blob: e86b856d7a350376e94e35d5e2c0f337629b5c66 [file] [log] [blame]
// Implements the math functions for GPU.
#include "caffe2/utils/math.h"
#include <cstring>
#include <limits>
#include <numeric>
#include <vector>
#include <cub/block/block_reduce.cuh>
#include <cub/cub.cuh>
#include <thrust/device_vector.h>
#include <thrust/functional.h>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/conversions.h"
#include "caffe2/utils/fixed_divisor.h"
#include "caffe2/utils/math_utils.h"
#if THRUST_VERSION >= 100800
#define THRUST_SUPPORTS_PER_THREAD
#endif // THRUST_VERSION >= 100800
namespace caffe2 {
namespace math {
namespace {
#define DELEGATE_SIMPLE_HOST_DEVICE_BINARY_FUNCTOR(Func, expr) \
template <typename T> \
struct Func##Functor { \
inline __host__ __device__ T \
operator()(const T& lhs, const T& rhs) const { \
return lhs expr rhs; \
} \
}; \
template <> \
struct Func##Functor<float16> { \
inline __host__ __device__ float16 \
operator()(const float16& lhs, const float16& rhs) const { \
return convert::To<float, float16>(convert::To<float16, float>( \
lhs) expr convert::To<float16, float>(rhs)); \
} \
};
DELEGATE_SIMPLE_HOST_DEVICE_BINARY_FUNCTOR(Add, +)
DELEGATE_SIMPLE_HOST_DEVICE_BINARY_FUNCTOR(Sub, -)
DELEGATE_SIMPLE_HOST_DEVICE_BINARY_FUNCTOR(Mul, *)
DELEGATE_SIMPLE_HOST_DEVICE_BINARY_FUNCTOR(Div, /)
#undef DELEGATE_SIMPLE_HOST_DEVICE_BINARY_FUNCTOR
template <typename T>
__global__ void SinCosCUDAKernel(const int N, const T* X, T* S, T* C) {
CUDA_1D_KERNEL_LOOP(i, N) {
#if __CUDA_ARCH__ >= 350
sincos(__ldg(X + i), S + i, C + i);
#else
sincos(X[i], S + i, C + i);
#endif
}
}
template <typename TIn, typename TOut, class BinaryOperator>
__global__ void SimpleBinaryOpCUDAKernel(
const int N,
const BinaryOperator op,
const TIn* A,
const TIn* B,
TOut* C) {
CUDA_1D_KERNEL_LOOP(i, N) {
C[i] = op(A[i], B[i]);
}
}
template <typename TIn, typename TOut, class BinaryOperator, bool broadcast_1st>
__global__ void RowwiseBinaryOpCUDAKenel(
const int size,
const FixedDivisor<int> cols,
const BinaryOperator op,
const TIn* A,
const TIn* B,
TOut* C) {
CUDA_1D_KERNEL_LOOP(C_index, size) {
const int j = cols.Mod(C_index);
const int A_index = broadcast_1st ? j : C_index;
const int B_index = broadcast_1st ? C_index : j;
C[C_index] = op(A[A_index], B[B_index]);
}
}
template <typename TIn, typename TOut, class BinaryOperator, bool broadcast_1st>
__global__ void ColwiseBinaryOpCUDAKenel(
const int size,
const FixedDivisor<int> cols,
const BinaryOperator op,
const TIn* A,
const TIn* B,
TOut* C) {
CUDA_1D_KERNEL_LOOP(C_index, size) {
const int i = cols.Div(C_index);
const int A_index = broadcast_1st ? i : C_index;
const int B_index = broadcast_1st ? C_index : i;
C[C_index] = op(A[A_index], B[B_index]);
}
}
template <typename TIn, typename TOut, class BinaryOperator, int D>
__global__ void BroadcastBinaryOpCUDAKernel(
const int size,
const SimpleArray<int, D> A_strides,
const SimpleArray<int, D> B_strides,
const SimpleArray<FixedDivisor<int>, D> C_dims,
const BinaryOperator op,
const TIn* A,
const TIn* B,
TOut* C) {
CUDA_1D_KERNEL_LOOP(C_index, size) {
int A_index = 0;
int B_index = 0;
int C_index_val = C_index;
#pragma unroll
for (int i = D - 1; i >= 0; --i) {
int d;
C_dims.data[i].DivMod(C_index_val, &C_index_val, &d);
A_index += d * A_strides.data[i];
B_index += d * B_strides.data[i];
}
C[C_index] = op(A[A_index], B[B_index]);
}
}
template <typename TIn, typename TOut, class BinaryOperator>
void BinaryOpWith2DBroadcasting(
const int rows,
const int cols,
const bool rowwise_broadcast,
const bool broadcast_1st,
const BinaryOperator& op,
const TIn* A,
const TIn* B,
TOut* C,
CUDAContext* context) {
if (rows == 0 || cols == 0) {
return;
}
const int size = rows * cols;
const FixedDivisor<int> cols_div(cols);
if (rowwise_broadcast) {
if (broadcast_1st) {
RowwiseBinaryOpCUDAKenel<TIn, TOut, BinaryOperator, true>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, cols_div, op, A, B, C);
} else {
RowwiseBinaryOpCUDAKenel<TIn, TOut, BinaryOperator, false>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, cols_div, op, A, B, C);
}
} else {
if (broadcast_1st) {
ColwiseBinaryOpCUDAKenel<TIn, TOut, BinaryOperator, true>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, cols_div, op, A, B, C);
} else {
ColwiseBinaryOpCUDAKenel<TIn, TOut, BinaryOperator, false>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, cols_div, op, A, B, C);
}
}
}
template <typename TIn, typename TOut, class BinaryOperator, int D>
void BroadcastBinaryOpImpl(
const int* A_dims,
const int* B_dims,
const int* C_dims,
const BinaryOperator& op,
const TIn* A,
const TIn* B,
TOut* C,
CUDAContext* context) {
SimpleArray<int, D> A_strides_array;
SimpleArray<int, D> B_strides_array;
SimpleArray<FixedDivisor<int>, D> C_dims_array;
int A_stride = 1;
int B_stride = 1;
for (int i = D - 1; i >= 0; --i) {
if (C_dims[i] == 0) {
return;
}
A_strides_array.data[i] = A_dims[i] == 1 ? 0 : A_stride;
B_strides_array.data[i] = B_dims[i] == 1 ? 0 : B_stride;
A_stride *= A_dims[i];
B_stride *= B_dims[i];
C_dims_array.data[i] = FixedDivisor<int>(C_dims[i]);
}
const int size =
std::accumulate(C_dims, C_dims + D, 1, std::multiplies<int>());
BroadcastBinaryOpCUDAKernel<TIn, TOut, BinaryOperator, D>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
size, A_strides_array, B_strides_array, C_dims_array, op, A, B, C);
}
template <typename TIn, typename TOut, class BinaryOperator>
void BroadcastBinaryOp(
const int A_ndim,
const int* A_dims,
const int B_ndim,
const int* B_dims,
const BinaryOperator& op,
const TIn* A,
const TIn* B,
TOut* C,
CUDAContext* context) {
const int ndim = std::max(A_ndim, B_ndim);
std::vector<int> A_dims_array(ndim);
std::vector<int> B_dims_array(ndim);
std::vector<int> C_dims_array(ndim);
utils::ComputeBroadcastBinaryOpDims(
A_ndim,
A_dims,
B_ndim,
B_dims,
A_dims_array.data(),
B_dims_array.data(),
C_dims_array.data());
if (A_dims_array == B_dims_array) {
const int size = std::accumulate(
C_dims_array.cbegin(), C_dims_array.cend(), 1, std::multiplies<int>());
SimpleBinaryOpCUDAKernel<TIn, TOut, BinaryOperator>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, op, A, B, C);
return;
}
int rows;
int cols;
bool broadcast_1st;
if (utils::IsRowwiseBroadcastBinaryOp(
ndim,
A_dims_array.data(),
B_dims_array.data(),
&rows,
&cols,
&broadcast_1st)) {
BinaryOpWith2DBroadcasting<TIn, TOut, BinaryOperator>(
rows, cols, true, broadcast_1st, op, A, B, C, context);
return;
}
if (utils::IsColwiseBroadcastBinaryOp(
ndim,
A_dims_array.data(),
B_dims_array.data(),
&rows,
&cols,
&broadcast_1st)) {
BinaryOpWith2DBroadcasting<TIn, TOut, BinaryOperator>(
rows, cols, false, broadcast_1st, op, A, B, C, context);
return;
}
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_3(
ndim,
BroadcastBinaryOpImpl,
TIn,
TOut,
BinaryOperator,
A_dims_array.data(),
B_dims_array.data(),
C_dims_array.data(),
op,
A,
B,
C,
context);
}
} // namespace
#define DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(T, Func, op) \
__global__ void Func##CUDAKernel(const int N, const T* X, T* Y) { \
CUDA_1D_KERNEL_LOOP(i, N) { \
Y[i] = op(X[i]); \
} \
} \
template <> \
void Func<T, CUDAContext>( \
const int N, const T* x, T* y, CUDAContext* context) { \
Func##CUDAKernel<<< \
CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, x, y); \
}
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Exp, expf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Log, logf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Cos, cosf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Acos, acosf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sin, sinf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Asin, asinf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Tan, tanf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Atan, atanf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sinh, sinhf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Cosh, coshf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Tanh, tanhf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Abs, fabsf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sqr, utils::Square<float>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sqrt, sqrtf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Rsqrt, rsqrtf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Cbrt, cbrtf)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Cube, utils::Cube<float>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Cube, utils::Cube<double>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(
std::int32_t,
Cube,
utils::Cube<std::int32_t>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(
std::int64_t,
Cube,
utils::Cube<std::int64_t>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(bool, Not, utils::Not)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Neg, utils::Negate<float>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Neg, utils::Negate<double>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(
std::int32_t,
Neg,
utils::Negate<std::int32_t>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(
std::int64_t,
Neg,
utils::Negate<std::int64_t>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Sign, utils::Sign<float>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Sign, utils::Sign<double>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(
std::int32_t,
Sign,
utils::Sign<std::int32_t>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(
std::int64_t,
Sign,
utils::Sign<std::int64_t>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(float, Inv, utils::Inv<float>)
DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION(double, Inv, utils::Inv<double>)
#undef DELEGATE_SIMPLE_CUDA_UNARY_FUNCTION
#define CAFFE2_SPECIALIZED_CUDA_SINCOS(T) \
template <> \
void SinCos<T, CUDAContext>( \
const int N, const T* x, T* ys, T* yc, CUDAContext* context) { \
SinCosCUDAKernel<<< \
CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, x, ys, yc); \
}
CAFFE2_SPECIALIZED_CUDA_SINCOS(float)
CAFFE2_SPECIALIZED_CUDA_SINCOS(double)
#undef CAFFE2_SPECIALIZED_CUDA_SINCOS
#define DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(TIn, TOut, Func, Op) \
template <> \
void Func<TIn, CUDAContext>( \
const int N, \
const TIn* A, \
const TIn* B, \
TOut* C, \
CUDAContext* context) { \
SimpleBinaryOpCUDAKernel<TIn, TOut, Op<TIn>> \
<<<CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, Op<TIn>(), A, B, C); \
}
