False``, then the variance will be calculated via the
biased estimator. Otherwise, Bessel's correction will be used.
Args:
input (Tensor): the input tensor
dim (int): the dimension to reduce
keepdim (bool): whether the output tensor has :attr:`dim` retained or not
unbiased (bool): whether to use the unbiased estimation or not
out (Tensor, optional): the output tensor
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[-0.3567, 1.7385, -1.3042, 0.7423],
[ 1.3436, -0.1015, -0.9834, -0.8438],
[ 0.6056, 0.1089, -0.3112, -1.4085],
[-0.7700, 0.6074, -0.1469, 0.7777]])
>>> torch.var(a, 1)
tensor([ 1.7444, 1.1363, 0.7356, 0.5112])
""")
add_docstr(torch.zeros,
r"""
zeros(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with the scalar value `0`, with the shape defined
by the variable argument :attr:`sizes`.
Args:
sizes (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.zeros(2, 3)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.]])
>>> torch.zeros(5)
tensor([ 0., 0., 0., 0., 0.])
""".format(**factory_common_args))
add_docstr(torch.zeros_like,
r"""
zeros_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with the scalar value `0`, with the same size as
:attr:`input`. ``torch.zeros_like(input)`` is equivalent to
``torch.zeros(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
.. warning::
As of 0.4, this function does not support an :attr:`out` keyword. As an alternative,
the old ``torch.zeros_like(input, out=output)`` is equivalent to
``torch.zeros(input.size(), out=output)``.
Args:
{input}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> input = torch.empty(2, 3)
>>> torch.zeros_like(input)
tensor([[ 0., 0., 0.],
[ 0., 0., 0.]])
""".format(**factory_like_common_args))
add_docstr(torch.btrifact_with_info,
r"""
btrifact_with_info(A, pivot=True) -> (Tensor, IntTensor, IntTensor)
Batch LU factorization with additional error information.
This is a version of :meth:`torch.btrifact` that always creates an info
`IntTensor`, and returns it as the third return value.
Arguments:
A (Tensor): the tensor to factor
pivot (bool, optional): controls whether pivoting is done
Returns:
A tuple containing factorization, pivots, and an `IntTensor` where non-zero
values indicate whether factorization for each minibatch sample succeeds.
Example::
>>> A = torch.randn(2, 3, 3)
>>> A_LU, pivots, info = A.btrifact_with_info()
>>> if info.nonzero().size(0) == 0:
>>> print('LU factorization succeeded for all samples!')
LU factorization succeeded for all samples!
""")
add_docstr(torch.btrisolve,
r"""
btrisolve(b, LU_data, LU_pivots) -> Tensor
Batch LU solve.
Returns the LU solve of the linear system :math:`Ax = b`.
Arguments:
b (Tensor): the RHS tensor
LU_data (Tensor): the pivoted LU factorization of A from :meth:`btrifact`.
LU_pivots (IntTensor): the pivots of the LU factorization
Example::
>>> A = torch.randn(2, 3, 3)
>>> b = torch.randn(2, 3)
>>> A_LU = torch.btrifact(A)
>>> x = torch.btrisolve(b, *A_LU)
>>> torch.norm(torch.bmm(A, x.unsqueeze(2)) - b.unsqueeze(2))
tensor(1.00000e-07 *
2.8312)
""")
add_docstr(torch.empty,
r"""
empty(*sizes, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor filled with uninitialized data. The shape of the tensor is
defined by the variable argument :attr:`sizes`.
Args:
sizes (int...): a sequence of integers defining the shape of the output tensor.
Can be a variable number of arguments or a collection like a list or tuple.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.empty(2, 3)
tensor(1.00000e-08 *
[[ 6.3984, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000]])
""".format(**factory_common_args))
add_docstr(torch.empty_like,
r"""
empty_like(input, dtype=None, layout=None, device=None, requires_grad=False) -> Tensor
Returns an uninitialized tensor with the same size as :attr:`input`.
``torch.empty_like(input)`` is equivalent to
``torch.empty(input.size(), dtype=input.dtype, layout=input.layout, device=input.device)``.
