blob: 257aa1d0b143a9f9129ca17cfce2805b07342707 [file] [log] [blame]
import operator
import unittest
import contextlib
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.testing import FileCheck
# these needs to be set before `common_utils`
# infers `GRAPH_EXECUTOR`.
# this file **requires** these settings
# and setting them after `GRAPH_EXECUTOR` is
# inferred erroneously runs or skips
# some tests
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
from torch.testing._internal.common_utils import run_tests, IS_SANDCASTLE, ProfilingMode, GRAPH_EXECUTOR, \
enable_profiling_mode_for_profiling_tests
from torch.testing._internal.jit_utils import JitTestCase, _inline_everything, \
RUN_CUDA, RUN_CUDA_HALF, RUN_CUDA_MULTI_GPU, warmup_backward
from textwrap import dedent
from itertools import product, permutations
from test_jit import backward_graph, all_backward_graphs, get_lstm_inputs, get_milstm_inputs, \
LSTMCellC, LSTMCellF, LSTMCellS, MiLSTMCell
from torch.testing._internal.te_utils import CudaCodeGenExecuted
FUSION_GROUP = 'prim::TensorExprGroup'
def strip_profiling_nodes(nodes):
profiling_opcodes = set(['prim::BailoutTemplate', 'prim::BailOut'])
return [n for n in nodes if n.kind() not in profiling_opcodes]
def warmup_forward(f, *args):
profiling_count = 2
for i in range(profiling_count):
results = f(*args)
return results
@contextlib.contextmanager
def texpr_reductions_enabled():
old = torch._C._jit_set_texpr_reductions_enabled(True)
try:
yield
finally:
torch._C._jit_set_texpr_reductions_enabled(old)
class TestTEFuser(JitTestCase):
def setUp(self):
self.old_cpu_fuser_state = torch._C._jit_can_fuse_on_cpu()
self.old_gpu_fuser_state = torch._C._jit_can_fuse_on_gpu()
torch._C._jit_override_can_fuse_on_cpu(True)
torch._C._jit_override_can_fuse_on_gpu(True)
self.old_profiling_executor = torch._C._jit_set_profiling_executor(True)
self.old_profiling_mode = torch._C._jit_set_profiling_mode(True)
self.texpr_fuser_state = torch._C._jit_texpr_fuser_enabled()
torch._C._jit_set_texpr_fuser_enabled(True)
def tearDown(self):
torch._C._jit_set_profiling_executor(self.old_profiling_executor)
torch._C._jit_set_profiling_mode(self.old_profiling_mode)
torch._C._jit_override_can_fuse_on_gpu(self.old_gpu_fuser_state)
torch._C._jit_override_can_fuse_on_cpu(self.old_cpu_fuser_state)
torch._C._jit_set_texpr_fuser_enabled(self.texpr_fuser_state)
def findFusionGroups(self, graph):
result = []
for n in graph.nodes():
if n.kind() == FUSION_GROUP:
result.append(n.g('Subgraph'))
continue
for block in n.blocks():
result += self.findFusionGroups(block)
return result
def _test_fused_abs(self, device='cpu'):
def func(x):
return x.abs() * 2
a = torch.randn(5, device=device)
scripted = self.checkScript(func, (a,))
graph = scripted.graph_for(a)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
FileCheck().check("aten::abs").check("aten::mul").run(str(fusion_groups[0]))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
def test_sum_simple(self):
def func(x):
x2 = x * x
return x2.sum()
with texpr_reductions_enabled():
a = torch.tensor(list(x for x in range(0, 15)), dtype=torch.float, device='cpu')
a = a.reshape(5, 3)
scripted = self.checkScript(func, (a,))
graph = scripted.graph_for(a)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
self.assertEqual(scripted(a), func(a))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
def test_sum_dim(self):
def func(x):
return x.sum((0, )) * 2
with texpr_reductions_enabled():
a = torch.tensor(list(x for x in range(0, 15)), dtype=torch.float, device='cpu')
a = a.reshape(5, 3)
scripted = self.checkScript(func, (a,))
graph = scripted.graph_for(a)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
self.assertEqual(scripted(a), func(a))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
def test_sum_keepdim_cast(self):
def func(x):
return x.sum((0, ), keepdim=True, dtype=torch.double) * 2
with texpr_reductions_enabled():
a = torch.tensor(list(x for x in range(0, 15)), dtype=torch.float, device='cpu')
a = a.reshape(5, 3)
scripted = self.checkScript(func, (a,))
graph = scripted.graph_for(a)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
self.assertEqual(scripted(a), func(a))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
def test_abs_cpu(self):
self._test_fused_abs()
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
def test_abs_cuda(self):
self._test_fused_abs(device="cuda")
def _test_zero_element_tensors(self, device="cpu"):
def decode(sin_t, cos_t):
theta = torch.atan2(sin_t.float(), cos_t.float())
return theta
sin = torch.zeros(0, device=device)
cos = torch.zeros(0, device=device)
inputs = [sin, cos]
ge = self.checkScript(decode, inputs)
@unittest.skipIf(not RUN_CUDA, "requires CUDA")
def test_zero_element_tensors_cuda(self):
self._test_zero_element_tensors(device="cuda")
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
def test_zero_element_tensors_cpu(self):
self._test_zero_element_tensors(device="cpu")
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_arg_configurations_smoke_cuda(self):