#define DEFINE_SIMPLE_CUDA_COMPARE_FUNCTION(Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(std::int32_t, bool, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(std::int64_t, bool, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, bool, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, bool, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(bool, bool, Func, Op)
DEFINE_SIMPLE_CUDA_COMPARE_FUNCTION(EQ, thrust::equal_to)
DEFINE_SIMPLE_CUDA_COMPARE_FUNCTION(NE, thrust::not_equal_to)
DEFINE_SIMPLE_CUDA_COMPARE_FUNCTION(LT, thrust::less)
DEFINE_SIMPLE_CUDA_COMPARE_FUNCTION(LE, thrust::less_equal)
DEFINE_SIMPLE_CUDA_COMPARE_FUNCTION(GT, thrust::greater)
DEFINE_SIMPLE_CUDA_COMPARE_FUNCTION(GE, thrust::greater_equal)
#undef DEFINE_SIMPLE_CUDA_COMPARE_FUNCTION
#define DEFINE_SIMPLE_CUDA_BINARY_FUNCTION(Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(std::int32_t, std::int32_t, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(std::int64_t, std::int64_t, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float, float, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(double, double, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(float16, float16, Func, Op)
DEFINE_SIMPLE_CUDA_BINARY_FUNCTION(Add, AddFunctor)
DEFINE_SIMPLE_CUDA_BINARY_FUNCTION(Sub, SubFunctor)
DEFINE_SIMPLE_CUDA_BINARY_FUNCTION(Mul, MulFunctor)
DEFINE_SIMPLE_CUDA_BINARY_FUNCTION(Div, DivFunctor)
#undef DEFINE_SIMPLE_CUDA_BINARY_FUNCTION
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(bool, bool, And, thrust::logical_and)
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(bool, bool, Or, thrust::logical_or)
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(bool, bool, Xor, thrust::bit_xor)
#define DEFINE_SIMPLE_CUDA_BITWISE_BINARY_FUNCTION(Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(bool, bool, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(std::int32_t, std::int32_t, Func, Op) \
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(std::int64_t, std::int64_t, Func, Op)
DEFINE_SIMPLE_CUDA_BITWISE_BINARY_FUNCTION(BitwiseAnd, thrust::bit_and)
DEFINE_SIMPLE_CUDA_BITWISE_BINARY_FUNCTION(BitwiseOr, thrust::bit_or)
DEFINE_SIMPLE_CUDA_BITWISE_BINARY_FUNCTION(BitwiseXor, thrust::bit_xor)
#undef DEFINE_SIMPLE_CUDA_BITWISE_BINARY_FUNCTION
DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION(
float,
float,
ElemwiseMax,
thrust::maximum);
#undef DELEGATE_SIMPLE_CUDA_BINARY_FUNCTION
#define DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(TIn, TOut, Func, Op) \
template <> \
void Rowwise##Func<TIn, CUDAContext, true>( \
const int rows, \
const int cols, \
const TIn* A, \
const TIn* B, \
TOut* C, \
CUDAContext* context) { \
if (rows == 0 || cols == 0) { \
return; \
} \
const int size = rows * cols; \
const FixedDivisor<int> cols_div(cols); \
RowwiseBinaryOpCUDAKenel<TIn, TOut, Op<TIn>, true> \
<<<CAFFE_GET_BLOCKS(size), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(size, cols_div, Op<TIn>(), A, B, C); \
} \
template <> \
void Rowwise##Func<TIn, CUDAContext, false>( \
const int rows, \
const int cols, \
const TIn* A, \
const TIn* B, \
TOut* C, \
CUDAContext* context) { \
if (rows == 0 || cols == 0) { \
return; \
} \
const int size = rows * cols; \
const FixedDivisor<int> cols_div(cols); \
RowwiseBinaryOpCUDAKenel<TIn, TOut, Op<TIn>, false> \
<<<CAFFE_GET_BLOCKS(size), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(size, cols_div, Op<TIn>(), A, B, C); \
} \
template <> \
void Colwise##Func<TIn, CUDAContext, true>( \
const int rows, \
const int cols, \
const TIn* A, \
const TIn* B, \
TOut* C, \
CUDAContext* context) { \
if (rows == 0 || cols == 0) { \
return; \
} \
const int size = rows * cols; \
const FixedDivisor<int> cols_div(cols); \
ColwiseBinaryOpCUDAKenel<TIn, TOut, Op<TIn>, true> \
<<<CAFFE_GET_BLOCKS(size), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(size, cols_div, Op<TIn>(), A, B, C); \
} \
template <> \
void Colwise##Func<TIn, CUDAContext, false>( \
const int rows, \
const int cols, \
const TIn* A, \
const TIn* B, \
TOut* C, \
CUDAContext* context) { \
if (rows == 0 || cols == 0) { \
return; \
} \
const int size = rows * cols; \
const FixedDivisor<int> cols_div(cols); \
ColwiseBinaryOpCUDAKenel<TIn, TOut, Op<TIn>, false> \
<<<CAFFE_GET_BLOCKS(size), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(size, cols_div, Op<TIn>(), A, B, C); \
}
#define DEFINE_2D_BROADCAST_CUDA_COMPARE_FUNCTION(Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(std::int32_t, bool, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(std::int64_t, bool, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(float, bool, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(double, bool, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, Func, Op)
DEFINE_2D_BROADCAST_CUDA_COMPARE_FUNCTION(EQ, thrust::equal_to)
DEFINE_2D_BROADCAST_CUDA_COMPARE_FUNCTION(NE, thrust::not_equal_to)
DEFINE_2D_BROADCAST_CUDA_COMPARE_FUNCTION(LT, thrust::less)
DEFINE_2D_BROADCAST_CUDA_COMPARE_FUNCTION(LE, thrust::less_equal)
DEFINE_2D_BROADCAST_CUDA_COMPARE_FUNCTION(GT, thrust::greater)
DEFINE_2D_BROADCAST_CUDA_COMPARE_FUNCTION(GE, thrust::greater_equal)
#undef DEFINE_2D_BROADCAST_CUDA_COMPARE_FUNCTION
#define DEFINE_2D_BROADCAST_CUDA_BINARY_FUNCTION(Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION( \
std::int32_t, std::int32_t, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION( \
std::int64_t, std::int64_t, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(float, float, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(double, double, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(float16, float16, Func, Op)
DEFINE_2D_BROADCAST_CUDA_BINARY_FUNCTION(Add, AddFunctor)
DEFINE_2D_BROADCAST_CUDA_BINARY_FUNCTION(Sub, SubFunctor)
DEFINE_2D_BROADCAST_CUDA_BINARY_FUNCTION(Mul, MulFunctor)
DEFINE_2D_BROADCAST_CUDA_BINARY_FUNCTION(Div, DivFunctor)
#undef DEFINE_2D_BROADCAST_CUDA_BINARY_FUNCTION
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, And, thrust::logical_and)
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, Or, thrust::logical_or)
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, Xor, thrust::bit_xor)
#define DEFINE_2D_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION(Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION( \
std::int32_t, std::int32_t, Func, Op) \
DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION( \
std::int64_t, std::int64_t, Func, Op)
DEFINE_2D_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION(BitwiseAnd, thrust::bit_and)
DEFINE_2D_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION(BitwiseOr, thrust::bit_or)
DEFINE_2D_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION(BitwiseXor, thrust::bit_xor)
#undef DEFINE_2D_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION
#undef DELEGATE_2D_BROADCAST_CUDA_BINARY_FUNCTION
#define DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(TIn, TOut, Func, Op) \
template <> \
void Func<TIn, CUDAContext>( \
const int A_ndim, \
const int* A_dims, \
const int B_ndim, \
const int* B_dims, \
const TIn* A, \
const TIn* B, \
TOut* C, \
CUDAContext* context) { \
BroadcastBinaryOp<TIn, TOut, Op<TIn>>( \
A_ndim, A_dims, B_ndim, B_dims, Op<TIn>(), A, B, C, context); \
}
#define DEFINE_BROADCAST_CUDA_COMPARE_FUNCTION(Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(std::int32_t, bool, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(std::int64_t, bool, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(float, bool, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(double, bool, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, Func, Op)
DEFINE_BROADCAST_CUDA_COMPARE_FUNCTION(EQ, thrust::equal_to)
DEFINE_BROADCAST_CUDA_COMPARE_FUNCTION(NE, thrust::not_equal_to)
DEFINE_BROADCAST_CUDA_COMPARE_FUNCTION(LT, thrust::less)
DEFINE_BROADCAST_CUDA_COMPARE_FUNCTION(LE, thrust::less_equal)
DEFINE_BROADCAST_CUDA_COMPARE_FUNCTION(GT, thrust::greater)
DEFINE_BROADCAST_CUDA_COMPARE_FUNCTION(GE, thrust::greater_equal)
#undef DEFINE_BROADCAST_CUDA_COMPARE_FUNCTION
#define DEFINE_BROADCAST_CUDA_BINARY_FUNCTION(Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION( \
std::int32_t, std::int32_t, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION( \
std::int64_t, std::int64_t, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(float, float, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(double, double, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(float16, float16, Func, Op)
DEFINE_BROADCAST_CUDA_BINARY_FUNCTION(Add, AddFunctor)
DEFINE_BROADCAST_CUDA_BINARY_FUNCTION(Sub, SubFunctor)
DEFINE_BROADCAST_CUDA_BINARY_FUNCTION(Mul, MulFunctor)
DEFINE_BROADCAST_CUDA_BINARY_FUNCTION(Div, DivFunctor)
#undef DEFINE_BROADCAST_CUDA_BINARY_FUNCTION
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, And, thrust::logical_and)
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, Or, thrust::logical_or)
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, Xor, thrust::bit_xor)
#define DEFINE_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION(Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(bool, bool, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION( \
std::int32_t, std::int32_t, Func, Op) \
DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION(std::int64_t, std::int64_t, Func, Op)
DEFINE_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION(BitwiseAnd, thrust::bit_and)
DEFINE_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION(BitwiseOr, thrust::bit_or)
DEFINE_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION(BitwiseXor, thrust::bit_xor)
#undef DEFINE_BROADCAST_CUDA_BITWISE_BINARY_FUNCTION
#undef DELEGATE_BROADCAST_CUDA_BINARY_FUNCTION
#define DELEGATE_REDUCTION_FUNCTION(T, Funcname, func) \
template <> \
void Funcname<T, CUDAContext>( \
const int N, \
const T* src, \
T* dst, \
Tensor* scratch_ptr, \
CUDAContext* context) { \
size_t memRequired = 0; \
cub::DeviceReduce::func( \
nullptr, memRequired, src, dst, N, context->cuda_stream()); \
auto buffer_size = \
static_cast<TIndex>((memRequired + sizeof(T) - 1) / sizeof(T)); \
scratch_ptr->Resize(std::vector<TIndex>{buffer_size}); \
cub::DeviceReduce::func( \
static_cast<void*>(scratch_ptr->mutable_data<T>()), \
memRequired, \
src, \
dst, \
N, \
context->cuda_stream()); \
}
DELEGATE_REDUCTION_FUNCTION(float, ReduceMin, Min)
DELEGATE_REDUCTION_FUNCTION(float, ReduceMax, Max)
DELEGATE_REDUCTION_FUNCTION(int32_t, ReduceMax, Max)
DELEGATE_REDUCTION_FUNCTION(int64_t, ReduceMax, Max)
#undef DELEGATE_REDUCTION_FUNCTION
// Caffe2 gemm provides a simpler interface to the gemm functions, with the
// limitation that the data has to be contiguous in memory.