Args:
{input}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> input = torch.empty((2,3), dtype=torch.int64)
>>> input.new(input.size())
tensor([[ 9.4064e+13, 2.8000e+01, 9.3493e+13],
[ 7.5751e+18, 7.1428e+18, 7.5955e+18]])
""".format(**factory_like_common_args))
add_docstr(torch.full,
r"""
full(size, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor of size :attr:`size` filled with :attr:`fill_value`.
Args:
size (int...): a list, tuple, or :class:`torch.Size` of integers defining the
shape of the output tensor.
fill_value: the number to fill the output tensor with.
{out}
{dtype}
{layout}
{device}
{requires_grad}
Example::
>>> torch.full((2, 3), 3.141592)
tensor([[ 3.1416, 3.1416, 3.1416],
[ 3.1416, 3.1416, 3.1416]])
""".format(**factory_common_args))
add_docstr(torch.full_like,
r"""
full_like(input, fill_value, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor
Returns a tensor with the same size as :attr:`input` filled with :attr:`fill_value`.
``torch.full_like(input, fill_value)`` is equivalent to
``torch.full_like(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)``.
Args:
{input}
fill_value: the number to fill the output tensor with.
{dtype}
{layout}
{device}
{requires_grad}
""".format(**factory_like_common_args))
add_docstr(torch.det,
r"""
det(A) -> Tensor
Calculates determinant of a 2D square tensor.
.. note::
Backward through :meth:`det` internally uses SVD results when :attr:`A` is
not invertible. In this case, double backward through :meth:`det` will be
unstable in when :attr:`A` doesn't have distinct singular values. See
:meth:`~torch.svd` for details.
Arguments:
A (Tensor): The input 2D square tensor
Example::
>>> A = torch.randn(3, 3)
>>> torch.det(A)
tensor(3.7641)
""")
add_docstr(torch.where,
r"""
where(condition, x, y) -> Tensor
Return a tensor of elements selected from either :attr:`x` or :attr:`y`, depending on :attr:`condition`.
The operation is defined as:
.. math::
out_i = \begin{cases}
x_i & \text{if } \text{condition}_i \\
y_i & \text{otherwise} \\
\end{cases}
.. note::
The tensors :attr:`condition`, :attr:`x`, :attr:`y` must be :ref:`broadcastable <broadcasting-semantics>`.
Arguments:
condition (ByteTensor): When True (nonzero), yield x, otherwise yield y
x (Tensor): values selected at indices where :attr:`condition` is ``True``
y (Tensor): values selected at indices where :attr:`condition` is ``False``
Returns:
Tensor: A tensor of shape equal to the broadcasted shape of :attr:`condition`, :attr:`x`, :attr:`y`
Example::
>>> x = torch.randn(3, 2)
>>> y = torch.ones(3, 2)
>>> x
tensor([[-0.4620, 0.3139],
[ 0.3898, -0.7197],
[ 0.0478, -0.1657]])
>>> torch.where(x > 0, x, y)
tensor([[ 1.0000, 0.3139],
[ 0.3898, 1.0000],
[ 0.0478, 1.0000]])
""")
add_docstr(torch.logdet,
r"""
logdet(A) -> Tensor
Calculates log determinant of a 2D square tensor.
.. note::
Result is ``-inf`` if :attr:`A` has zero log determinant, and is ``nan`` if
:attr:`A` has negative determinant.
.. note::
Backward through :meth:`logdet` internally uses SVD results when :attr:`A`
is not invertible. In this case, double backward through :meth:`logdet` will
be unstable in when :attr:`A` doesn't have distinct singular values. See
:meth:`~torch.svd` for details.
Arguments:
A (Tensor): The input 2D square tensor
Example::
>>> A = torch.randn(3, 3)
>>> torch.det(A)
tensor(0.2611)
>>> torch.logdet(A)
tensor(-1.3430)
""")
add_docstr(torch.slogdet,
r"""
slogdet(A) -> (Tensor, Tensor)
Calculates the sign and log value of a 2D square tensor's determinant.
.. note::
If ``A`` has zero determinant, this returns ``(0, -inf)``.
.. note::
Backward through :meth:`slogdet` internally uses SVD results when :attr:`A`
is not invertible. In this case, double backward through :meth:`slogdet`
will be unstable in when :attr:`A` doesn't have distinct singular values.
