blob: cd538f9c8368b1f5404255651aa212626ec61dae [file] [log] [blame]
#include <c10d/comm.hpp>
#include <deque>
#include <ATen/core/functional.h>
#include <c10d/reducer.hpp>
#include <torch/csrc/jit/python/pybind_utils.h>
#include <torch/csrc/utils/tensor_flatten.h>
namespace c10d {
namespace {
class BroadcastWork {
public:
BroadcastWork(
const c10::intrusive_ptr<c10d::ProcessGroup>& process_group,
std::vector<at::Tensor> bucket_tensors,
int root_rank = 0)
: bucket_tensors_(std::move(bucket_tensors)),
flat_tensor_({torch::utils::flatten_dense_tensors(bucket_tensors_)}) {
BroadcastOptions broadcastOptions;
broadcastOptions.rootRank = root_rank;
work_ = process_group->broadcast(flat_tensor_, broadcastOptions);
}
void finish() {
work_->wait();
// Copy the output of the broadcast operation back.
auto output_tensors = torch::utils::unflatten_dense_tensors(
flat_tensor_.front(), bucket_tensors_);
TORCH_INTERNAL_ASSERT(output_tensors.size() == bucket_tensors_.size());
for (size_t i = 0; i < output_tensors.size(); i++) {
bucket_tensors_[i].copy_(output_tensors[i], /*non_blocking=*/true);
}
}
protected:
// The list of tensors to broadcast. They are guaranteed to be
// placed on the same device and have the same dtype.
std::vector<at::Tensor> bucket_tensors_;
// The vector with a single flattened tensor containing the contents
// of the tensors in bucket_tensors_. It must be stored in a vector
// because c10d::ProcessGroup::broadcast takes a vector argument.
std::vector<at::Tensor> flat_tensor_;
private:
// The broadcast work that is kicked off upon construction.
c10::intrusive_ptr<c10d::ProcessGroup::Work> work_;
};
} // namespace
// Broadcast many tensors to all processes in the process group.
void broadcast_coalesced(
c10::intrusive_ptr<c10d::ProcessGroup> process_group,
at::TensorList tensors,
size_t buffer_size,
int rank) {
// Coalesce tensors into buckets taking into account the maximum buffer size.
// This routine is multi-device aware, so the tensors can be split across
// multiple devices and can contain a mix of CPU and CUDA tensors.
const auto buckets =
compute_bucket_assignment_by_size(tensors.vec(), {buffer_size});
// Returns tensor at specified index in input tensor list.
const auto lookup = [&tensors](size_t index) { return tensors[index]; };
// We maintain a maximum of 2 in flight broadcast operations to avoid
// allocating too much memory (in case the specified tensors are very large).
std::deque<BroadcastWork> in_flight;
constexpr auto max_in_flight = 2;
for (const auto& bucket : buckets) {
if (in_flight.size() >= max_in_flight) {
in_flight.front().finish();
in_flight.pop_front();
}
in_flight.emplace_back(process_group, c10::fmap(bucket, lookup), rank);
}
while (!in_flight.empty()) {
in_flight.front().finish();
in_flight.pop_front();
}
}
std::vector<at::Tensor> GradBucket::getPerParameterTensors() const {
std::vector<at::Tensor> per_parameter_tensors;
size_t num_parameters = offsets_.size();
per_parameter_tensors.reserve(num_parameters);
for (size_t i = 0; i < num_parameters; ++i) {
per_parameter_tensors.push_back(
tensor_.slice(0, offsets_[i], offsets_[i] + lengths_[i])
.view(sizes_vec_[i]));
}
return per_parameter_tensors;
}
} // namespace c10d