template <>
void Gemm<float, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const float alpha,
const float* A,
const float* B,
const float beta,
float* C,
CUDAContext* context,
TensorProto::DataType math_type) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
const int lda = (trans_A == CblasNoTrans) ? K : M;
const int ldb = (trans_B == CblasNoTrans) ? N : K;
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const cublasOperation_t cu_trans_B =
(trans_B == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasSgemm(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha,
B,
ldb,
A,
lda,
&beta,
C,
N));
}
template <>
void Gemm<float16, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const float alpha,
const float16* A,
const float16* B,
const float beta,
float16* C,
CUDAContext* context,
TensorProto::DataType math_type) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
const int lda = (trans_A == CblasNoTrans) ? K : M;
const int ldb = (trans_B == CblasNoTrans) ? N : K;
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const cublasOperation_t cu_trans_B =
(trans_B == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
if (math_type == TensorProto_DataType_FLOAT) {
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasSgemmEx(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha,
B,
CUDA_R_16F,
ldb,
A,
CUDA_R_16F,
lda,
&beta,
C,
CUDA_R_16F,
N));
} else if (math_type == TensorProto_DataType_FLOAT16) {
// convert alpha, beta from float -> __half
const __half alpha_fp16 = convert::floatToHalf(alpha);
const __half beta_fp16 = convert::floatToHalf(beta);
// call cublasHgemm
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasHgemm(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha_fp16,
(const __half*)B,
ldb,
(const __half*)A,
lda,
&beta_fp16,
(__half*)C,
N));
} else {
// fail
CAFFE_THROW("Unsupported math type");
}
}
template <>
void BiasCHW<float, CUDAContext>(
const float* bias,
const float* bias_multiplier,
const int bias_channels,
const int image_size,
float* image,
CUDAContext* context) {
Gemm<float, CUDAContext>(
CblasNoTrans,
CblasNoTrans,
bias_channels,
image_size,
1,
1,
bias,
bias_multiplier,
1,
image,
context);
}
template <>
void GemmBatched<float, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const float** A,
const float** B,
const float beta,
float** C,
CUDAContext* context,
TensorProto::DataType math_type) {
#if __CUDACC_VER_MAJOR__ < 8
// loop over matrices in the batch
for (int i = 0; i < batch_size; ++i) {
Gemm<float, CUDAContext>(
trans_A,
trans_B,
M,
N,
K,
alpha,
A[i],
B[i],
beta,
C[i],
context,
math_type);
}
#else
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
const int lda = (trans_A == CblasNoTrans) ? K : M;
const int ldb = (trans_B == CblasNoTrans) ? N : K;
const int ldc = N;
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const cublasOperation_t cu_trans_B =
(trans_B == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
thrust::device_vector<const float*> A_device(A, A + batch_size);
thrust::device_vector<const float*> B_device(B, B + batch_size);
thrust::device_vector<float*> C_device(C, C + batch_size);
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasSgemmBatched(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha,
B_device.data().get(),
ldb,
A_device.data().get(),
lda,
&beta,
C_device.data().get(),
ldc,
batch_size));
#endif
}
template <>
void GemmStridedBatched<float, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const float* A,
const int A_stride,
const float* B,
const int B_stride,
const float beta,
float* C,
const int C_stride,
CUDAContext* context,
TensorProto::DataType math_type) {
#if __CUDACC_VER_MAJOR__ < 8
// loop over matrices in the batch
for (int i = 0; i < batch_size; ++i) {
Gemm<float, CUDAContext>(
trans_A, trans_B, M, N, K, alpha, A, B, beta, C, context, math_type);
A += A_stride;
B += B_stride;
C += C_stride;
}
#else
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
const int lda = (trans_A == CblasNoTrans) ? K : M;
const int ldb = (trans_B == CblasNoTrans) ? N : K;
const int ldc = N;
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const cublasOperation_t cu_trans_B =
(trans_B == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasSgemmStridedBatched(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha,
B,
ldb,
B_stride,
A,
lda,
A_stride,
&beta,
C,
ldc,
C_stride,
batch_size));
#endif
}
template <>
void GemmBatched<float16, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const float16** A,
const float16** B,
const float beta,
float16** C,
CUDAContext* context,
TensorProto::DataType math_type) {
#if __CUDACC_VER_MAJOR__ < 9
// loop over matrices in the batch
for (int i = 0; i < batch_size; ++i) {
Gemm<float16, CUDAContext>(
trans_A,
trans_B,
M,
N,
K,
alpha,
A[i],
B[i],
beta,
C[i],
context,
math_type);
}
#else
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
const int lda = (trans_A == CblasNoTrans) ? K : M;
const int ldb = (trans_B == CblasNoTrans) ? N : K;
const int ldc = N;
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const cublasOperation_t cu_trans_B =
(trans_B == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
if (math_type == TensorProto_DataType_FLOAT) {
#if CUDA_VERSION < 9010
// loop over matrices in the batch
for (int i = 0; i < batch_size; ++i) {
Gemm<float16, CUDAContext>(
trans_A,
trans_B,
M,
N,
K,
alpha,
A[i],
B[i],
beta,
C[i],
context,
math_type);
}
#else
thrust::device_vector<const void*> A_device(A, A + batch_size);
thrust::device_vector<const void*> B_device(B, B + batch_size);
thrust::device_vector<void*> C_device(C, C + batch_size);
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasGemmBatchedEx(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha,
B_device.data().get(),
CUDA_R_16F,
ldb,
A_device.data().get(),
CUDA_R_16F,
lda,
&beta,
C_device.data().get(),
CUDA_R_16F,
ldc,
batch_size,
CUDA_R_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
#endif
} else if (math_type == TensorProto_DataType_FLOAT16) {
// Convert alpha, beta from float -> __half
const __half alpha_fp16 = convert::floatToHalf(alpha);
const __half beta_fp16 = convert::floatToHalf(beta);
std::vector<const __half*> A_array(batch_size);
std::vector<const __half*> B_array(batch_size);
std::vector<__half*> C_array(batch_size);
for (int i = 0; i < batch_size; ++i) {
A_array[i] = reinterpret_cast<const __half*>(A[i]);
B_array[i] = reinterpret_cast<const __half*>(B[i]);
C_array[i] = reinterpret_cast<__half*>(C[i]);
}
thrust::device_vector<const __half*> A_device(
A_array.cbegin(), A_array.cend());
thrust::device_vector<const __half*> B_device(
B_array.cbegin(), B_array.cend());
thrust::device_vector<__half*> C_device(C_array.cbegin(), C_array.cend());
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasHgemmBatched(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha_fp16,
B_device.data().get(),
ldb,
A_device.data().get(),
lda,
&beta_fp16,
C_device.data().get(),
ldc,
batch_size));
} else {
CAFFE_THROW("Unsupported math type");
}
#endif
}
template <>
void GemmStridedBatched<float16, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const float16* A,
const int A_stride,
const float16* B,
const int B_stride,
const float beta,
float16* C,
const int C_stride,
CUDAContext* context,
TensorProto::DataType math_type) {
#if __CUDACC_VER_MAJOR__ < 8
// loop over matrices in the batch
for (int i = 0; i < batch_size; ++i) {
Gemm<float16, CUDAContext>(
trans_A, trans_B, M, N, K, alpha, A, B, beta, C, context, math_type);
A += A_stride;
B += B_stride;
C += C_stride;
}
#else
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
const int lda = (trans_A == CblasNoTrans) ? K : M;
const int ldb = (trans_B == CblasNoTrans) ? N : K;
const int ldc = N;
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const cublasOperation_t cu_trans_B =
(trans_B == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
if (math_type == TensorProto_DataType_FLOAT) {
#if CUDA_VERSION < 9010
// loop over matrices in the batch
for (int i = 0; i < batch_size; ++i) {
Gemm<float16, CUDAContext>(
trans_A, trans_B, M, N, K, alpha, A, B, beta, C, context, math_type);
A += A_stride;
B += B_stride;
C += C_stride;
}
#else
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasGemmStridedBatchedEx(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha,
B,
CUDA_R_16F,
ldb,
B_stride,
A,
CUDA_R_16F,
lda,
A_stride,
&beta,
C,
CUDA_R_16F,
ldc,
C_stride,
batch_size,
CUDA_R_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
#endif
} else if (math_type == TensorProto_DataType_FLOAT16) {
// Convert alpha, beta from float -> __half
const __half alpha_fp16 = convert::floatToHalf(alpha);
const __half beta_fp16 = convert::floatToHalf(beta);
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasHgemmStridedBatched(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha_fp16,
(const __half*)B,
ldb,
B_stride,
(const __half*)A,
lda,
A_stride,
&beta_fp16,
(__half*)C,
ldc,
C_stride,
batch_size));
} else {
CAFFE_THROW("Unsupported math type");
}
#endif
}
#if CUDA_VERSION >= 9000
// No change, but required. Defer to default CUDA engine
template <>
void Gemm<float, CUDAContext, TensorCoreEngine>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const float alpha,
const float* A,
const float* B,
const float beta,
float* C,
CUDAContext* context,
TensorProto::DataType math_type) {
return Gemm<float, CUDAContext>(
trans_A, trans_B, M, N, K, alpha, A, B, beta, C, context, math_type);
}
template <>
void Gemm<float16, CUDAContext, TensorCoreEngine>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const float alpha,
const float16* A,
const float16* B,
const float beta,
float16* C,
CUDAContext* context,
TensorProto::DataType math_type) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
const int lda = (trans_A == CblasNoTrans) ? K : M;
const int ldb = (trans_B == CblasNoTrans) ? N : K;
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const cublasOperation_t cu_trans_B =
(trans_B == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
// enable TensorCore for this call on this handle
if (TensorCoreAvailable()) {
CUBLAS_ENFORCE(
cublasSetMathMode(context->cublas_handle(), CUBLAS_TENSOR_OP_MATH));
}
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasGemmEx(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha,
B,
CUDA_R_16F,
ldb,
A,
CUDA_R_16F,
lda,
&beta,
C,
CUDA_R_16F,
N,
CUDA_R_32F,
CUBLAS_GEMM_DFALT_TENSOR_OP));
// Now disable TensorCore math for subsequent calls to this handle
if (TensorCoreAvailable()) {
CUBLAS_ENFORCE(
cublasSetMathMode(context->cublas_handle(), CUBLAS_DEFAULT_MATH));
}
}
template <>
void GemmStridedBatched<float, CUDAContext, TensorCoreEngine>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const float* A,
const int A_stride,
const float* B,
const int B_stride,
const float beta,