See :meth:`~torch.svd` for details.
Arguments:
A (Tensor): The input 2D square tensor
Returns:
A tuple containing the sign of the determinant, and the log value of the
absolute determinant.
Example::
>>> A = torch.randn(3, 3)
>>> torch.det(A)
tensor(-4.8215)
>>> torch.logdet(A)
tensor(nan)
>>> torch.slogdet(A)
(tensor(-1.), tensor(1.5731))
""")
add_docstr(torch.pinverse,
r"""
pinverse(input, rcond=1e-15) -> Tensor
Calculates the pseudo-inverse (also known as the Moore-Penrose inverse) of a 2D tensor.
Please look at `Moore-Penrose inverse`_ for more details
.. note::
This method is implemented using the Singular Value Decomposition.
.. note::
The pseudo-inverse is not necessarily a continuous function in the elements of the matrix `[1]`_.
Therefore, derivatives are not always existent, and exist for a constant rank only `[2]`_.
However, this method is backprop-able due to the implementation by using SVD results, and
could be unstable. Double-backward will also be unstable due to the usage of SVD internally.
See :meth:`~torch.svd` for more details.
Arguments:
input (Tensor): The input 2D tensor of dimensions :math:`m \times n`
rcond (float): A floating point value to determine the cutoff for small singular values.
Default: 1e-15
Returns:
The pseudo-inverse of :attr:`input` of dimensions :math:`n \times m`
Example::
>>> input = torch.randn(3, 5)
>>> input
tensor([[ 0.5495, 0.0979, -1.4092, -0.1128, 0.4132],
[-1.1143, -0.3662, 0.3042, 1.6374, -0.9294],
[-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]])
>>> torch.pinverse(input)
tensor([[ 0.0600, -0.1933, -0.2090],
[-0.0903, -0.0817, -0.4752],
[-0.7124, -0.1631, -0.2272],
[ 0.1356, 0.3933, -0.5023],
[-0.0308, -0.1725, -0.5216]])
.. _Moore-Penrose inverse: https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
.. _[1]: https://epubs.siam.org/doi/10.1137/0117004
.. _[2]: https://www.jstor.org/stable/2156365
""")
add_docstr(torch.fft,
r"""
fft(input, signal_ndim, normalized=False) -> Tensor
Complex-to-complex Discrete Fourier Transform
This method computes the complex-to-complex discrete Fourier transform.
Ignoring the batch dimensions, it computes the following expression:
.. math::
X[\omega_1, \dots, \omega_d] =
\sum_{n_1=0}^{N_1} \dots \sum_{n_d=0}^{N_d} x[n_1, \dots, n_d]
e^{-j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}},
where :math:`d` = :attr:`signal_ndim` is number of dimensions for the
signal, and :math:`N_i` is the size of signal dimension :math:`i`.
This method supports 1D, 2D and 3D complex-to-complex transforms, indicated
by :attr:`signal_ndim`. :attr:`input` must be a tensor with last dimension
of size 2, representing the real and imaginary components of complex
numbers, and should have at least ``signal_ndim + 1`` dimensions with optionally
arbitrary number of leading batch dimensions. If :attr:`normalized` is set to
``True``, this normalizes the result by dividing it with
:math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is unitary.
Returns the real and the imaginary parts together as one tensor of the same
shape of :attr:`input`.
The inverse of this function is :func:`~torch.ifft`.
.. note::
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
repeatedly running FFT methods on tensors of same geometry with same
same configuration.
Changing ``torch.backends.cuda.cufft_plan_cache.max_size`` (default 1023)
controls the capacity of this cache. Some cuFFT plans may allocate GPU
memory. You may use ``torch.backends.cuda.cufft_plan_cache.size`` to query
the number of plans currently in cache, and
``torch.backends.cuda.cufft_plan_cache.clear()`` to clear the cache.
.. warning::
For CPU tensors, this method is currently only available with MKL. Use
:func:`torch.backends.mkl.is_available` to check if MKL is installed.
Arguments:
input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1``
dimensions
signal_ndim (int): the number of dimensions in each signal.
:attr:`signal_ndim` can only be 1, 2 or 3
normalized (bool, optional): controls whether to return normalized results.