# A smoke test to make sure we won't use the same kernel for contiguous
# and non-contiguous arguments.
# TODO: add optionally enabled debug counters to the fuser to verify
# that we really can tell the difference between configurations
def f(x, y):
z1, z2 = (x + y).chunk(2, dim=1)
return z1 * z2
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
traced_f = torch.jit.trace(f, (x, y,))
self.assertEqual(traced_f(x.t().contiguous(), y), traced_f(x.t(), y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_broadcast_cuda(self):
def scaleshift(x, scale, shift):
return x * scale + shift
inputs = [
torch.randn(4, 4, dtype=torch.float, device='cuda'),
torch.randn(4, dtype=torch.float, device='cuda'),
torch.randn(4, dtype=torch.float, device='cuda'),
]
ge = self.checkTrace(scaleshift, inputs)
graph = ge.graph_for(*inputs)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
FileCheck().check("aten::mul").check("aten::add").run(str(fusion_groups[0]))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_HALF, "no half support")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
def test_cuda_half(self):
x = torch.randn(4, 4, dtype=torch.half, device='cuda')
y = torch.randn(4, 4, dtype=torch.half, device='cuda')
funcs = [
self.fn_test_comparison_gt_lt,
self.fn_test_relu,
self.fn_test_exp
]
# Note: Non fused inputs must be float to prevent loss of precision
inputs = (x.float(), y.float())
fusion_inputs = (x, y)
for fn in funcs:
local_inputs = [t.clone().requires_grad_() for t in inputs]
local_fusion_inputs = [t.clone().requires_grad_() for t in fusion_inputs]
# Verifies outputs
fusion = torch.jit.trace(fn, local_fusion_inputs, check_trace=False)
outputs = fn(*local_inputs)
fusion_outputs = fusion(*local_fusion_inputs)
outputs_half = [t.half() for t in outputs]
self.assertEqual(outputs_half, fusion_outputs)
# Verifies gradients
for output, fusion_output in zip(outputs_half, fusion_outputs):
grads = torch.autograd.grad(
output.float().sum(), local_inputs, allow_unused=True, retain_graph=True)
fusion_grads = torch.autograd.grad(
fusion_output.sum(), local_fusion_inputs, allow_unused=True, retain_graph=True)
grads_half = [t.half() for t in grads]
self.assertEqual(grads_half, fusion_grads)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_checks_cat_inputs(self):
# We shouldn't treat cat nodes as broadcasting. All their inputs
# need to be checked for having the same map size, before we can
# run the kernel.
def f(x, y):
return torch.cat([x + 2 * x + x ** 2, y + 4 * y + y ** 3], dim=0)
# NOTE: y is broadcastable to x, but output of f(x, y) should have
# shape 3x4, and not 4x4.
x = torch.randn(2, 4, dtype=torch.float, device='cuda')
y = torch.randn(1, 4, dtype=torch.float, device='cuda')
scripted = self.checkScript(f, (x, y))
self.assertEqual(scripted(x, y).shape, (3, 4))
self.assertAllFused(scripted.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "No CUDA")
def test_chunk_cuda(self):
def fn(x):
a, b, c = x.chunk(3, 1)
return a * b + c
inputs = [torch.randn(10, 6, dtype=torch.float, device='cuda')]
ge = self.checkScript(fn, inputs)
graph = ge.graph_for(*inputs)
self.assertAllFused(graph)
FileCheck().check("prim::ConstantChunk[chunks=3, dim=1]").run(str(graph))
@staticmethod
def _test_chunk_correctness(self, device='cpu'):
def chunk_4_0(x):
x0, x1, x2, x3 = x.chunk(4, 0)
return x0 + x1 + x2 + x3
def chunk_4_1(x):
x0, x1, x2, x3 = x.chunk(4, 1)
return x0 + x1 + x2 + x3
def chunk_4_last(x):
x0, x1, x2, x3 = x.chunk(4, 2)
return x0 + x1 + x2 + x3
fns = [chunk_4_0, chunk_4_1, chunk_4_last]
tensors = [
# splitSize = 1
torch.randn(4, 4, 4, dtype=torch.float, device=device),
# contiguous case
torch.randn(12, 8, 16, dtype=torch.float, device=device),
# non-contiguous case
torch.randn(12, 8, 16, dtype=torch.float, device=device).transpose(1, 2),
]
for tensor in tensors:
for fn in fns:
self.checkScript(fn, [tensor])
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
def test_chunk_correctness(self):
return self._test_chunk_correctness(self, 'cpu')
@unittest.skipIf(not RUN_CUDA, "No CUDA")
def test_chunk_correctness_cuda(self):
return self._test_chunk_correctness(self, 'cuda')
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_chunk_distributes_cuda(self):
def f(x, y):
z1, z2 = (x + y).chunk(2, dim=1)
return z1 * z2
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
graph = ge.graph_for(x, y)