float* C,
const int C_stride,
CUDAContext* context,
TensorProto::DataType math_type) {
return GemmStridedBatched<float, CUDAContext, DefaultEngine>(
trans_A,
trans_B,
batch_size,
M,
N,
K,
alpha,
A,
A_stride,
B,
B_stride,
beta,
C,
C_stride,
context,
math_type);
}
template <>
void GemmStridedBatched<float16, CUDAContext, TensorCoreEngine>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int batch_size,
const int M,
const int N,
const int K,
const float alpha,
const float16* A,
const int A_stride,
const float16* B,
const int B_stride,
const float beta,
float16* C,
const int C_stride,
CUDAContext* context,
TensorProto::DataType math_type) {
return GemmStridedBatched<float16, CUDAContext, DefaultEngine>(
trans_A,
trans_B,
batch_size,
M,
N,
K,
alpha,
A,
A_stride,
B,
B_stride,
beta,
C,
C_stride,
context,
math_type);
}
#endif // CUDA_VERSION >= 9000
template <>
void GemmEx<float, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const CBLAS_TRANSPOSE trans_B,
const int M,
const int N,
const int K,
const float alpha,
const float* A,
const int lda,
const float* B,
const int ldb,
const float beta,
float* C,
const int ldc,
CUDAContext* context) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
const cublasOperation_t cu_trans_B =
(trans_B == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasSgemm(
context->cublas_handle(),
cu_trans_B,
cu_trans_A,
N,
M,
K,
&alpha,
B,
ldb,
A,
lda,
&beta,
C,
ldc));
}
template <>
void Gemv<float, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const int M,
const int N,
const float alpha,
const float* A,
const float* x,
const float beta,
float* y,
CUDAContext* context,
TensorProto::DataType math_type) {
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_T : CUBLAS_OP_N;
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasSgemv(
context->cublas_handle(),
cu_trans_A,
N,
M,
&alpha,
A,
N,
x,
1,
&beta,
y,
1));
}
// Batched Add variants
namespace {
template <typename T>
__global__ void AddStripedBatchKernel(
const int N,
const T* first,
T* Y,
const int stripe,
const int batch) {
for (int j = 0; j < batch; j++) {
const T* x = first + j * stripe;
CUDA_1D_KERNEL_LOOP(i, N) {
float tmpY = convert::To<T, float>(Y[i]);
tmpY += convert::To<T, float>(x[i]);
Y[i] = convert::To<float, T>(tmpY);
}
}
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(T) \
template <> \
void AddStripedBatch<T, CUDAContext>( \
const int N, \
const T* first, \
T* Y, \
const int stripe, \
const int batch, \
CUDAContext* context) { \
AddStripedBatchKernel<T> \
<<<CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, first, Y, stripe, batch); \
}
CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(float);
CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH(float16);
#undef CAFFE2_SPECIALIZED_CUDA_ADD_STRIPED_BATCH
template <>
void Gemv<float16, CUDAContext>(
const CBLAS_TRANSPOSE trans_A,
const int M,
const int N,
const float alpha,
const float16* A,
const float16* x,
const float beta,
float16* y,
CUDAContext* context,
TensorProto::DataType math_type) {
const cublasOperation_t cu_trans_A =
(trans_A == CblasNoTrans) ? CUBLAS_OP_T : CUBLAS_OP_N;
// sort out what we need to call cublasSgemmEx / cublasHgemm
const int m = (cu_trans_A == CUBLAS_OP_N) ? N : M;
const int k = (cu_trans_A == CUBLAS_OP_N) ? M : N;
const int lda = (cu_trans_A == CUBLAS_OP_N) ? m : k;
const int ldc = m;
if (math_type == TensorProto_DataType_FLOAT) {
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasSgemmEx(
context->cublas_handle(),
cu_trans_A,
CUBLAS_OP_N,
m,
1,
k,
&alpha,
A,
CUDA_R_16F,
lda,
x,
CUDA_R_16F,
k,
&beta,
y,
CUDA_R_16F,
ldc));
} else if (math_type == TensorProto_DataType_FLOAT16) {
const __half alpha_fp16 = convert::floatToHalf(alpha);
const __half beta_fp16 = convert::floatToHalf(beta);
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasHgemm(
context->cublas_handle(),
cu_trans_A,
CUBLAS_OP_N,
m,
1,
k,
&alpha_fp16,
(const __half*)A,
lda,
(const __half*)x,
k,
&beta_fp16,
(__half*)y,
ldc));
} else {
// fail
CAFFE_THROW("Unsupported math type");
}
}
namespace {
template <typename T>
__global__ void SetKernel(const int N, const T alpha, T* Y) {
CUDA_1D_KERNEL_LOOP(i, N) {
Y[i] = alpha;
}
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_SET(T) \
template <> \
void Set<T, CUDAContext>( \
const size_t N, const T alpha, T* Y, CUDAContext* context) { \
if (N == 0) { \
return; \
} \
if (alpha == T(0)) { \
cudaMemsetAsync(Y, 0, sizeof(T) * N, context->cuda_stream()); \
} else { \
SetKernel<T> \
<<<CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, alpha, Y); \
} \
}
CAFFE2_SPECIALIZED_CUDA_SET(float);
CAFFE2_SPECIALIZED_CUDA_SET(double);
CAFFE2_SPECIALIZED_CUDA_SET(bool);
CAFFE2_SPECIALIZED_CUDA_SET(int8_t);
CAFFE2_SPECIALIZED_CUDA_SET(int16_t);
CAFFE2_SPECIALIZED_CUDA_SET(int);
CAFFE2_SPECIALIZED_CUDA_SET(int64_t);
CAFFE2_SPECIALIZED_CUDA_SET(char);
CAFFE2_SPECIALIZED_CUDA_SET(uint8_t);
CAFFE2_SPECIALIZED_CUDA_SET(uint16_t);
#undef CAFFE2_SPECIALIZED_CUDA_SET
template <>
void Set<float16, CUDAContext>(
const size_t N,
const float16 alpha,
float16* Y,
CUDAContext* context) {
if (N > 0) {
SetKernel<float16>
<<<CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, alpha, Y);
}
}
namespace {
template <typename T>
__global__ void
UniformShift(const size_t N, const float min, const float max, T* x) {
float scale = max - min;
CUDA_1D_KERNEL_LOOP(i, N) {
x[i] = convert::To<float, T>(convert::To<T, float>(x[i]) * scale + min);
}
}
__global__ void
UniformIntFit(const size_t N, const int min, const int max, unsigned int* x) {
int* x_int = reinterpret_cast<int*>(x);
int range = (max - min + 1);
CUDA_1D_KERNEL_LOOP(i, N) {
x_int[i] = min + static_cast<int>(x[i] % range);
}
}
} // namespace
template <>
void RandUniform<float, CUDAContext>(
const size_t n,
const float min,
const float max,
float* r,
CUDAContext* context) {
CURAND_ENFORCE(curandGenerateUniform(context->curand_generator(), r, n));
UniformShift<float>
<<<CAFFE_GET_BLOCKS(n),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(n, min, max, r);
}
template <>
void RandUniform<double, CUDAContext>(
const size_t n,
const double min,
const double max,
double* r,
CUDAContext* context) {
CURAND_ENFORCE(
curandGenerateUniformDouble(context->curand_generator(), r, n));
UniformShift<double>
<<<CAFFE_GET_BLOCKS(n),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(n, min, max, r);
}
template <>
void RandUniform<int, CUDAContext>(
const size_t n,
const int min,
const int max,
int* r,
CUDAContext* context) {
CURAND_ENFORCE(curandGenerate(
context->curand_generator(), reinterpret_cast<unsigned int*>(r), n));
UniformIntFit<<<
CAFFE_GET_BLOCKS(n),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
n, min, max, reinterpret_cast<unsigned int*>(r));
}
template <typename T>
size_t HandleOddLengthRandGaussian(
const size_t n,
const T mean,
const T std,
T* r,
CUDAContext* context) {
if (n % 2 == 1) {
std::default_random_engine generator;
std::normal_distribution<T> distribution(mean, std);
const T random_value = distribution(generator);
Set<T, CUDAContext>(1, random_value, r + (n - 1), context);
return n - 1;
}
return n;
}
template <>
void RandGaussian<float, CUDAContext>(
const size_t n,
const float mean,
const float std,
float* r,
CUDAContext* context) {
// If n is odd, we add a random Gaussian value at the end manually
// and generate n-1 random values using curandGenerateNormal.
// curandGenerateNormal requires n to be even.
const size_t even_n =
HandleOddLengthRandGaussian<float>(n, mean, std, r, context);
CURAND_ENFORCE(
curandGenerateNormal(context->curand_generator(), r, even_n, mean, std));
}
template <>
void RandGaussian<double, CUDAContext>(
const size_t n,
const double mean,
const double std,
double* r,
CUDAContext* context) {
const size_t even_n =
HandleOddLengthRandGaussian<double>(n, mean, std, r, context);
CURAND_ENFORCE(curandGenerateNormalDouble(
context->curand_generator(), r, even_n, mean, std));
}
template <>
void Dot<float, CUDAContext>(
const int n,
const float* a,
const float* b,
float* y,
CUDAContext* context) {
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_DEVICE));
CUBLAS_ENFORCE(cublasSdot(context->cublas_handle(), n, a, 1, b, 1, y));
}
template <>
void Dot<float16, CUDAContext>(
const int n,
const float16* a,
const float16* b,
float16* y,
CUDAContext* context) {
// execute with 32-bit math
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_DEVICE));
CUBLAS_ENFORCE(cublasDotEx(
context->cublas_handle(),
n,
a,
CUDA_R_16F,
1,
b,
CUDA_R_16F,
1,
y,
CUDA_R_16F,
CUDA_R_32F));
}
// A previous version of caffe2 used Thrust but it turns out that thrust
// reduction has an implicit scratch space allocation and deallocation, which
// may interfere with NCCL and create a deadlock. Hence we are using a custom
// reduction here.
#define SUM_KERNEL_NTHREADS 128
template <typename T>
__global__ void SumKernel(const int N, const T* X, T* Y, bool square) {
const int idx = threadIdx.x;
__shared__ float reduction_buffer[SUM_KERNEL_NTHREADS];
reduction_buffer[idx] = 0;
// A multilevel reduction.
// N -> 128
if (!square) {
for (int i = idx; i < N; i += SUM_KERNEL_NTHREADS) {
reduction_buffer[idx] += convert::To<T, float>(X[i]);
}
} else {
for (int i = idx; i < N; i += SUM_KERNEL_NTHREADS) {
float Xi = convert::To<T, float>(X[i]);
reduction_buffer[idx] += Xi * Xi;
}
}
__syncthreads();
// 128 -> 32
if (idx < 32) {
reduction_buffer[idx] += reduction_buffer[idx + 32] +
reduction_buffer[idx + 64] + reduction_buffer[idx + 96];
}
__syncthreads();
// 32 -> 1
if (idx == 0) {
float tmp = 0;
for (int i = 0; i < 32; ++i) {
tmp += reduction_buffer[i];
}
*Y = convert::To<float, T>(tmp);
}
}
// According to the benchmarks script
// caffe2/caffe2/experiments/python/device_reduce_sum_bench.py,
// device reduce is slower for N <= 10000.
#define DEVICE_REDUCE_SIZE_THRESHOLD 10000
namespace {
template <typename T>
__global__ void SumConvertKernel(float* sum, T* dest) {
*dest = convert::To<float, T>(*sum);
}
template <typename T, typename IterT>
void SumGenericIter(
const int N,
IterT it,
T*& dest,
CUDAContext* context,
Tensor* scratch_ptr) {
size_t memRequired = 0;
cub::DeviceReduce::Sum(
nullptr, memRequired, it, dest, N, context->cuda_stream());
auto buffer_size =
static_cast<TIndex>((memRequired + sizeof(T) - 1) / sizeof(T));
if (!dest) {
// allocate one more T at the end of scratch for dest
scratch_ptr->Resize(std::vector<TIndex>{buffer_size + 1});
dest = scratch_ptr->template mutable_data<T>() + buffer_size;
} else {
scratch_ptr->Resize(std::vector<TIndex>{buffer_size});
}
cub::DeviceReduce::Sum(
static_cast<void*>(scratch_ptr->template mutable_data<T>()),
memRequired,
it,
dest,
N,
context->cuda_stream());
}
} // namespace
template <>
void Sum<float, CUDAContext>(
const int N,
const float* x,
float* y,
CUDAContext* context,