Default: ``False``
Returns:
Tensor: A tensor containing the complex-to-complex Fourier transform result
Example::
>>> # unbatched 2D FFT
>>> x = torch.randn(4, 3, 2)
>>> torch.fft(x, 2)
tensor([[[-0.0876, 1.7835],
[-2.0399, -2.9754],
[ 4.4773, -5.0119]],
[[-1.5716, 2.7631],
[-3.8846, 5.2652],
[ 0.2046, -0.7088]],
[[ 1.9938, -0.5901],
[ 6.5637, 6.4556],
[ 2.9865, 4.9318]],
[[ 7.0193, 1.1742],
[-1.3717, -2.1084],
[ 2.0289, 2.9357]]])
>>> # batched 1D FFT
>>> torch.fft(x, 1)
tensor([[[ 1.8385, 1.2827],
[-0.1831, 1.6593],
[ 2.4243, 0.5367]],
[[-0.9176, -1.5543],
[-3.9943, -2.9860],
[ 1.2838, -2.9420]],
[[-0.8854, -0.6860],
[ 2.4450, 0.0808],
[ 1.3076, -0.5768]],
[[-0.1231, 2.7411],
[-0.3075, -1.7295],
[-0.5384, -2.0299]]])
>>> # arbitrary number of batch dimensions, 2D FFT
>>> x = torch.randn(3, 3, 5, 5, 2)
>>> y = torch.fft(x, 2)
>>> y.shape
torch.Size([3, 3, 5, 5, 2])
""")
add_docstr(torch.ifft,
r"""
ifft(input, signal_ndim, normalized=False) -> Tensor
Complex-to-complex Inverse Discrete Fourier Transform
This method computes the complex-to-complex inverse discrete Fourier
transform. Ignoring the batch dimensions, it computes the following
expression:
.. math::
X[\omega_1, \dots, \omega_d] =
\frac{1}{\prod_{i=1}^d N_i} \sum_{n_1=0}^{N_1} \dots \sum_{n_d=0}^{N_d} x[n_1, \dots, n_d]
e^{\ j\ 2 \pi \sum_{i=0}^d \frac{\omega_i n_i}{N_i}},
where :math:`d` = :attr:`signal_ndim` is number of dimensions for the
signal, and :math:`N_i` is the size of signal dimension :math:`i`.
The argument specifications are almost identical with :func:`~torch.fft`.
However, if :attr:`normalized` is set to ``True``, this instead returns the
results multiplied by :math:`\sqrt{\prod_{i=1}^d N_i}`, to become a unitary
operator. Therefore, to invert a :func:`~torch.fft`, the :attr:`normalized`
argument should be set identically for :func:`~torch.fft`.
Returns the real and the imaginary parts together as one tensor of the same
shape of :attr:`input`.
The inverse of this function is :func:`~torch.fft`.
.. note::
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
repeatedly running FFT methods on tensors of same geometry with same
same configuration.
Changing ``torch.backends.cuda.cufft_plan_cache.max_size`` (default 1023)
controls the capacity of this cache. Some cuFFT plans may allocate GPU
memory. You may use ``torch.backends.cuda.cufft_plan_cache.size`` to query
the number of plans currently in cache, and
``torch.backends.cuda.cufft_plan_cache.clear()`` to clear the cache.
.. warning::
For CPU tensors, this method is currently only available with MKL. Use
:func:`torch.backends.mkl.is_available` to check if MKL is installed.
Arguments:
input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1``
dimensions
signal_ndim (int): the number of dimensions in each signal.
:attr:`signal_ndim` can only be 1, 2 or 3
normalized (bool, optional): controls whether to return normalized results.