# XXX: The old fuser does broadcast_tensors but the new fuser doesn't.
# FileCheck().check("broadcast_tensors").check('with ' + FUSION_GROUP + '_') \
# .check_count('ConstantChunk', 2, exactly=True).run(str(graph))
FileCheck().check("with " + FUSION_GROUP + "_").check_count(
"ConstantChunk", 1, exactly=True
).run(str(graph))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_chunk_motion_deduplicates_inputs(self):
def func1(x):
z = x * x
z0, z1 = z.chunk(2)
return z0 * z1
def func2(x):
z = x * x * x
z0, z1 = z.chunk(2)
return z0 * z1
inputs = [
torch.tensor([1.1, 1.2], device='cuda', dtype=torch.float),
]
for func in [func1, func2]:
module = self.checkScript(func, inputs)
forward_graph = module.graph_for(*inputs)
self.assertGraphContainsExactly(forward_graph, FUSION_GROUP, 1)
fusion_group = list(forward_graph.nodes())[-1]
self.assertEqual(len(list(fusion_group.inputs())), 1)
@unittest.skipIf(not RUN_CUDA, "No CUDA")
def test_chunk_multiple_cuda(self):
# The arguments are intentionally used out of order as a test to see
# if the fusion compiler adds extra args in the correct order
def fn(s, x, y, z):
z1, z2 = z.chunk(2, 2)
x1, x2, x3 = x.chunk(3, 1)
y1, y2 = y.chunk(2, 0)
return s + x1 + x2 + x3 + y1 + y2 + z1 + z2
inputs = [
torch.randn(5, 2, 3, dtype=torch.float, device='cuda'),
torch.randn(5, 6, 3, dtype=torch.float, device='cuda'),
torch.randn(10, 2, 3, dtype=torch.float, device='cuda'),
torch.randn(5, 2, 6, dtype=torch.float, device='cuda'),
]
ge = self.checkScript(fn, inputs)
self.assertAllFused(ge.graph_for(*inputs))
def test_minmax(self):
def tmax(a, b):
return torch.max(2 * a, b)
def tmin(a, b):
return torch.min(2 * a, b)
a = torch.randn(4, 4, dtype=torch.float)
b = torch.randn(4, 4, dtype=torch.float)
nan = torch.tensor(float('nan'), dtype=torch.float)
devices = ["cpu"]
if torch.cuda.is_available():
devices.append("cuda")
for f, inputs, device in product(
(tmax, tmin),
([a, b], [a, nan], [b, nan]),
devices):
inputs = [t.to(device) for t in inputs]
s = self.checkScript(f, inputs)
self.assertAllFused(s.graph_for(*inputs))
# TODO: reenable the test after backwards passes start working in PE
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_clamp(self):
def func2(a, b):
return torch.clamp(a + b, min=0, max=2)
def funcInf(a, b):
return torch.clamp(a + b, min=0, max=float('inf'))
def funcNegInf(a, b):
return torch.clamp(a + b, min=float('-inf'), max=0)
def funcOptMin(a, b):
return torch.clamp(a + b, max=2)
def funcOptMax(a, b):
return torch.clamp(a + b, min=0)
a = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True)
b = torch.randn(4, 4, dtype=torch.float, device='cuda')
nan = torch.tensor(float('nan'), dtype=torch.float, device='cuda')
funcs = (func2, funcInf, funcNegInf, funcOptMin, funcOptMax)
for f, inputs in product(funcs, [[a, b], [a, nan]]):
inp1, inp2 = inputs
s = self.checkScript(f, (inp1, inp2), profiling=ProfilingMode.PROFILING)
self.assertAllFused(s.graph_for(inp1, inp2), except_for={'aten::size', 'aten::_size_if_not_equal'})
c = s(inp1, inp2)
with enable_profiling_mode_for_profiling_tests():
warmup_backward(c.sum())
graph = backward_graph(s)
self.assertAllFused(graph, except_for={'aten::Float', 'aten::_grad_sum_to_size'})
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
def test_dropout(self):
def func(x):
x = torch.nn.functional.dropout(x)
return torch.nn.functional.relu(x)
a = torch.randn(4, 4, dtype=torch.float, device='cuda', requires_grad=True)
s = torch.jit.script(func)
c = s(a)
c = s(a)
warmup_backward(c.sum())
# skip_check to skip extra bailout nodes in between
graph = backward_graph(s, skip_check=True)
self.assertAllFused(graph, except_for={'aten::div', 'prim::Constant'})
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_add_bool(self):
def f(x, y, z):
return x + y + z
x = torch.randint(0, 2, (4, 4), dtype=torch.bool, device='cuda')
y = torch.randint(0, 2, (4, 4), dtype=torch.bool, device='cuda')
z = torch.randint(0, 2, (4, 4), dtype=torch.bool, device='cuda')
ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False)
self.assertAllFused(ge.graph_for(x, y, z))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_mul_bool(self):
def f(x, y, z):
return x * y * z
x = torch.randint(0, 2, (4, 4), dtype=torch.bool, device='cuda')
y = torch.randint(0, 2, (4, 4), dtype=torch.bool, device='cuda')
z = torch.randint(0, 2, (4, 4), dtype=torch.bool, device='cuda')
ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False)
self.assertAllFused(ge.graph_for(x, y, z))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_div_bool(self):
def f(x, y, z):
return (x + y) / z
x = torch.randint(0, 2, (4, 4), dtype=torch.bool, device='cuda')
y = torch.randint(0, 2, (4, 4), dtype=torch.bool, device='cuda')
z = torch.ones_like(x, dtype=torch.bool, device='cuda')
ge = self.checkTrace(f, (x, y, z), inputs_require_grads=False)
self.assertAllFused(ge.graph_for(x, y, z))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_bitwise_ops(self):
def apply(fn):
return lambda x, y, z: fn(fn(x, y), z)
dtypes = [
torch.int8,
torch.uint8,
torch.int16,
torch.int32,
torch.int64,
torch.bool,
]
binary_ops = [
operator.__and__,
operator.__or__,
operator.__xor__
]
devices = ["cuda"]
for dtype, op, device in product(dtypes, binary_ops, devices):
try:
x = self.data_for(dtype, device)
y = self.data_for(dtype, device)
z = self.data_for(dtype, device)
fn = apply(op)
ref = fn(x, y, z)
except Exception:
# If eager mode doesn't support a dtype/op/device combo,
# neither does the fuser. Catch everything to avoid needing to
# guess what errors might be thrown by eager.
continue
try:
t = torch.jit.trace(fn, (x, y, z))
self.assertEqual(ref, t(x, y, z))
self.assertAllFused(t.graph_for(x, y, z))
except Exception as e:
raise RuntimeError(
" ".join(["Failed:", str(dtype), op.__name__, device])
)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_minmax_int_ops(self):
def apply(fn):
return lambda x, y, z: fn(fn(x, y), z)
dtypes = [
torch.int8,
torch.uint8,
torch.int16,
torch.int32,
torch.int64,
torch.bool,
]
binary_ops = [
torch.min,
torch.max
]
devices = ["cuda"]
for dtype, op, device in product(dtypes, binary_ops, devices):
try:
x = self.data_for(dtype, device)
y = self.data_for(dtype, device)
z = self.data_for(dtype, device)
fn = apply(op)
ref = fn(x, y, z)
except Exception:
# If eager mode doesn't support a dtype/op/device combo,
# neither does the fuser. Catch everything to avoid needing to
# guess what errors might be thrown by eager.
continue
try:
t = torch.jit.trace(fn, (x, y, z))
self.assertEqual(ref, t(x, y, z))
self.assertAllFused(t.graph_for(x, y, z))
except Exception as e:
raise RuntimeError(
" ".join(["Failed:", str(dtype), op.__name__, device])
)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_comparison_eq_ne(self):
def f(x, y):
mask = (x == 0).type_as(x)
z = x * mask + y
mask = (x != 0).type_as(x)
z = z * mask + y
return z
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@staticmethod
def fn_test_comparison_gt_lt(x, y):
mask = (x > 0).type_as(x)
z = x * mask + y
mask = (x < 0).type_as(x)
z = z * mask + y
return z
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_comparison_gt_lt_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_comparison_gt_lt, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_comparison_ge_le_cuda(self):
def f(x, y):
mask = (x >= 0).type_as(x)
z = x * mask + y
mask = (x <= 0).type_as(x)
z = z * mask + y
return z
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(f, (x, y))
self.assertAllFused(ge.graph_for(x, y))
x.requires_grad_(True)
y.requires_grad_(True)
self.assertAllFused(ge.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_addcmul_cuda(self):
t = torch.randn(1, 4, dtype=torch.float, device='cuda')
t1 = torch.randn(4, 1, dtype=torch.float, device='cuda')
t2 = torch.randn(1, 4, dtype=torch.float, device='cuda')
def foo(t, t1, t2):
return t.addcmul(t + 1, t2, value=0.1)
ge = self.checkTrace(foo, (t, t1, t2), allow_unused=True)
graph = ge.graph_for(t, t1, t2)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
FileCheck().check("aten::add(").check("aten::addcmul(").run(str(fusion_groups[0]))
# TODO: We leak CUDA memory here because the traced graph holds onto a
# constant-ified tensor. Since the Python-global CompilationUnit is alive
# until the end of the process, the memory is effectively leaked.
# Removed `_cuda` suffix from this test which disables leak-checking.
# If this is a real problem, we'll need to revisit Torchscript Function
# lifetimes in Python.
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_lerp(self):
start = torch.randn(4, 1, dtype=torch.float, device='cuda')
end = torch.randn(1, 4, dtype=torch.float, device='cuda')
weight = torch.tensor(0.5, dtype=torch.float, device='cuda')
# scalar weight overload
def foo_weight_scalar(start, end):
return torch.lerp(start + 1, end, 0.5)
# tensor weight overload
def foo_weight_tensor(start, end):
return torch.lerp(start + 1, end, weight)
ge_weight_scalar = self.checkTrace(foo_weight_scalar, (start, end))
graph = ge_weight_scalar.graph_for(start, end)
self.assertAllFused(graph)
# TODO: uncomment when TE enables support for scalar tensors
# ge_weight_tensor = self.checkTrace(foo_weight_tensor, (start, end))
# graph = ge_weight_tensor.graph_for(start, end)
# self.assertAllFused(graph)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_concat_cuda(self):
hx = torch.randn(3, 20, dtype=torch.float, device='cuda')
cx = torch.randn(3, 20, dtype=torch.float, device='cuda')
def foo(hx, cx):
return torch.cat((hx + cx, hx * cx))
ge = self.checkTrace(foo, (hx, cx))
graph = ge.graph_for(hx, cx)
self.assertAllFused(graph)
# XXX: TE fuser can handle concats in a fusion group.
# FileCheck().check("FusedConcat").check_next("return").run(str(graph))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_remove_output_used_only_in_size(self):
def test_fuse(a, b):
c = a + b
d = c + b
return d
scripted_f = torch.jit.script(test_fuse)
x = torch.ones(1, requires_grad=True, device='cuda')
y = torch.ones(1, requires_grad=True, device='cuda')
warmup_forward(scripted_f, x, y)
g = torch.jit.last_executed_optimized_graph()
diff_nodes = [n for n in g.nodes() if n.kind() == 'prim::DifferentiableGraph']
self.assertEqual(len(diff_nodes), 1)
g = diff_nodes[0].g('Subgraph')
if_nodes = [n for n in g.nodes() if n.kind() == 'prim::If']
self.assertEqual(len(if_nodes), 1)
# the if node and the fusion group inside it should only have one output
self.assertEqual(len(list(if_nodes[0].outputs())), 1)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_concat_invariant_cuda(self):
# Invariant: the output of prim::FusedConcat may
# not be an input to any node inside the FusionGroup.
def fn(x, y, z):
x1 = x + y
y1 = x - y
w = torch.cat([x1, y1])
return w + z
x = torch.randn(2, 2, dtype=torch.float, device='cuda')
y = torch.randn(2, 2, dtype=torch.float, device='cuda')
z = torch.randn(4, 2, dtype=torch.float, device='cuda')
ge = self.checkTrace(fn, (x, y, z))
graph = ge.graph_for(x, y, z)
self.assertAllFused(graph, except_for={'aten::add'})