Tensor* scratch_ptr) {
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) {
SumGenericIter<float>(N, x, y, context, scratch_ptr);
} else {
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>(
N, x, y, false);
}
}
template <>
void Sum<int32_t, CUDAContext>(
const int N,
const int32_t* x,
int32_t* y,
CUDAContext* context,
Tensor* scratch_ptr) {
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) {
SumGenericIter<int32_t>(N, x, y, context, scratch_ptr);
} else {
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>(
N, x, y, false);
}
}
namespace {
template <typename T>
struct FloatTransform {
inline __host__ __device__ float operator()(const T v) const {
return convert::To<T, float>(v);
}
};
} // namespace
#define CAFFE2_MATH_SUM_FUNC(T) \
template <> \
void Sum<T, CUDAContext>( \
const int N, \
const T* x, \
T* y, \
CUDAContext* context, \
Tensor* scratch_ptr) { \
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) { \
FloatTransform<T> transform; \
cub::TransformInputIterator<float, FloatTransform<T>, const T*> it( \
x, transform); \
float* sum = nullptr; \
SumGenericIter<float>(N, it, sum, context, scratch_ptr); \
SumConvertKernel<<<1, 1, 0, context->cuda_stream()>>>(sum, y); \
} else { \
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>( \
N, x, y, false); \
} \
}
CAFFE2_MATH_SUM_FUNC(float16)
#undef CAFFE2_MATH_SUM_FUNC
namespace {
template <typename T>
struct SqrTransform {
inline __host__ __device__ T operator()(const T v) const {
return v * v;
}
};
} // namespace
template <>
void SumSqr<float, CUDAContext>(
const int N,
const float* x,
float* y,
CUDAContext* context,
Tensor* scratch_ptr) {
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) {
SqrTransform<float> transform;
cub::TransformInputIterator<float, SqrTransform<float>, const float*> it(
x, transform);
SumGenericIter<float>(N, it, y, context, scratch_ptr);
} else {
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>(
N, x, y, true);
}
}
#define CAFFE2_MATH_SUMSQR_FUNC(T) \
template <> \
void SumSqr<T, CUDAContext>( \
const int N, \
const T* x, \
T* y, \
CUDAContext* context, \
Tensor* scratch_ptr) { \
if (scratch_ptr && N > DEVICE_REDUCE_SIZE_THRESHOLD) { \
FloatTransform<T> float_transform; \
cub::TransformInputIterator<float, FloatTransform<T>, const T*> \
float_it(x, float_transform); \
SqrTransform<float> sqr_transform; \
cub::TransformInputIterator< \
float, \
SqrTransform<float>, \
decltype(float_it)> \
it(float_it, sqr_transform); \
float* sum = nullptr; \
SumGenericIter<float>(N, it, sum, context, scratch_ptr); \
SumConvertKernel<<<1, 1, 0, context->cuda_stream()>>>(sum, y); \
} else { \
SumKernel<<<1, SUM_KERNEL_NTHREADS, 0, context->cuda_stream()>>>( \
N, x, y, true); \
} \
}
CAFFE2_MATH_SUMSQR_FUNC(float16)
#undef CAFFE2_MATH_SUMSQR_FUNC
#undef DEVICE_REDUCE_SIZE_THRESHOLD
namespace {
template <typename T>
__global__ void
SelectKernel(const int N, const int D, const T* x, const int* idx, T* y) {
CUDA_1D_KERNEL_LOOP(i, N) {
y[i] = x[i * D + idx[i]];
}
}
} // namespace
template <>
void Select<float, CUDAContext>(
const int N,
const int D,
const float* x,
const int* idx,
float* y,
CUDAContext* context) {
SelectKernel<float>
<<<CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, D, x, idx, y);
}
template <>
void Select<float16, CUDAContext>(
const int N,
const int D,
const float16* x,
const int* idx,
float16* y,
CUDAContext* context) {
SelectKernel<float16>
<<<CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, D, x, idx, y);
}
namespace {
template <typename TAlpha, typename TData>
__global__ void
ScaleCUDAKernel(const int n, const TAlpha alpha, const TData* x, TData* y) {
CUDA_1D_KERNEL_LOOP(i, n) {
#if __CUDA_ARCH__ >= 350
y[i] = __ldg(x + i) * static_cast<TData>(alpha);
#else
y[i] = x[i] * static_cast<TData>(alpha);
#endif
}
}
template <typename TAlpha, typename TData>
__global__ void
ScaleCUDAKernel(const int n, const TAlpha* alpha, const TData* x, TData* y) {
CUDA_1D_KERNEL_LOOP(i, n) {
#if __CUDA_ARCH__ >= 350
y[i] = __ldg(x + i) * static_cast<TData>(__ldg(alpha));
#else
y[i] = x[i] * static_cast<TData>(*alpha);
#endif
}
}
template <typename T>
__global__ void PowKernel(const int n, const T* x, const T exponent, T* y) {
CUDA_1D_KERNEL_LOOP(i, n) {
y[i] = powf(x[i], exponent);
}
}
} // namespace
template <>
void Powx<float, CUDAContext>(
const int N,
const float* a,
const float b,
float* y,
CUDAContext* context) {
PowKernel<<<
CAFFE_GET_BLOCKS(N),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, a, b, y);
}
#define DELEGATE_CUBLAS_SCALE_FUNCTION(TAlpha, TData, CuBLASFunc) \
template <> \
void Scale<TAlpha, TData, CUDAContext>( \
const int N, \
const TAlpha alpha, \
const TData* x, \
TData* y, \
CUDAContext* context) { \
if (N == 0) { \
return; \
} \
if (x != y) { \
cudaMemcpyAsync( \
y, \
x, \
sizeof(TData) * N, \
cudaMemcpyDeviceToDevice, \
context->cuda_stream()); \
} \
if (alpha != TAlpha(1)) { \
CUBLAS_ENFORCE(cublasSetPointerMode( \
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST)); \
CUBLAS_ENFORCE(CuBLASFunc(context->cublas_handle(), N, &alpha, y, 1)); \
} \
} \
template <> \
void Scale<TAlpha, TData, CUDAContext>( \
const int N, \
const TAlpha* alpha, \
const TData* x, \
TData* y, \
CUDAContext* context) { \
if (N == 0) { \
return; \
} \
if (x != y) { \
cudaMemcpyAsync( \
y, \
x, \
sizeof(TData) * N, \
cudaMemcpyDeviceToDevice, \
context->cuda_stream()); \
} \
CUBLAS_ENFORCE(cublasSetPointerMode( \
context->cublas_handle(), CUBLAS_POINTER_MODE_DEVICE)); \
CUBLAS_ENFORCE(CuBLASFunc(context->cublas_handle(), N, alpha, y, 1)); \
}
DELEGATE_CUBLAS_SCALE_FUNCTION(float, float, cublasSscal)
DELEGATE_CUBLAS_SCALE_FUNCTION(double, double, cublasDscal)
#undef DELEGATE_CUBLAS_SCALE_FUNCTION
#define CAFFE2_SPECIALIZED_CUDA_SCALE(TAlpha, TData) \
template <> \
void Scale<TAlpha, TData, CUDAContext>( \
const int N, \
const TAlpha alpha, \
const TData* x, \
TData* y, \
CUDAContext* context) { \
if (N == 0) { \
return; \
} \
if (alpha == TAlpha(1)) { \
if (x != y) { \
cudaMemcpyAsync( \
y, \
x, \
sizeof(TData) * N, \
cudaMemcpyDeviceToDevice, \
context->cuda_stream()); \
} \
return; \
} \
ScaleCUDAKernel<TAlpha, TData> \
<<<CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, alpha, x, y); \
} \
template <> \
void Scale<TAlpha, TData, CUDAContext>( \
const int N, \
const TAlpha* alpha, \
const TData* x, \
TData* y, \
CUDAContext* context) { \
if (N == 0) { \
return; \
} \
ScaleCUDAKernel<TAlpha, TData> \
<<<CAFFE_GET_BLOCKS(N), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>(N, alpha, x, y); \
}
CAFFE2_SPECIALIZED_CUDA_SCALE(std::int32_t, std::int32_t)
CAFFE2_SPECIALIZED_CUDA_SCALE(std::int64_t, std::int64_t)
#undef CAFFE2_SPECIALIZED_CUDA_SCALE
template <>
void Scale<float16, float16, CUDAContext>(
const int N,
const float16 alpha,
const float16* x,
float16* y,
CUDAContext* context) {
if (N == 0) {
return;
}
if (x != y) {
cudaMemcpyAsync(
y,
x,
sizeof(float16) * N,
cudaMemcpyDeviceToDevice,
context->cuda_stream());
}
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasScalEx(
context->cublas_handle(),
N,
&alpha,
CUDA_R_16F,
y,
CUDA_R_16F,
1,
CUDA_R_32F));
}
template <>
void Scale<float16, float16, CUDAContext>(
const int N,
const float16* alpha,
const float16* x,
float16* y,
CUDAContext* context) {
if (N == 0) {
return;
}
if (x != y) {
cudaMemcpyAsync(
y,
x,
sizeof(float16) * N,
cudaMemcpyDeviceToDevice,
context->cuda_stream());
}
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_DEVICE));
CUBLAS_ENFORCE(cublasScalEx(
context->cublas_handle(),
N,
alpha,
CUDA_R_16F,
y,
CUDA_R_16F,
1,
CUDA_R_32F));
}
template <>
void Scale<float, float16, CUDAContext>(
const int N,
const float alpha,
const float16* x,
float16* y,
CUDAContext* context) {
if (N == 0) {
return;
}
if (x != y) {
cudaMemcpyAsync(
y,
x,
sizeof(float16) * N,
cudaMemcpyDeviceToDevice,
context->cuda_stream());
}
if (alpha != 1.0f) {
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasScalEx(
context->cublas_handle(),
N,
&alpha,
CUDA_R_32F,
y,
CUDA_R_16F,
1,
CUDA_R_32F));
}
}
template <>
void Scale<float, float16, CUDAContext>(
const int N,
const float* alpha,
const float16* x,
float16* y,
CUDAContext* context) {
if (N == 0) {
return;
}
if (x != y) {
cudaMemcpyAsync(
y,
x,
sizeof(float16) * N,
cudaMemcpyDeviceToDevice,
context->cuda_stream());
}
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_DEVICE));
CUBLAS_ENFORCE(cublasScalEx(
context->cublas_handle(),
N,
alpha,
CUDA_R_32F,
y,
CUDA_R_16F,
1,
CUDA_R_32F));
}
template <>
void Axpy<float, CUDAContext>(
const int N,
const float alpha,
const float* X,
float* Y,
CUDAContext* context) {
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasSaxpy(context->cublas_handle(), N, &alpha, X, 1, Y, 1));
}
template <>
void Axpy<double, CUDAContext>(
const int N,
const float alpha,
const double* X,
double* Y,
CUDAContext* context) {
double alpha_d{alpha};
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(
cublasDaxpy(context->cublas_handle(), N, &alpha_d, X, 1, Y, 1));
}
template <>
void Axpy<float16, CUDAContext>(
const int N,
const float alpha,
const float16* X,
float16* Y,
CUDAContext* context) {
CUBLAS_ENFORCE(
cublasSetPointerMode(context->cublas_handle(), CUBLAS_POINTER_MODE_HOST));
CUBLAS_ENFORCE(cublasAxpyEx(
context->cublas_handle(),
N,
&alpha,
CUDA_R_32F,
X,
CUDA_R_16F,
1,
Y,
CUDA_R_16F,
1,
CUDA_R_32F));
}
template <>
void Axpy<float, CUDAContext>(
const int N,
const float* alpha,
const float* X,
float* Y,
CUDAContext* context) {
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_DEVICE));
CUBLAS_ENFORCE(cublasSaxpy(context->cublas_handle(), N, alpha, X, 1, Y, 1));
}
template <>
void Axpy<float16, CUDAContext>(
const int N,
const float* alpha,
const float16* X,
float16* Y,
CUDAContext* context) {
CUBLAS_ENFORCE(cublasSetPointerMode(
context->cublas_handle(), CUBLAS_POINTER_MODE_DEVICE));
CUBLAS_ENFORCE(cublasAxpyEx(
context->cublas_handle(),
N,
alpha,
CUDA_R_32F,
X,
CUDA_R_16F,
1,
Y,
CUDA_R_16F,
1,
CUDA_R_32F));
}
namespace {
template <typename T>
__global__ void
AxpbyKernel(const int n, const T a, const T* x, const T b, T* y) {
CUDA_1D_KERNEL_LOOP(index, n) {
y[index] = x[index] * a + y[index] * b;
}
}
} // namespace
template <>
void Axpby<float, CUDAContext>(
const int n,
const float a,
const float* x,
const float b,
float* y,
CUDAContext* context) {
AxpbyKernel<float>
<<<CAFFE_GET_BLOCKS(n),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(n, a, x, b, y);
}
namespace {
template <typename T>
__global__ void Im2ColNCHWCUDAKernel(
const int n,
const int input_h,
const int input_w,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int stride_h,
const int stride_w,
const int output_h,
const int output_w,
const T* img_data,
T* col_data) {
CUDA_1D_KERNEL_LOOP(index, n) {
const int w_out = index % output_w;
const int h_index = index / output_w;