Default: ``False``
Returns:
Tensor: A tensor containing the complex-to-complex inverse Fourier transform result
Example::
>>> x = torch.randn(3, 3, 2)
>>> x
tensor([[[ 1.2766, 1.3680],
[-0.8337, 2.0251],
[ 0.9465, -1.4390]],
[[-0.1890, 1.6010],
[ 1.1034, -1.9230],
[-0.9482, 1.0775]],
[[-0.7708, -0.8176],
[-0.1843, -0.2287],
[-1.9034, -0.2196]]])
>>> y = torch.fft(x, 2)
>>> torch.ifft(y, 2) # recover x
tensor([[[ 1.2766, 1.3680],
[-0.8337, 2.0251],
[ 0.9465, -1.4390]],
[[-0.1890, 1.6010],
[ 1.1034, -1.9230],
[-0.9482, 1.0775]],
[[-0.7708, -0.8176],
[-0.1843, -0.2287],
[-1.9034, -0.2196]]])
""")
add_docstr(torch.rfft,
r"""
rfft(input, signal_ndim, normalized=False, onesided=True) -> Tensor
Real-to-complex Discrete Fourier Transform
This method computes the real-to-complex discrete Fourier transform. It is
mathematically equivalent with :func:`~torch.fft` with differences only in
formats of the input and output.
This method supports 1D, 2D and 3D real-to-complex transforms, indicated
by :attr:`signal_ndim`. :attr:`input` must be a tensor with at least
``signal_ndim`` dimensions with optionally arbitrary number of leading batch
dimensions. If :attr:`normalized` is set to ``True``, this normalizes the result
by dividing it with :math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is
unitary, where :math:`N_i` is the size of signal dimension :math:`i`.
The real-to-complex Fourier transform results follow conjugate symmetry:
.. math::
X[\omega_1, \dots, \omega_d] = X^*[N_1 - \omega_1, \dots, N_d - \omega_d],
where the index arithmetic is computed modulus the size of the corresponding
dimension, :math:`\ ^*` is the conjugate operator, and
:math:`d` = :attr:`signal_ndim`. :attr:`onesided` flag controls whether to avoid
redundancy in the output results. If set to ``True`` (default), the output will
not be full complex result of shape :math:`(*, 2)`, where :math:`*` is the shape
of :attr:`input`, but instead the last dimension will be halfed as of size
:math:`\lfloor \frac{N_d}{2} \rfloor + 1`.
The inverse of this function is :func:`~torch.irfft`.
.. note::
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
repeatedly running FFT methods on tensors of same geometry with same
same configuration.
Changing ``torch.backends.cuda.cufft_plan_cache.max_size`` (default 1023)
controls the capacity of this cache. Some cuFFT plans may allocate GPU
memory. You may use ``torch.backends.cuda.cufft_plan_cache.size`` to query
the number of plans currently in cache, and
``torch.backends.cuda.cufft_plan_cache.clear()`` to clear the cache.
.. warning::
For CPU tensors, this method is currently only available with MKL. Use
:func:`torch.backends.mkl.is_available` to check if MKL is installed.
Arguments:
input (Tensor): the input tensor of at least :attr:`signal_ndim` dimensions
signal_ndim (int): the number of dimensions in each signal.
:attr:`signal_ndim` can only be 1, 2 or 3
normalized (bool, optional): controls whether to return normalized results.
Default: ``False``
onesided (bool, optional): controls whether to return half of results to
avoid redundancy. Default: ``True``
Returns:
Tensor: A tensor containing the real-to-complex Fourier transform result
Example::
>>> x = torch.randn(5, 5)
>>> torch.rfft(x, 2).shape
torch.Size([5, 3, 2])
>>> torch.rfft(x, 2, onesided=False).shape
torch.Size([5, 5, 2])
""")
add_docstr(torch.irfft,
r"""
irfft(input, signal_ndim, normalized=False, onesided=True, signal_sizes=None) -> Tensor
Complex-to-real Inverse Discrete Fourier Transform
This method computes the complex-to-real inverse discrete Fourier transform.
It is mathematically equivalent with :func:`ifft` with differences only in
formats of the input and output.
The argument specifications are almost identical with :func:`~torch.ifft`.
Similar to :func:`~torch.ifft`, if :attr:`normalized` is set to ``True``,
this normalizes the result by multiplying it with
:math:`\sqrt{\prod_{i=1}^K N_i}` so that the operator is unitary, where
:math:`N_i` is the size of signal dimension :math:`i`.