# XXX: TE fuser can handle concats inside a fusion group.
# FileCheck().check("FusedConcat").check_next("return").run(str(graph))
@staticmethod
def fn_test_exp(x, y):
return (x + .5 * y).exp()
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_exp_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_exp, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "broken with profiling on")
@torch._jit_internal._disable_emit_hooks_decorator
@_inline_everything
def test_fuse_decompose_normalization(self):
class ResLike(torch.jit.ScriptModule):
def __init__(self, norm_module):
super(ResLike, self).__init__()
self.nm = norm_module
@torch.jit.script_method
def forward(self, x, y):
return y + torch.relu(self.nm(x))
def test_norm_decompose(nm, in_opt_graph, not_in_opt_graph, in_fusegraph):
model = ResLike(nm).cuda()
model_noopt = ResLike(nm).cuda()
model_noopt.load_state_dict(model.state_dict())
x = torch.randn(2, 16, 8, 8, device='cuda')
y = torch.randn(2, 16, 8, 8, device='cuda')
# FIXME: We need differentiation for CNNs for this optimization to trigger
with torch.no_grad():
out = model(x, y)
graph = model.graph_for(x, y)
rep = str(graph)
with torch.jit.optimized_execution(False):
out_noopt = model_noopt(x, y)
rep_noopt = str(model_noopt.graph_for(x, y))
self.assertEqual(out, out_noopt, prec=3e-5)
# Check that normalization op has really been decomposed
for node_in_graph in in_opt_graph:
self.assertIn(node_in_graph, rep)
for node_not_in_graph in not_in_opt_graph:
self.assertNotIn(node_not_in_graph, rep)
self.assertIn(node_not_in_graph, rep_noopt)
fusion_groups = [node for node in graph.nodes() if node.kind() == FUSION_GROUP]
self.assertEqual(len(fusion_groups), 1)
fused_graph = str(fusion_groups[0].g('Subgraph'))
for node_in_fusegraph in in_fusegraph:
self.assertIn(node_in_fusegraph, fused_graph)
# test for batchnorm decompose
bm = nn.BatchNorm2d(16)
test_norm_decompose(bm, ['aten::batch_norm_update_stats'],
['aten::batch_norm('], ['aten::sqrt'])
# test for layernorm decompose
lm = nn.LayerNorm(8)
test_norm_decompose(lm, ['aten::batch_norm_stats'],
['aten::layer_norm('], ['aten::sub', 'aten::mul', 'aten::add'])
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_threshold(self):
def f(x):
return torch.threshold(x, 0, -10) + x + x + x
x = torch.tensor([-1, -0.5, 0, 1, 2, 3], device='cuda')
scripted = self.checkScript(f, (x,))
self.assertAllFused(scripted.graph_for(x))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_scalar_arg_cuda(self):
def fn_test_scalar_arg(x, p):
# type: (Tensor, float) -> Tensor
return p * (x * x + x)
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
p = 3
scripted = self.checkScript(fn_test_scalar_arg, (x, p))
self.assertAllFused(scripted.graph_for(x, p))
x.requires_grad_(True)
# use another function otherwise we will bailout
# and won't be able to do fused checks
def fn_test_scalar_arg_requires_grad(x, p):
# type: (Tensor, float) -> Tensor
return p * (x * x + x)
scripted = torch.jit.script(fn_test_scalar_arg_requires_grad)
out = scripted(x, p)
self.assertAllFused(scripted.graph_for(x, p), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@unittest.skip("deduplicating introduces aliasing in backward graph's outputs")
def test_fuser_deduplication(self):
# See that fusion kernel outputs are deduplicated when removing _grad_sum_to_size in the fuser's compilation
# see the discussion in PR #14957.
def f(x, y):
return torch.sigmoid(x + y)
b = torch.randn(5, 5, requires_grad=True)
a = torch.randn(5, 5, requires_grad=True)
s = self.checkScript(f, (a, b))
self.assertAllFused(s.graph_for(a, b), except_for={
'aten::size', 'aten::_size_if_not_equal', 'prim::BroadcastSizes'})
c = s(a, b)
results = warmup_backward(c.sum(), [a, b])
ga2, gb2 = results.pop()
graph = backward_graph(s)
self.assertAllFused(graph)
# check that a, b share storage, i.e. were generated as a single output in the fuser
self.assertEqual(ga2.data_ptr(), gb2.data_ptr())
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@unittest.skip("temporarily disabled because fusion was restricted in fixing #22833")
def test_fuser_iou(self):
# This checks if most of Intersection over Union is fused.
# In particular, the backward contains many _grad_sum_to_size.
def iou(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2):
ltx = torch.max(b1x1, b2x1) # [N,M]
lty = torch.max(b1y1, b2y1)
rbx = torch.min(b1x2, b2x2)
rby = torch.min(b1y2, b2y2)
w = (rbx - ltx).clamp(min=0, max=float('inf')) # [N,M]
h = (rby - lty).clamp(min=0, max=float('inf')) # [N,M]
inter = w * h # [N,M]
area1 = (b1x2 - b1x1) * (b1y2 - b1y2) # [N,1]
area2 = (b2x2 - b2x1) * (b2y2 - b2y2) # [1,M]
iou = inter / (area1 + area2 - inter)
return iou
box1 = torch.randn(5, 4, requires_grad=True)
box2 = torch.randn(5, 4, requires_grad=True)
# unsqueezing can currently not be fused
b1x1 = box1[:, 0].unsqueeze(1) # [N,1]
b1y1 = box1[:, 1].unsqueeze(1)
b1x2 = box1[:, 2].unsqueeze(1)
b1y2 = box1[:, 3].unsqueeze(1)
b2x1 = box2[:, 0].unsqueeze(0) # [1,N]
b2y1 = box2[:, 1].unsqueeze(0)
b2x2 = box2[:, 2].unsqueeze(0)
b2y2 = box2[:, 3].unsqueeze(0)
s = self.checkScript(iou, (b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2))
self.assertAllFused(s.graph_for(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2),
except_for={'aten::size', 'prim::BroadcastSizes', 'aten::_size_if_not_equal'})
with enable_profiling_mode_for_profiling_tests(True):
c = s(b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2)
warmup_backward(c.sum(), [b1x1, b1y1, b1x2, b1y2, b2x1, b2y1, b2x2, b2y2])
graph = backward_graph(s)
self.assertAllFused(graph, except_for={'aten::size', 'prim::BroadcastSizes', 'aten::_size_if_not_equal'})
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
def test_fusion_reuse_multi_gpu(self):
def fn(x, y):
return x * y * x * y
inputs_cpu = [
torch.randn(4, 4, dtype=torch.float),
torch.randn(4, 4, dtype=torch.float),
]
inputs_cuda0 = [x.cuda(0) for x in inputs_cpu]
inputs_cuda1 = [y.cuda(1) for y in inputs_cpu]
# Should not crash; these should compile different kernels.
ge = self.checkScript(fn, inputs_cpu)
self.assertAllFused(ge.graph_for(*inputs_cpu))
ge(*inputs_cuda0)
ge(*inputs_cuda1)