const int h_out = h_index % output_h;
const int channel_in = h_index / output_h;
const int channel_out = channel_in * kernel_h * kernel_w;
const int h_in = h_out * stride_h - pad_t;
const int w_in = w_out * stride_w - pad_l;
const int output_size = output_h * output_w;
T* col_data_ptr =
col_data + (channel_out * output_h + h_out) * output_w + w_out;
const T* img_data_ptr =
img_data + (channel_in * input_h + h_in) * input_w + w_in;
int dh = 0;
for (int i = 0; i < kernel_h; ++i) {
int dw = 0;
for (int j = 0; j < kernel_w; ++j) {
const int h = h_in + dh;
const int w = w_in + dw;
#if __CUDA_ARCH__ >= 350
*col_data_ptr = utils::IsAGeZeroAndALtB(h, input_h) &&
utils::IsAGeZeroAndALtB(w, input_w)
? __ldg(img_data_ptr + dh * input_w + dw)
: 0;
#else
*col_data_ptr = utils::IsAGeZeroAndALtB(h, input_h) &&
utils::IsAGeZeroAndALtB(w, input_w)
? img_data_ptr[dh * input_w + dw]
: 0;
#endif
col_data_ptr += output_size;
dw += dilation_w;
}
dh += dilation_h;
}
}
}
template <typename T>
__global__ void Im2ColNHWCCUDAKernel(
const int n,
const int input_h,
const int input_w,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int stride_h,
const int stride_w,
const int output_w,
const int channels,
const T* img_data,
T* col_data) {
CUDA_1D_KERNEL_LOOP(index, n) {
const int channel_in = index % channels;
const int w_out = index / channels % output_w;
const int h_out = index / channels / output_w;
const int h_in = h_out * stride_h - pad_t;
const int w_in = w_out * stride_w - pad_l;
T* col_data_ptr = col_data +
(h_out * output_w + w_out) * channels * kernel_h * kernel_w +
channel_in;
int dh = 0;
for (int i = 0; i < kernel_h; ++i) {
int dw = 0;
for (int j = 0; j < kernel_w; ++j) {
const int h = h_in + dh;
const int w = w_in + dw;
#if __CUDA_ARCH__ >= 350
*col_data_ptr = utils::IsAGeZeroAndALtB(h, input_h) &&
utils::IsAGeZeroAndALtB(w, input_w)
? __ldg(img_data + (h * input_w + w) * channels + channel_in)
: 0;
#else
*col_data_ptr = utils::IsAGeZeroAndALtB(h, input_h) &&
utils::IsAGeZeroAndALtB(w, input_w)
? img_data[(h * input_w + w) * channels + channel_in]
: 0;
#endif
col_data_ptr += channels;
dw += dilation_w;
}
dh += dilation_h;
}
}
}
template <typename T>
__global__ void Col2ImNCHWCUDAKernel(
const int n,
const int input_h,
const int input_w,
const int patch_h,
const int patch_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int stride_h,
const int stride_w,
const int output_h,
const int output_w,
const T* col_data,
T* img_data) {
const int dpatch_h = dilation_h * (patch_h - 1) + 1;
const int dpatch_w = dilation_w * (patch_w - 1) + 1;
CUDA_1D_KERNEL_LOOP(index, n) {
T val = 0;
const int w = index % input_w + pad_l;
const int h = index / input_w % input_h + pad_t;
const int c = index / (input_h * input_w);
// compute the start and end of the output
const int w_col_start = (w < dpatch_w) ? 0 : (w - dpatch_w) / stride_w + 1;
const int w_col_end = min(w / stride_w + 1, output_w);
const int h_col_start = (h < dpatch_h) ? 0 : (h - dpatch_h) / stride_h + 1;
const int h_col_end = min(h / stride_h + 1, output_h);
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
int h_k = (h - h_col * stride_h);
int w_k = (w - w_col * stride_w);
if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
h_k /= dilation_h;
w_k /= dilation_w;
const int col_data_index =
(((c * patch_h + h_k) * patch_w + w_k) * output_h + h_col) *
output_w +
w_col;
#if __CUDA_ARCH__ >= 350
val += __ldg(col_data + col_data_index);
#else
val += col_data[col_data_index];
#endif
}
}
}
img_data[index] = val;
}
}
template <typename T>
__global__ void Col2ImNHWCCUDAKernel(
const int n,
const int input_w,
const int channels,
const int patch_h,
const int patch_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int stride_h,
const int stride_w,
const int output_h,
const int output_w,
const T* col_data,
T* img_data) {
const int dpatch_h = dilation_h * (patch_h - 1) + 1;
const int dpatch_w = dilation_w * (patch_w - 1) + 1;
CUDA_1D_KERNEL_LOOP(index, n) {
T val = 0;
const int c = index % channels;
const int w = index / channels % input_w + pad_l;
const int h = index / channels / input_w + pad_t;
// compute the start and end of the output
const int w_col_start = (w < dpatch_w) ? 0 : (w - dpatch_w) / stride_w + 1;
const int w_col_end = min(w / stride_w + 1, output_w);
const int h_col_start = (h < dpatch_h) ? 0 : (h - dpatch_h) / stride_h + 1;
const int h_col_end = min(h / stride_h + 1, output_h);
const int channels_col = patch_h * patch_w * channels;
for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
int h_k = h - h_col * stride_h;
int w_k = w - w_col * stride_w;
if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
h_k /= dilation_h;
w_k /= dilation_w;
const int c_col = (h_k * patch_w + w_k) * channels + c;
#if __CUDA_ARCH__ >= 350
val += __ldg(
col_data + (h_col * output_w + w_col) * channels_col + c_col);
#else
val += col_data[(h_col * output_w + w_col) * channels_col + c_col];
#endif
}
}
}
img_data[index] = val;
}
}
template <typename T, int N, bool kCol2Im>
__global__ void Im2ColNdNCHWCUDAKernel(
const int outer_size,
const int inner_size,
const int kernel_size,
SimpleArray<int, N + 1> img_shape,
SimpleArray<int, N + 1> col_shape,
SimpleArray<int, N> kernel_shape,
SimpleArray<int, N> stride,
SimpleArray<int, N> dilation,
SimpleArray<int, N> pad,
const T* X_data,
T* Y_data) {
int d_offset[N];
int d_iter[N];
for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
int offset_i = i;
#pragma unroll
for (int d_i = N - 1; d_i >= 0; --d_i) {
d_offset[d_i] = offset_i % kernel_shape.data[d_i];
offset_i /= kernel_shape.data[d_i];
}
for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
int offset_j = j;
#pragma unroll
for (int d_i = N - 1; d_i >= 0; --d_i) {
d_iter[d_i] = offset_j % col_shape.data[d_i + 1];
offset_j /= col_shape.data[d_i + 1];
}
const int col_index = i * inner_size + j;
int img_index = i / kernel_size;
bool is_padding = false;
#pragma unroll
for (int d_i = 0; d_i < N; ++d_i) {
const int d_img = d_iter[d_i] * stride.data[d_i] - pad.data[d_i] +
d_offset[d_i] * dilation.data[d_i];
is_padding |= !utils::IsAGeZeroAndALtB(d_img, img_shape.data[d_i + 1]);
img_index = img_index * img_shape.data[d_i + 1] + d_img;
}
#if __CUDA_ARCH__ >= 350
if (!kCol2Im) {
Y_data[col_index] = is_padding ? 0 : __ldg(X_data + img_index);
} else if (!is_padding) {
atomicAdd(Y_data + img_index, __ldg(X_data + col_index));
}
#else
if (!kCol2Im) {
Y_data[col_index] = is_padding ? 0 : X_data[img_index];
} else if (!is_padding) {
atomicAdd(Y_data + img_index, X_data[col_index]);
}
#endif
}
}
}
template <typename T, int N>
void Im2ColNdNCHWCUDAImpl(
const int img_size,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const float* img_data,
float* col_data,
CUDAContext* context) {
const int outer_size = col_shape[0];
const int inner_size = col_size / outer_size;
const int kernel_size = std::accumulate(
kernel_shape, kernel_shape + N, 1, std::multiplies<int>());
SimpleArray<int, N + 1> img_shape_array;
SimpleArray<int, N + 1> col_shape_array;
SimpleArray<int, N> kernel_shape_array;
SimpleArray<int, N> stride_array;
SimpleArray<int, N> dilation_array;
SimpleArray<int, N> pad_array;
std::memcpy(img_shape_array.data, img_shape, (N + 1) * sizeof(int));
std::memcpy(col_shape_array.data, col_shape, (N + 1) * sizeof(int));
std::memcpy(kernel_shape_array.data, kernel_shape, N * sizeof(int));
std::memcpy(stride_array.data, stride, N * sizeof(int));
std::memcpy(dilation_array.data, dilation, N * sizeof(int));
std::memcpy(pad_array.data, pad, N * sizeof(int));
Im2ColNdNCHWCUDAKernel<T, N, false>
<<<std::min(outer_size, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
outer_size,
inner_size,
kernel_size,
img_shape_array,
col_shape_array,
kernel_shape_array,
stride_array,
dilation_array,
pad_array,
img_data,
col_data);
}
template <typename T, int N>
void Col2ImNdNCHWCUDAImpl(
const int img_size,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const float* col_data,
float* img_data,
CUDAContext* context) {
const int outer_size = col_shape[0];
const int inner_size = col_size / outer_size;
const int kernel_size = std::accumulate(
kernel_shape, kernel_shape + N, 1, std::multiplies<int>());
SimpleArray<int, N + 1> img_shape_array;
SimpleArray<int, N + 1> col_shape_array;
SimpleArray<int, N> kernel_shape_array;
SimpleArray<int, N> stride_array;
SimpleArray<int, N> dilation_array;
SimpleArray<int, N> pad_array;
std::memcpy(img_shape_array.data, img_shape, (N + 1) * sizeof(int));
std::memcpy(col_shape_array.data, col_shape, (N + 1) * sizeof(int));
std::memcpy(kernel_shape_array.data, kernel_shape, N * sizeof(int));
std::memcpy(stride_array.data, stride, N * sizeof(int));
std::memcpy(dilation_array.data, dilation, N * sizeof(int));
std::memcpy(pad_array.data, pad, N * sizeof(int));
Set<T, CUDAContext>(img_size, 0, img_data, context);
Im2ColNdNCHWCUDAKernel<T, N, true>
<<<std::min(outer_size, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
outer_size,
inner_size,
kernel_size,
img_shape_array,
col_shape_array,
kernel_shape_array,
stride_array,
dilation_array,
pad_array,
col_data,
img_data);
}
} // namespace
template <>
void Im2Col<float, CUDAContext, StorageOrder::NCHW>(
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const float* img_data,
float* col_data,
CUDAContext* context,
const int /* groups */) {
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
const int output_h = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
const int output_w = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
const int num_kernels = channels * output_h * output_w;
Im2ColNCHWCUDAKernel<float>
<<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
num_kernels,
height,
width,
kernel_h,
kernel_w,
dilation_h,
dilation_w,
pad_t,
pad_l,
stride_h,
stride_w,
output_h,
output_w,
img_data,
col_data);
}
template <>
void Im2Col<float, CUDAContext, StorageOrder::NHWC>(
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const float* img_data,
float* col_data,
CUDAContext* context,
const int groups) {
CAFFE_ENFORCE_EQ(groups, 1, "groups must be 1 for GPU NHWC Im2Col");
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
const int output_h = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
const int output_w = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
const int num_kernels = output_h * output_w * channels;
Im2ColNHWCCUDAKernel<float>
<<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
num_kernels,
height,
width,
kernel_h,
kernel_w,
dilation_h,
dilation_w,
pad_t,
pad_l,
stride_h,
stride_w,
output_w,
channels,
img_data,
col_data);
}
template <>
void Col2Im<float, CUDAContext, StorageOrder::NCHW>(
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const float* col_data,
float* img_data,
CUDAContext* context,
const int /* groups */) {