Due to the conjugate symmetry, :attr:`input` do not need to contain the full
complex frequency values. Roughly half of the values will be sufficient, as
is the case when :attr:`input` is given by :func:`~torch.rfft` with
``rfft(signal, onesided=True)``. In such case, set the :attr:`onesided`
argument of this method to ``True``. Moreover, the original signal shape
information can sometimes be lost, optionally set :attr:`signal_sizes` to be
the size of the original signal (without the batch dimensions if in batched
mode) to recover it with correct shape.
Therefore, to invert an :func:`~torch.rfft`, the :attr:`normalized` and
:attr:`onesided` arguments should be set identically for :func:`~torch.irfft`,
and preferrably a :attr:`signal_sizes` is given to avoid size mismatch. See the
example below for a case of size mismatch.
See :func:`~torch.rfft` for details on conjugate symmetry.
The inverse of this function is :func:`~torch.rfft`.
.. warning::
Generally speaking, the input of this function should contain values
following conjugate symmetry. Note that even if :attr:`onesided` is
``True``, often symmetry on some part is still needed. When this
requirement is not satisfied, the behavior of :func:`~torch.irfft` is
undefined. Since :func:`torch.autograd.gradcheck` estimates numerical
Jacobian with point perturbations, :func:`~torch.irfft` will almost
certainly fail the check.
.. note::
For CUDA tensors, an LRU cache is used for cuFFT plans to speed up
repeatedly running FFT methods on tensors of same geometry with same
same configuration.
Changing ``torch.backends.cuda.cufft_plan_cache.max_size`` (default 1023)
controls the capacity of this cache. Some cuFFT plans may allocate GPU
memory. You may use ``torch.backends.cuda.cufft_plan_cache.size`` to query
the number of plans currently in cache, and
``torch.backends.cuda.cufft_plan_cache.clear()`` to clear the cache.
.. warning::
For CPU tensors, this method is currently only available with MKL. Use
:func:`torch.backends.mkl.is_available` to check if MKL is installed.
Arguments:
input (Tensor): the input tensor of at least :attr:`signal_ndim` ``+ 1``
dimensions
signal_ndim (int): the number of dimensions in each signal.
:attr:`signal_ndim` can only be 1, 2 or 3
normalized (bool, optional): controls whether to return normalized results.
Default: ``False``
onesided (bool, optional): controls whether :attr:`input` was halfed to avoid
redundancy, e.g., by :func:`rfft`. Default: ``True``
signal_sizes (list or :class:`torch.Size`, optional): the size of the original
signal (without batch dimension). Default: ``None``
Returns:
Tensor: A tensor containing the complex-to-real inverse Fourier transform result
Example::
>>> x = torch.randn(4, 4)
>>> torch.rfft(x, 2, onesided=True).shape
torch.Size([4, 3, 2])
>>>
>>> # notice that with onesided=True, output size does not determine the original signal size
>>> x = torch.randn(4, 5)
>>> torch.rfft(x, 2, onesided=True).shape
torch.Size([4, 3, 2])
>>>
>>> # now we use the original shape to recover x
>>> x
tensor([[-0.8992, 0.6117, -1.6091, -0.4155, -0.8346],
[-2.1596, -0.0853, 0.7232, 0.1941, -0.0789],
[-2.0329, 1.1031, 0.6869, -0.5042, 0.9895],
[-0.1884, 0.2858, -1.5831, 0.9917, -0.8356]])
>>> y = torch.rfft(x, 2, onesided=True)
>>> torch.irfft(y, 2, onesided=True, signal_sizes=x.shape) # recover x
tensor([[-0.8992, 0.6117, -1.6091, -0.4155, -0.8346],
[-2.1596, -0.0853, 0.7232, 0.1941, -0.0789],
[-2.0329, 1.1031, 0.6869, -0.5042, 0.9895],
[-0.1884, 0.2858, -1.5831, 0.9917, -0.8356]])
""")
add_docstr(torch.hann_window,
"""
hann_window(window_length, periodic=True, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
""" + r"""
Hann window function.
.. math::
w[n] = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{N - 1} \right)\right] =
\sin^2 \left( \frac{\pi n}{N - 1} \right),
where :math:`N` is the full window size.
The input :attr:`window_length` is a positive integer controlling the
returned window size. :attr:`periodic` flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
``torch.hann_window(L, periodic=True)`` equal to
``torch.hann_window(L + 1, periodic=False)[:-1])``.