# TODO: we're currently not checking 'device' in the type info when pulling
# nodes into a fusion group. We should fix that and re-enable this test.
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
def test_kernel_cache_multi_gpu(self):
def not_fusible(x):
return x
def fn(x, y, z):
x_out = x * x * x * x * x # fusion: lambda x. x * x * x * x * x
y_out = y * y * y * y * y
z_out = z * z * z * z * z
return not_fusible(x_out), not_fusible(y_out), not_fusible(z_out)
inputs = [
torch.randn(4, 4, dtype=torch.float),
torch.randn(4, 4, dtype=torch.float, device='cuda:0'),
torch.randn(4, 4, dtype=torch.float, device='cuda:1'),
]
prev_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs()
# There are 3 FusionGroups. Because they have the same graph, they
# should reuse the same KernelSpec in the KernelSpec cache.
ge = self.checkScript(fn, inputs)
self.assertGraphContainsExactly(
ge.graph_for(*inputs), FUSION_GROUP, 3, True)
new_cache_size = torch._C._jit_debug_fuser_num_cached_kernel_specs()
# XXX: This assumes that the same kernel isn't already used by another test
# FIXME: Use the TE fuser's way of querying the cache.
# self.assertEqual(new_cache_size - prev_cache_size, 1)
@unittest.skipIf(not RUN_CUDA_MULTI_GPU, "needs non-zero device")
def test_nonzero_device_cuda(self):
device = 'cuda:' + str(1)
x = torch.tensor([0.4], dtype=torch.float, device=device)
y = torch.tensor([0.7], dtype=torch.float, device=device)
def doit(x, y):
return torch.sigmoid(torch.tanh(x * (x + y) + x))
ge = self.checkTrace(doit, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_lstm_cuda(self):
inputs = get_lstm_inputs('cuda', training=True)
module = self.checkScript(LSTMCellS, inputs)
return
forward_graph = module.graph_for(*inputs)
self.assertGraphContainsExactly(
forward_graph, FUSION_GROUP, 1, consider_subgraphs=True)
self.assertTrue(len(strip_profiling_nodes(forward_graph.nodes())) == 2)
# Everything is differentiable but TupleConstruct return
FileCheck().check("DifferentiableGraph").check_next("TupleConstruct") \
.check_next("return").run(str(forward_graph))
with enable_profiling_mode_for_profiling_tests(True):
hy, cy = module(*inputs)
warmup_backward((hy + cy).sum())
backward = backward_graph(module)
self.assertAllFused(backward, except_for=("aten::t", "aten::mm",
"aten::_grad_sum_to_size"))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_lstm_concat_cuda(self):
inputs = get_lstm_inputs('cuda')
ge = self.checkTrace(LSTMCellC, inputs)
graph = ge.graph_for(*inputs)
# XXX: TE fuser can handle concats inside a fusion group.
# FileCheck().check("FusedConcat").check_next("return").run(str(graph))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_lstm_gates_permutations_cuda(self):
# lstm has gates = x.mm(w_ih.t()) + hx.mm(w_hh.t()) + b_ih + b_hh.
# Test that any permutation of this will still result in one FusionGroup.
choices = ['x.mm(w_ih.t())', 'hx.mm(w_hh.t())', 'b_ih', 'b_hh']
template = dedent('''
def cell(x, hx, cx, w_ih, w_hh, b_ih, b_hh):
gates = {} + {} + {} + {}
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1)
return ingate * forgetgate * cellgate * outgate
''')
for permutation in permutations(choices, len(choices)):
code = template.format(*permutation)
scope = {}
exec(code, globals(), scope)
cu = torch.jit.CompilationUnit(code)
inputs = get_lstm_inputs('cuda', training=False)
self.assertEqual(cu.cell(*inputs), scope['cell'](*inputs))
forward_graph = cu.cell.graph_for(*inputs)
self.assertGraphContainsExactly(forward_graph, FUSION_GROUP, 1)
# TODO: Fuser doesn't work at all when inputs require grad. Fix that
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_lstm_traced_cuda(self):
inputs = get_lstm_inputs('cuda')
ge = self.checkTrace(LSTMCellF, inputs)
graph = ge.graph_for(*inputs)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
FileCheck().check("Chunk").check("aten::sigmoid").check("aten::tanh").run(str(fusion_groups[0]))
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
@unittest.skip("Test is flaky, see https://github.com/pytorch/pytorch/issues/8746")
def test_lstm_traced_cpu(self):
inputs = get_lstm_inputs('cpu')
try:
ge = self.checkTrace(LSTMCellF, inputs)
graph = ge.graph_for(*inputs)
FileCheck.check("FusionGroup").run(str(graph))
except RuntimeError as e:
if 'Failed to compile' in e.args[0]:
warnings.warn('CPU fuser test has failed! This is not a hard failure, '
'because the kernels sometimes trigger bugs in compilers '
'(most notably GCC 7.2).')