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
const int output_h = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
const int output_w = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
const int num_kernels = channels * height * width;
Col2ImNCHWCUDAKernel<float>
<<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
num_kernels,
height,
width,
kernel_h,
kernel_w,
dilation_h,
dilation_w,
pad_t,
pad_l,
stride_h,
stride_w,
output_h,
output_w,
col_data,
img_data);
}
template <>
void Col2Im<float, CUDAContext, StorageOrder::NHWC>(
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int dilation_h,
const int dilation_w,
const int pad_t,
const int pad_l,
const int pad_b,
const int pad_r,
const int stride_h,
const int stride_w,
const float* col_data,
float* img_data,
CUDAContext* context,
const int groups) {
CAFFE_ENFORCE_EQ(groups, 1, "groups must be 1 for GPU NHWC Col2Im");
const int dkernel_h = dilation_h * (kernel_h - 1) + 1;
const int dkernel_w = dilation_w * (kernel_w - 1) + 1;
const int output_h = (height + pad_t + pad_b - dkernel_h) / stride_h + 1;
const int output_w = (width + pad_l + pad_r - dkernel_w) / stride_w + 1;
const int num_kernels = height * width * channels;
Col2ImNHWCCUDAKernel<float>
<<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
num_kernels,
width,
channels,
kernel_h,
kernel_w,
dilation_h,
dilation_w,
pad_t,
pad_l,
stride_h,
stride_w,
output_h,
output_w,
col_data,
img_data);
}
template <>
void Im2ColNd<float, CUDAContext, StorageOrder::NCHW>(
const int N,
const int img_size,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const float* img_data,
float* col_data,
CUDAContext* context) {
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1(
N,
Im2ColNdNCHWCUDAImpl,
float,
img_size,
col_size,
img_shape,
col_shape,
kernel_shape,
stride,
dilation,
pad,
img_data,
col_data,
context);
}
template <>
void Col2ImNd<float, CUDAContext, StorageOrder::NCHW>(
const int N,
const int img_size,
const int col_size,
const int* img_shape,
const int* col_shape,
const int* kernel_shape,
const int* stride,
const int* dilation,
const int* pad,
const float* col_data,
float* img_data,
CUDAContext* context) {
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1(
N,
Col2ImNdNCHWCUDAImpl,
float,
img_size,
col_size,
img_shape,
col_shape,
kernel_shape,
stride,
dilation,
pad,
col_data,
img_data,
context);
}
template <>
void CopyMatrix<CUDAContext>(
const size_t itemsize,
const int M,
const int N,
const void* A,
const int lda,
void* B,
const int ldb,
CUDAContext* context,
TypeMeta::TypedCopy copy) {
CAFFE_ENFORCE(!copy, "Copy constructor is not supported in CUDA context");
cudaMemcpy2DAsync(
B,
ldb * itemsize,
A,
lda * itemsize,
N * itemsize,
M,
cudaMemcpyDeviceToDevice,
context->cuda_stream());
}
#define CAFFE2_SPECIALIZED_CUDA_COPY_MATRIX(T) \
template <> \
void CopyMatrix<T, CUDAContext>( \
const int M, \
const int N, \
const T* A, \
const int lda, \
T* B, \
const int ldb, \
CUDAContext* context) { \
if (M == 0 || N == 0) { \
return; \
} \
cudaMemcpy2DAsync( \
B, \
sizeof(T) * ldb, \
A, \
sizeof(T) * lda, \
sizeof(T) * N, \
M, \
cudaMemcpyDeviceToDevice, \
context->cuda_stream()); \
}
CAFFE2_SPECIALIZED_CUDA_COPY_MATRIX(float)
CAFFE2_SPECIALIZED_CUDA_COPY_MATRIX(double)
CAFFE2_SPECIALIZED_CUDA_COPY_MATRIX(int)
CAFFE2_SPECIALIZED_CUDA_COPY_MATRIX(TIndex)
#undef CAFFE2_SPECIALIZED_CUDA_COPY_MATRIX
template <>
void CopyVector<float, CUDAContext>(
const int N,
const float* src,
float* dst,
CUDAContext* context) {
if (src != dst && N > 0) {
cudaMemcpyAsync(
dst,
src,
sizeof(float) * N,
cudaMemcpyDeviceToDevice,
context->cuda_stream());
}
}
namespace {
template <typename T>
using BlockReduce = cub::BlockReduce<T, CAFFE_CUDA_NUM_THREADS>;
template <typename T, class Reducer>
__global__ void RowwiseReduceKernel(
const int rows,
const int cols,
const Reducer reducer,
const T init,
const T alpha,
const T* X,
T* Y) {
__shared__ typename BlockReduce<T>::TempStorage temp_storage;
for (int i = blockIdx.x; i < rows; i += gridDim.x) {
T val = init;
for (int j = threadIdx.x; j < cols; j += blockDim.x) {
val = reducer(X[i * cols + j], val);
}
val = BlockReduce<T>(temp_storage).Reduce(val, reducer);
if (threadIdx.x == 0) {
Y[i] = val * alpha;
}
__syncthreads();
}
}
template <typename T, class Reducer>
__global__ void ColwiseReduceKernel(
const int rows,
const int cols,
const Reducer reducer,
const T init,
const T alpha,
const T* X,
T* Y) {
__shared__ typename BlockReduce<T>::TempStorage temp_storage;
for (int i = blockIdx.x; i < cols; i += gridDim.x) {
T val = init;
for (int j = threadIdx.x; j < rows; j += blockDim.x) {
val = reducer(X[j * cols + i], val);
}
val = BlockReduce<T>(temp_storage).Reduce(val, reducer);
if (threadIdx.x == 0) {
Y[i] = val * alpha;
}
__syncthreads();
}
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_ROWWISE_MAX(T) \
template <> \
void RowwiseMax<T, CUDAContext>( \
const int N, const int D, const T* x, T* y, CUDAContext* context) { \
RowwiseReduceKernel<<< \
std::min(N, CAFFE_MAXIMUM_NUM_BLOCKS), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>( \
N, D, cub::Max(), std::numeric_limits<T>::lowest(), T(1), x, y); \
}
CAFFE2_SPECIALIZED_CUDA_ROWWISE_MAX(float)
#undef CAFFE2_SPECIALIZED_CUDA_ROWWISE_MAX
#define CAFFE2_SPECIALIZED_CUDA_COLWISE_MAX(T) \
template <> \
void ColwiseMax<T, CUDAContext>( \
const int N, const int D, const T* x, T* y, CUDAContext* context) { \
ColwiseReduceKernel<<< \
std::min(D, CAFFE_MAXIMUM_NUM_BLOCKS), \
CAFFE_CUDA_NUM_THREADS, \
0, \
context->cuda_stream()>>>( \
N, D, cub::Max(), std::numeric_limits<T>::lowest(), T(1), x, y); \
}
CAFFE2_SPECIALIZED_CUDA_COLWISE_MAX(float)
#undef CAFFE2_SPECIALIZED_CUDA_COLWISE_MAX
namespace {
__global__ void
maximum_kernel(const int N, const float alpha, const float* x, float* y) {
CUDA_1D_KERNEL_LOOP(i, N) {
y[i] = fmaxf(x[i], alpha);
}
}
} // namespace
template <>
void Maximum(
const int N,
const float alpha,
const float* x,
float* y,
CUDAContext* context) {
maximum_kernel<<<
std::min(N, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(N, alpha, x, y);
}
namespace {
template <typename T, class Reducer, int D>
__global__ void ReduceTensorCUDAKernel(
const int outer_size,
const int inner_size,
SimpleArray<int, D> X_strides,
SimpleArray<FixedDivisor<int>, D> Y_dims,
const Reducer reducer,
const T init,
const T alpha,
const T* X,
T* Y) {
__shared__ typename BlockReduce<T>::TempStorage temp_storage;
for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
T val = init;
for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
int X_index = 0;
int Y_index = i * inner_size + j;
#pragma unroll
for (int d = D - 1; d >= 0; --d) {
int r;
Y_dims.data[d].DivMod(Y_index, &Y_index, &r);
X_index += r * X_strides.data[d];
}
#if __CUDA_ARCH__ >= 350
val = reducer(val, __ldg(X + X_index));
#else
val = reducer(val, X[X_index]);
#endif
}
val = BlockReduce<T>(temp_storage).Reduce(val, reducer);
if (threadIdx.x == 0) {
Y[i] = val * alpha;
}
__syncthreads();
}
}
template <typename T, class Reducer, int D>
void ReduceTensorCUDAImpl(
const int outer_size,
const int inner_size,
const int* dims,
const int* axes,
const Reducer& reducer,
const T init,
const T alpha,
const T* X,
T* Y,
CUDAContext* context) {
SimpleArray<int, D> X_strides;
SimpleArray<FixedDivisor<int>, D> Y_dims;
utils::ComputeTransposedStrides(D, dims, axes, X_strides.data);
for (int i = 0; i < D; ++i) {
Y_dims.data[i] = FixedDivisor<int>(dims[axes[i]]);
}
ReduceTensorCUDAKernel<T, Reducer, D>
<<<std::min(outer_size, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
outer_size,
inner_size,
X_strides,
Y_dims,
reducer,
init,
alpha,
X,
Y);
}
template <typename T, class Reducer>
void ReduceTensorCUDA(
const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const Reducer& reducer,
const T init,
const T alpha,
const T* X,
T* Y,
CUDAContext* context) {
CAFFE_ENFORCE_LE(num_axes, num_dims);
std::vector<int> Y_dims_vector(dims, dims + num_dims);
for (int i = 0; i < num_axes; ++i) {
Y_dims_vector[axes[i]] = 1;
}
const int* X_dims = dims;
const int* Y_dims = Y_dims_vector.data();
const int X_size =
std::accumulate(X_dims, X_dims + num_dims, 1, std::multiplies<int>());
const int Y_size =
std::accumulate(Y_dims, Y_dims + num_dims, 1, std::multiplies<int>());
if (X_size == 0) {
Set<T, CUDAContext>(Y_size, alpha * init, Y, context);
return;
}
if (alpha == T(0)) {
Set<T, CUDAContext>(Y_size, T(0), Y, context);
return;
}
if (std::equal(X_dims, X_dims + num_dims, Y_dims)) {
Scale<T, T, CUDAContext>(X_size, alpha, X, Y, context);
return;
}
int rows;
int cols;
if (utils::IsRowwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) {
RowwiseReduceKernel<T>
<<<std::min(rows, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(rows, cols, reducer, init, alpha, X, Y);
return;
}
if (utils::IsColwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) {
ColwiseReduceKernel<T>
<<<std::min(rows, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(rows, cols, reducer, init, alpha, X, Y);
return;
}
std::vector<int> transpose_axes(num_dims);
utils::ComputeTransposeAxesForReduceOp(
num_dims, num_axes, axes, transpose_axes.data());
const int outer_size = Y_size;
const int inner_size = X_size / Y_size;
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_2(
num_dims,
ReduceTensorCUDAImpl,
T,
Reducer,
outer_size,
inner_size,
dims,
transpose_axes.data(),
reducer,
init,
alpha,
X,
Y,
context);
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_REDUCE_MIN(T) \
template <> \
void ReduceMin<T, CUDAContext>( \
const int num_dims, \
const int* dims, \
const int num_axes, \
const int* axes, \
const T alpha, \
const T* X, \
T* Y, \
CUDAContext* context) { \
ReduceTensorCUDA( \
num_dims, \
dims, \
num_axes, \
axes, \
cub::Min(), \
std::numeric_limits<T>::max(), \
alpha, \
X, \
Y, \
context); \
}
CAFFE2_SPECIALIZED_CUDA_REDUCE_MIN(std::int32_t)
CAFFE2_SPECIALIZED_CUDA_REDUCE_MIN(std::int64_t)
CAFFE2_SPECIALIZED_CUDA_REDUCE_MIN(float)
CAFFE2_SPECIALIZED_CUDA_REDUCE_MIN(double)
#undef CAFFE2_SPECIALIZED_CUDA_REDUCE_MIN
#define CAFFE2_SPECIALIZED_CUDA_REDUCE_MAX(T) \
template <> \
void ReduceMax<T, CUDAContext>( \
const int num_dims, \
const int* dims, \
const int num_axes, \
const int* axes, \
const T alpha, \
const T* X, \
T* Y, \
CUDAContext* context) { \
ReduceTensorCUDA( \
num_dims, \
dims, \
num_axes, \
axes, \
cub::Max(), \
std::numeric_limits<T>::lowest(), \
alpha, \
X, \
Y, \
context); \
}
CAFFE2_SPECIALIZED_CUDA_REDUCE_MAX(std::int32_t)
CAFFE2_SPECIALIZED_CUDA_REDUCE_MAX(std::int64_t)
CAFFE2_SPECIALIZED_CUDA_REDUCE_MAX(float)
CAFFE2_SPECIALIZED_CUDA_REDUCE_MAX(double)
#undef CAFFE2_SPECIALIZED_CUDA_REDUCE_MAX
#define CAFFE2_SPECIALIZED_CUDA_REDUCE_SUM(T) \
template <> \
void ReduceSum<T, CUDAContext>( \
const int num_dims, \
const int* dims, \
const int num_axes, \
const int* axes, \