.. note::
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
""" + r"""
Arguments:
window_length (int): the size of returned window
periodic (bool, optional): If True, returns a window to be used as periodic
function. If False, return a symmetric window.
{dtype} Only floating point types are supported.
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
Returns:
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
""".format(**factory_common_args))
add_docstr(torch.hamming_window,
"""
hamming_window(window_length, periodic=True, alpha=0.54, beta=0.46, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
""" + r"""
Hamming window function.
.. math::
w[n] = \alpha - \beta\ \cos \left( \frac{2 \pi n}{N - 1} \right),
where :math:`N` is the full window size.
The input :attr:`window_length` is a positive integer controlling the
returned window size. :attr:`periodic` flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
``torch.hamming_window(L, periodic=True)`` equal to
``torch.hamming_window(L + 1, periodic=False)[:-1])``.
.. note::
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
.. note::
This is a generalized version of :meth:`torch.hann_window`.
""" + r"""
Arguments:
window_length (int): the size of returned window
periodic (bool, optional): If True, returns a window to be used as periodic
function. If False, return a symmetric window.
{dtype} Only floating point types are supported.
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
Returns:
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
""".format(**factory_common_args))
add_docstr(torch.bartlett_window,
"""
bartlett_window(window_length, periodic=True, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
""" + r"""
Bartlett window function.
.. math::
w[n] = 1 - \left| \frac{2n}{N-1} - 1 \right| = \begin{cases}
\frac{2n}{N - 1} & \text{if } 0 \leq n \leq \frac{N - 1}{2} \\
2 - \frac{2n}{N - 1} & \text{if } \frac{N - 1}{2} < n < N \\
\end{cases},
where :math:`N` is the full window size.
The input :attr:`window_length` is a positive integer controlling the
returned window size. :attr:`periodic` flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
``torch.bartlett_window(L, periodic=True)`` equal to
``torch.bartlett_window(L + 1, periodic=False)[:-1])``.
.. note::
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
""" + r"""
Arguments:
window_length (int): the size of returned window
periodic (bool, optional): If True, returns a window to be used as periodic
function. If False, return a symmetric window.
{dtype} Only floating point types are supported.
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
Returns:
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
""".format(**factory_common_args))
add_docstr(torch.blackman_window,
"""
blackman_window(window_length, periodic=True, dtype=None, \
layout=torch.strided, device=None, requires_grad=False) -> Tensor
""" + r"""
Blackman window function.
.. math::
w[n] = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{N - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{N - 1} \right)
where :math:`N` is the full window size.
The input :attr:`window_length` is a positive integer controlling the
returned window size. :attr:`periodic` flag determines whether the returned
window trims off the last duplicate value from the symmetric window and is
ready to be used as a periodic window with functions like
:meth:`torch.stft`. Therefore, if :attr:`periodic` is true, the :math:`N` in
above formula is in fact :math:`\text{window\_length} + 1`. Also, we always have
``torch.blackman_window(L, periodic=True)`` equal to
``torch.blackman_window(L + 1, periodic=False)[:-1])``.
.. note::
If :attr:`window_length` :math:`=1`, the returned window contains a single value 1.
""" + r"""
Arguments:
window_length (int): the size of returned window
periodic (bool, optional): If True, returns a window to be used as periodic
function. If False, return a symmetric window.
{dtype} Only floating point types are supported.
layout (:class:`torch.layout`, optional): the desired layout of returned window tensor. Only
``torch.strided`` (dense layout) is supported.
{device}
{requires_grad}
Returns:
Tensor: A 1-D tensor of size :math:`(\text{{window\_length}},)` containing the window
""".format(**factory_common_args))
add_docstr(torch.unbind,
r"""
unbind(tensor, dim=0) -> seq
Removes a tensor dimension.
Returns a tuple of all slices along a given dimension, already without it.
Arguments:
tensor (Tensor): the tensor to unbind
dim (int): dimension to remove
Example::
>>> torch.unbind(torch.tensor([[1, 2, 3],
>>> [4, 5, 6],
>>> [7, 8, 9]]))
(tensor([1, 2, 3]), tensor([4, 5, 6]), tensor([7, 8, 9]))
""")