raise unittest.SkipTest('Failed to compile') from e
else:
raise
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_milstm_cuda(self):
inputs = get_milstm_inputs('cuda', training=True)
module = self.checkScript(MiLSTMCell, inputs)
forward_graph = module.graph_for(*inputs)
self.assertGraphContainsExactly(
forward_graph, FUSION_GROUP, 1, consider_subgraphs=True)
FileCheck().check("DifferentiableGraph").check_next("TupleConstruct") \
.check_next("return").check(FUSION_GROUP).run(str(forward_graph))
hy, cy = module(*inputs)
warmup_backward((hy + cy).sum())
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skip("rand_like is not supported yet")
def test_rand_cuda(self):
class M(torch.jit.ScriptModule):
__constants__ = ['d']
def __init__(self):
super(M, self).__init__()
self.d = torch.device('cuda')
@torch.jit.script_method
def create(self, x):
return x * x + x + torch.rand_like(x)
x = torch.zeros([3, 4, 5], dtype=torch.float, device='cuda')
m = M()
out1 = m.create(x)
cx = CudaCodeGenExecuted()
out2 = m.create(x)
assert cx.elapsed_value() == 1
self.assertNotEqual(out1, out2)
self.assertTrue(torch.all(out1 >= 0))
self.assertTrue(torch.all(out1 < 1))
self.assertTrue(torch.all(out2 >= 0))
self.assertTrue(torch.all(out2 < 1))
self.assertAllFused(m.create.graph_for(x))
@staticmethod
def fn_test_relu(x, y):
return F.relu(x + .5 * y)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_relu_cuda(self):
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(self.fn_test_relu, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_erf_cuda(self):
def fn_test_erf(x):
return F.relu(torch.erf(x) - torch.erfc(x))
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(fn_test_erf, (x,))
self.assertAllFused(ge.graph_for(x))
x.requires_grad_(True)
ge = self.checkTrace(fn_test_erf, (x,))
self.assertAllFused(ge.graph_for(x), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skip("rand_like is not supported yet")
def test_rand_broadcast_cuda(self):
def fn_test_rand(x, y):
r = torch.rand_like(y)
return r * x + x
# If using profiling, a different function is needed to test different
# shapes, or we'll use a cached script.
def fn_test_rand2(x, y):
r = torch.rand_like(y)
return r * x * x
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
script_f = torch.jit.script(fn_test_rand)
warmup_forward(script_f, x, y)
out = script_f(x, y)
self.assertAllFused(script_f.graph_for(x, y))
x.requires_grad_(True)
out = script_f(x, y)
self.assertAllFused(script_f.graph_for(x, y), except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
# test that broadcasting random produces correct results
x = torch.ones(4, 4, dtype=torch.float, device='cuda')
y = torch.ones(4, dtype=torch.float, device='cuda')
script_f = torch.jit.script(fn_test_rand2)
warmup_forward(script_f, x, y)
out = script_f(x, y)
# TODO(#38095): Replace assertEqualIgnoreType. See issue #38095
self.assertEqualIgnoreType(out[0, :] + torch.zeros(4, 4, device='cuda'), out)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skip("rand_like is not supported yet")
def test_rand_diamond(self):
def fn_test_diamond(x, y):
r = torch.rand_like(y)
a = x + r
b = y - r
return a + b
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
script_f = torch.jit.script(fn_test_diamond)
warmup_forward(script_f, x, y)
cx = CudaCodeGenExecuted()
out = script_f(x, y)
assert cx.elapsed_value() == 1
self.assertEqual(out, x + y)
@unittest.skip("Reenable when TE will add support for 0-dim tensors")
def test_scalar(self):
def fn(x, y):
return 2 * x + y
x = torch.tensor(0.1, dtype=torch.float, device='cpu')
y = torch.tensor(1, dtype=torch.float, device='cpu')
ge = self.checkScript(fn, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_small_constant_cuda(self):
def fn_test_small_constant(x, y):
return (1e-8 * x + 5e-9 * y) * 1e8
x = torch.randn(4, 4, dtype=torch.float, device='cuda')
y = torch.randn(4, 4, dtype=torch.float, device='cuda')
ge = self.checkTrace(fn_test_small_constant, (x, y))
self.assertAllFused(ge.graph_for(x, y))
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
# Currently we don't pull constants into fusion groups, because in some
# cases it could remove the constant from the original graph and now our
# fusion group needs to return that constant for its other users.
# Instead of never pulling constants into the fusion group, we should just
# be more careful at how we rewrite its users.
# TODO: fix that and reenable the test.
def test_tensor_scalar_ops_cuda(self):
def should_fuse(x):
z = 3.
y = x + z
return x * y
def should_fuse_scalar(x, z):
y = x + int(z)
return x * y
inputs = [torch.randn(2, 2, dtype=torch.float, device='cuda')]
ge = self.checkScript(should_fuse, inputs)
graph = ge.graph_for(*inputs)
fusion_groups = self.findFusionGroups(graph)
self.assertEqual(len(fusion_groups), 1)
FileCheck().check("aten::add").check("aten::mul").run(str(fusion_groups[0]))
inputs = [
torch.randn(2, 2, dtype=torch.float, device='cuda'),
torch.tensor(3., dtype=torch.float, device='cuda'),
]
ge = self.checkScript(should_fuse_scalar, inputs)