const T alpha, \
const T* X, \
T* Y, \
CUDAContext* context) { \
ReduceTensorCUDA( \
num_dims, \
dims, \
num_axes, \
axes, \
cub::Sum(), \
T(0), \
alpha, \
X, \
Y, \
context); \
}
CAFFE2_SPECIALIZED_CUDA_REDUCE_SUM(std::int32_t)
CAFFE2_SPECIALIZED_CUDA_REDUCE_SUM(std::int64_t)
CAFFE2_SPECIALIZED_CUDA_REDUCE_SUM(float)
CAFFE2_SPECIALIZED_CUDA_REDUCE_SUM(double)
#undef CAFFE2_SPECIALIZED_CUDA_REDUCE_SUM
#define CAFFE2_SPECIALIZED_CUDA_REDUCE_MEAN(T) \
template <> \
void ReduceMean<T, CUDAContext>( \
const int num_dims, \
const int* dims, \
const int num_axes, \
const int* axes, \
const T alpha, \
const T* X, \
T* Y, \
CUDAContext* context) { \
int scale = 1; \
for (int i = 0; i < num_axes; ++i) { \
scale *= dims[axes[i]]; \
} \
ReduceTensorCUDA( \
num_dims, \
dims, \
num_axes, \
axes, \
cub::Sum(), \
T(0), \
alpha / static_cast<T>(scale), \
X, \
Y, \
context); \
}
CAFFE2_SPECIALIZED_CUDA_REDUCE_MEAN(float)
#undef CAFFE2_SPECIALIZED_CUDA_REDUCE_MEAN
namespace {
template <typename T, int D>
__global__ void BroadcastCUDAKernel(
const int Y_size,
const SimpleArray<int, D> X_strides,
const SimpleArray<FixedDivisor<int>, D> Y_dims,
const T alpha,
const T* X,
T* Y) {
CUDA_1D_KERNEL_LOOP(Y_index, Y_size) {
int X_index = 0;
int Y_index_val = Y_index;
#pragma unroll
for (int i = D - 1; i >= 0; --i) {
int d;
Y_dims.data[i].DivMod(Y_index_val, &Y_index_val, &d);
X_index += d * X_strides.data[i];
}
#if __CUDA_ARCH__ >= 350
Y[Y_index] = __ldg(X + X_index) * alpha;
#else
Y[Y_index] = X[X_index] * alpha;
#endif
}
}
template <typename T, int D>
void BroadcastCUDAImpl(
const int X_ndim,
const int* X_dims,
const int* Y_dims,
const T alpha,
const T* X,
T* Y,
CUDAContext* context) {
SimpleArray<int, D> X_strides_array;
SimpleArray<FixedDivisor<int>, D> Y_dims_array;
const int d = D - X_ndim;
std::fill(X_strides_array.data, X_strides_array.data + d, 0);
int cur_stride = 1;
for (int i = D - 1; i >= d; --i) {
CAFFE_ENFORCE(X_dims[i - d] == 1 || X_dims[i - d] == Y_dims[i]);
X_strides_array.data[i] = X_dims[i - d] == 1 ? 0 : cur_stride;
cur_stride *= X_dims[i - d];
}
for (int i = 0; i < D; ++i) {
if (Y_dims[i] == 0) {
return;
}
Y_dims_array.data[i] = FixedDivisor<int>(Y_dims[i]);
}
const int Y_size =
std::accumulate(Y_dims, Y_dims + D, 1, std::multiplies<int>());
BroadcastCUDAKernel<T, D>
<<<CAFFE_GET_BLOCKS(Y_size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
Y_size, X_strides_array, Y_dims_array, alpha, X, Y);
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_BROADCAST(T) \
template <> \
void Broadcast<T, CUDAContext>( \
const int X_ndim, \
const int* X_dims, \
const int Y_ndim, \
const int* Y_dims, \
const T alpha, \
const T* X, \
T* Y, \
CUDAContext* context) { \
CAFFE_ENFORCE_LE(X_ndim, Y_ndim); \
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1( \
Y_ndim, \
BroadcastCUDAImpl, \
T, \
X_ndim, \
X_dims, \
Y_dims, \
alpha, \
X, \
Y, \
context); \
}
CAFFE2_SPECIALIZED_CUDA_BROADCAST(std::int32_t)
CAFFE2_SPECIALIZED_CUDA_BROADCAST(std::int64_t)
CAFFE2_SPECIALIZED_CUDA_BROADCAST(float)
CAFFE2_SPECIALIZED_CUDA_BROADCAST(double)
#undef CAFFE2_SPECIALIZED_CUDA_BROADCAST
namespace {
template <typename T>
__global__ void RowwiseMomentsCUDAKernel(
const int rows,
const int cols,
const T* X,
T* mean,
T* variance) {
__shared__ typename BlockReduce<T>::TempStorage m_storage;
__shared__ typename BlockReduce<T>::TempStorage v_storage;
for (int i = blockIdx.x; i < rows; i += gridDim.x) {
T m_val = 0;
T v_val = 0;
for (int j = threadIdx.x; j < cols; j += blockDim.x) {
const int X_index = i * cols + j;
#if __CUDA_ARCH__ >= 350
m_val += __ldg(X + X_index);
v_val += __ldg(X + X_index) * __ldg(X + X_index);
#else
m_val += X[X_index];
v_val += X[X_index] * X[X_index];
#endif
}
m_val = BlockReduce<T>(m_storage).Reduce(m_val, cub::Sum());
v_val = BlockReduce<T>(v_storage).Reduce(v_val, cub::Sum());
if (threadIdx.x == 0) {
mean[i] = m_val / static_cast<T>(cols);
variance[i] = v_val / static_cast<T>(cols) - mean[i] * mean[i];
}
__syncthreads();
}
}
template <typename T>
__global__ void ColwiseMomentsCUDAKernel(
const int rows,
const int cols,
const T* X,
T* mean,
T* variance) {
__shared__ typename BlockReduce<T>::TempStorage m_storage;
__shared__ typename BlockReduce<T>::TempStorage v_storage;
for (int i = blockIdx.x; i < cols; i += gridDim.x) {
T m_val = 0;
T v_val = 0;
for (int j = threadIdx.x; j < rows; j += blockDim.x) {
const int X_index = j * cols + i;
#if __CUDA_ARCH__ >= 350
m_val += __ldg(X + X_index);
v_val += __ldg(X + X_index) * __ldg(X + X_index);
#else
m_val += X[X_index];
v_val += X[X_index] * X[X_index];
#endif
}
m_val = BlockReduce<T>(m_storage).Reduce(m_val, cub::Sum());
v_val = BlockReduce<T>(v_storage).Reduce(v_val, cub::Sum());
if (threadIdx.x == 0) {
mean[i] = m_val / static_cast<T>(rows);
variance[i] = v_val / static_cast<T>(rows) - mean[i] * mean[i];
}
__syncthreads();
}
}
template <typename T, int D>
__global__ void MomentsCUDAKernel(
const int outer_size,
const int inner_size,
SimpleArray<int, D> X_strides,
SimpleArray<FixedDivisor<int>, D> Y_dims,
const T* X,
T* mean,
T* variance) {
__shared__ typename BlockReduce<T>::TempStorage m_storage;
__shared__ typename BlockReduce<T>::TempStorage v_storage;
for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
T m_val = 0;
T v_val = 0;
for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
int X_index = 0;
int Y_index = i * inner_size + j;
#pragma unroll
for (int d = D - 1; d >= 0; --d) {
int r;
Y_dims.data[d].DivMod(Y_index, &Y_index, &r);
X_index += r * X_strides.data[d];
}
#if __CUDA_ARCH__ >= 350
m_val += __ldg(X + X_index);
v_val += __ldg(X + X_index) * __ldg(X + X_index);
#else
m_val += X[X_index];
v_val += X[X_index] * X[X_index];
#endif
}
m_val = BlockReduce<T>(m_storage).Reduce(m_val, cub::Sum());
v_val = BlockReduce<T>(v_storage).Reduce(v_val, cub::Sum());
if (threadIdx.x == 0) {
mean[i] = m_val / static_cast<T>(inner_size);
variance[i] = v_val / static_cast<T>(inner_size) - mean[i] * mean[i];
}
__syncthreads();
}
}
template <typename T, int D>
void MomentsCUDAImpl(
const int outer_size,
const int inner_size,
const int* dims,
const int* axes,
const T* X,
T* mean,
T* variance,
CUDAContext* context) {
SimpleArray<int, D> X_strides;
SimpleArray<FixedDivisor<int>, D> Y_dims;
utils::ComputeTransposedStrides(D, dims, axes, X_strides.data);
for (int i = 0; i < D; ++i) {
Y_dims.data[i] = FixedDivisor<int>(dims[axes[i]]);
}
MomentsCUDAKernel<T, D>
<<<std::min(outer_size, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
outer_size, inner_size, X_strides, Y_dims, X, mean, variance);
}
template <typename T>
void MomentsCUDA(
const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const T* X,
T* mean,
T* variance,
CUDAContext* context) {
CAFFE_ENFORCE_LE(num_axes, num_dims);
std::vector<int> Y_dims_vector(num_dims);
for (int i = 0; i < num_axes; ++i) {
Y_dims_vector[axes[i]] = 1;
}
const int* X_dims = dims;
const int* Y_dims = Y_dims_vector.data();
const int X_size =
std::accumulate(X_dims, X_dims + num_dims, 1, std::multiplies<int>());
const int Y_size =
std::accumulate(Y_dims, Y_dims + num_dims, 1, std::multiplies<int>());
if (X_size == 0) {
Set<T, CUDAContext>(Y_size, T(0), mean, context);
Set<T, CUDAContext>(Y_size, T(0), variance, context);
return;
}
if (std::equal(X_dims, X_dims + num_dims, Y_dims)) {
cudaMemcpyAsync(
mean,
X,
sizeof(T) * X_size,
cudaMemcpyDeviceToDevice,
context->cuda_stream());
Set<T, CUDAContext>(Y_size, T(0), variance, context);
return;
}
int rows;
int cols;
if (utils::IsRowwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) {
RowwiseMomentsCUDAKernel<T>
<<<std::min(rows, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(rows, cols, X, mean, variance);
return;
}
if (utils::IsColwiseReduce(num_dims, X_dims, Y_dims, &rows, &cols)) {
ColwiseMomentsCUDAKernel<T>
<<<std::min(rows, CAFFE_MAXIMUM_NUM_BLOCKS),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(rows, cols, X, mean, variance);
return;
}
std::vector<int> transpose_axes(num_dims);
utils::ComputeTransposeAxesForReduceOp(
num_dims, num_axes, axes, transpose_axes.data());
const int pivot = num_dims - num_axes;
int outer_size = 1;
for (int i = 0; i < pivot; ++i) {
outer_size *= dims[transpose_axes[i]];
}
int inner_size = 1;
for (int i = pivot; i < num_dims; ++i) {
inner_size *= dims[transpose_axes[i]];
}
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1(
num_dims,
MomentsCUDAImpl,
T,
outer_size,
inner_size,
dims,
transpose_axes.data(),
X,
mean,
variance,
context);
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_MOMENTS(T) \
template <> \
void Moments<T, CUDAContext>( \
const int num_dims, \
const int* dims, \
const int num_axes, \
const int* axes, \
const T* X, \
T* mean, \
T* variance, \
CUDAContext* context) { \
MomentsCUDA<T>( \
num_dims, dims, num_axes, axes, X, mean, variance, context); \
}
CAFFE2_SPECIALIZED_CUDA_MOMENTS(float)
#undef CAFFE2_SPECIALIZED_CUDA_MOMENTS
namespace {
template <typename T, int D>
__global__ void TransposeCUDAKernel(
const int size,
const SimpleArray<int, D> X_strides,
const SimpleArray<FixedDivisor<int>, D> Y_dims,
const T* X,
T* Y) {
CUDA_1D_KERNEL_LOOP(Y_index, size) {
int X_index = 0;
int Y_index_val = Y_index;
#pragma unroll
for (int i = D - 1; i >= 0; --i) {
int d;
Y_dims.data[i].DivMod(Y_index_val, &Y_index_val, &d);
X_index += d * X_strides.data[i];
}
#if __CUDA_ARCH__ >= 350
Y[Y_index] = __ldg(X + X_index);
#else
Y[Y_index] = X[X_index];
#endif
}
}
template <typename T, int D>
void TransposeCUDAImpl(
const int* dims,
const int* axes,
const T* X,
T* Y,
CUDAContext* context) {
SimpleArray<int, D> X_strides;
SimpleArray<FixedDivisor<int>, D> Y_dims;
utils::ComputeTransposedStrides(D, dims, axes, X_strides.data);
int size = 1;
for (int i = 0; i < D; ++i) {
Y_dims.data[i] = FixedDivisor<int>(dims[axes[i]]);
size *= dims[i];
}
TransposeCUDAKernel<T, D>
<<<CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, X_strides, Y_dims, X, Y);
}
} // namespace
#define CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(T) \
template <> \
void Transpose<T, CUDAContext>( \
const int ndim, \
const int* dims, \
const int* axes, \
const T* X, \
T* Y, \
CUDAContext* context) { \
if (utils::IsIdentityPermutation(ndim, axes)) { \
const int size = \
std::accumulate(dims, dims + ndim, 1, std::multiplies<int>()); \
context->template Copy<T, CUDAContext, CUDAContext>(size, X, Y); \
return; \
} \
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1( \
ndim, TransposeCUDAImpl, T, dims, axes, X, Y, context); \
}
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(float)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(double)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(int)
CAFFE2_SPECIALIZED_CUDA_TRANSPOSE(TIndex)
#undef CAFFE2_SPECIALIZED_CUDA_TRANSPOSE
} // namespace math
} // namespace caffe2