# Check that the fused graph computes correct results when the scalar
# input changes.
inputs = [
torch.randn(2, 2, dtype=torch.float, device='cuda'),
torch.tensor(7., dtype=torch.float, device='cuda'),
]
self.assertEqual(ge(*inputs), should_fuse_scalar(*inputs))
# The TE fuser supports fusion of non-constant scalars
self.assertGraphContainsExactly(
ge.graph_for(*inputs), FUSION_GROUP, 1, consider_subgraphs=True)
@unittest.skipIf(IS_SANDCASTLE, "NYI: fuser CPU support for Sandcastle")
def test_where_and_typing(self):
def f(x, y):
mask = x > y
res = torch.where(mask, x, y)
return mask, res
x = torch.randn(4, 4, dtype=torch.double)
y = torch.randn(4, 4, dtype=torch.double)
script_f = self.checkScript(f, (x, y))
self.assertAllFused(script_f.graph_for(x, y), except_for={'prim::TupleConstruct'})
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
@unittest.skipIf(GRAPH_EXECUTOR != ProfilingMode.LEGACY, "no half support with profiling on")
def test_grad_sum_to_size_elimination(self):
def my_broadcasted_cell(a, b, c):
return (a + b) + c
s1 = torch.randn(5, 1, requires_grad=True, device='cuda')
s2 = torch.randn(5, 5, requires_grad=True, device='cuda')
module = self.checkScript(my_broadcasted_cell, (s1, s1, s1), profiling=ProfilingMode.PROFILING)
forward_graph = module.graph_for(s1, s1, s1)
self.assertAllFused(forward_graph, except_for=("aten::size", "prim::BroadcastSizes",
"aten::_size_if_not_equal"))
old_plans = set()
for i in range(3):
# if we have s2, then the s1 are _grad_sum_to_size'd
args = s2 if i < 1 else s1, s2 if i < 2 else s1, s2
args = [a.detach_().requires_grad_() for a in args]
# recompile, so we don't trigger bailouts
module = self.checkScript(my_broadcasted_cell, args, profiling=ProfilingMode.PROFILING)
res = module(s2 if i < 1 else s1, s2 if i < 2 else s1, s2)
warmup_backward(res.sum(), args)
grads = torch.autograd.grad(res.sum(), args)
for inp, gr in zip(args, grads):
self.assertEqual(inp.shape, gr.shape)
backward = None
# this is a workaround for the backward graphs not being
# in order for Python 2
for g in all_backward_graphs(module):
if str(g) not in old_plans:
assert backward is None
backward = g
old_plans.add(str(backward))
num_grads = 1 if i > 0 else 0
self.assertEqual(len([n for n in backward.nodes() if n.kind() == 'aten::_grad_sum_to_size']), num_grads)
def test_disabled(self):
old_cpu_fuser_state = torch._C._jit_can_fuse_on_cpu()
torch._C._jit_override_can_fuse_on_cpu(False)
def fn(a):
return a ** 2 + a
x = torch.randn(4, dtype=torch.float, device="cpu")
s = self.checkScript(fn, (x,))
g = s.graph_for(x)
self.assertEqual(len(self.findFusionGroups(g)), 0)
torch._C._jit_override_can_fuse_on_cpu(old_cpu_fuser_state)
def data_for(self, dtype, device="cuda"):
v = torch.arange(1, 3, dtype=torch.float, device=device)
if dtype == torch.bool:
return v > 2
elif dtype in [torch.qint8, torch.quint8, torch.qint32]:
return torch.quantize_per_tensor(v, 0.1, 1, dtype=dtype)
else:
return v.to(dtype)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_unary_ops(self):
def apply(fn):
return lambda x: fn(2 * x)
dtypes = [
torch.int8,
torch.uint8,
torch.int16,
torch.int32,
torch.int64,
torch.float16,
torch.float32,
torch.float64,
torch.bool,
]
unary_ops = [
torch.sigmoid,
torch.reciprocal,
torch.neg,
torch.relu,
torch.log,
torch.log10,
torch.log2,
torch.exp,
torch.expm1,
torch.erf,
torch.erfc,
torch.cos,
torch.sin,
torch.tan,
torch.acos,
torch.asin,
torch.cosh,
torch.sinh,
torch.atan,
torch.tanh,
torch.sqrt,
torch.rsqrt,
torch.abs,
torch.ceil,
torch.floor,
torch.round,
torch.trunc,
torch.frac,
]
devices = ["cuda"]
for dtype, op, device in product(dtypes, unary_ops, devices):
try:
x = self.data_for(dtype, device)
fn = apply(op)
ref = fn(x)
except Exception:
# If eager mode doesn't support a dtype/op/device combo,
# neither does the fuser. Catch everything to avoid needing to
# guess what errors might be thrown by eager.
continue
try:
t = torch.jit.trace(fn, (x,))
torch.testing.assert_allclose(ref, t(x))
self.assertAllFused(t.graph_for(x))
except Exception as e:
raise RuntimeError(
" ".join(["Failed:", str(dtype), op.__name__, device])
)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_unsupported_dtypes(self):
def fn(x):
return x * x + x
unsupported_dtypes = [
torch.bfloat16,
torch.complex32,
torch.complex64,
torch.complex128,
torch.qint8,
torch.quint8,
torch.qint32,
]
for dtype in unsupported_dtypes:
try:
x = self.data_for(dtype, "cuda")
ref = fn(x)
except Exception:
# If eager mode doesn't support a dtype/op/device combo,
# neither does the fuser. Catch everything to avoid needing to
# guess what errors might be thrown by eager.
continue
t = torch.jit.trace(fn, (x,))
self.assertEqual(ref, t(x))
self.assertEqual(len(self.findFusionGroups(t.graph_for(x))), 0)
@unittest.skipIf(not RUN_CUDA, "fuser requires CUDA")
def test_superslomo(self):
# Test extracted from Super-SloMo: https://github.com/avinashpaliwal/Super-SloMo
# A few interesting things happen here: strided inputs of mixed size,
# plus outputs of mixed shapes. The latter characteristic happened to
# expose a memory corruption bug due to not properly guarding the
# outputs.
def eager(t0, t1, t2, t3, t4):
t5 = torch.mul(t0, t4)
t6 = torch.mul(t2, t3)
t7 = torch.mul(t6, t1)
t9 = torch.add(t5, t7)
t11 = torch.add(t0, t6)
ft_p = torch.div(t9, t11)
return (ft_p, t11, t9, t6)
t0 = torch.rand(1, 6, 352, 352, device="cuda").transpose(0, 1)
t1 = torch.rand(6, 3, 352, 352, device="cuda")
t2 = torch.rand(6, device="cuda")[None, None, None, :].permute(3, 0, 1, 2)
t3 = torch.rand(6, 1, 352, 352, device="cuda")
t4 = torch.rand(6, 3, 352, 352, device="cuda")
inputs = [t0, t1, t2, t3, t4]
script = torch.jit.script(eager)
for _ in range(4):
for pair in zip(script(*inputs), eager(*inputs)):
test, ref = pair
torch.testing.assert_allclose(test, ref)
self.assertAllFused(script.graph_for(*inputs))
if __name__ == '__main__':
run_tests()