| #pragma once |
| |
| // Complex number math operations that act as no-ops for other dtypes. |
| #include <c10/util/complex.h> |
| #include <c10/util/MathConstants.h> |
| #include<ATen/NumericUtils.h> |
| |
| namespace at { namespace native { |
| inline namespace CPU_CAPABILITY { |
| |
| template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE> |
| inline VALUE_TYPE zabs (SCALAR_TYPE z) { |
| return z; |
| } |
| |
| template<> |
| inline c10::complex<float> zabs <c10::complex<float>> (c10::complex<float> z) { |
| return c10::complex<float>(std::abs(z)); |
| } |
| |
| template<> |
| inline float zabs <c10::complex<float>, float> (c10::complex<float> z) { |
| return std::abs(z); |
| } |
| |
| template<> |
| inline c10::complex<double> zabs <c10::complex<double>> (c10::complex<double> z) { |
| return c10::complex<double>(std::abs(z)); |
| } |
| |
| template<> |
| inline double zabs <c10::complex<double>, double> (c10::complex<double> z) { |
| return std::abs(z); |
| } |
| |
| // This overload corresponds to non-complex dtypes. |
| // The function is consistent with its NumPy equivalent |
| // for non-complex dtypes where `pi` is returned for |
| // negative real numbers and `0` is returned for 0 or positive |
| // real numbers. |
| // Note: `nan` is propagated. |
| template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE> |
| inline VALUE_TYPE angle_impl (SCALAR_TYPE z) { |
| if (at::_isnan(z)) { |
| return z; |
| } |
| return z < 0 ? c10::pi<double> : 0; |
| } |
| |
| template<> |
| inline c10::complex<float> angle_impl <c10::complex<float>> (c10::complex<float> z) { |
| return c10::complex<float>(std::arg(z), 0.0); |
| } |
| |
| template<> |
| inline float angle_impl <c10::complex<float>, float> (c10::complex<float> z) { |
| return std::arg(z); |
| } |
| |
| template<> |
| inline c10::complex<double> angle_impl <c10::complex<double>> (c10::complex<double> z) { |
| return c10::complex<double>(std::arg(z), 0.0); |
| } |
| |
| template<> |
| inline double angle_impl <c10::complex<double>, double> (c10::complex<double> z) { |
| return std::arg(z); |
| } |
| |
| template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE> |
| constexpr VALUE_TYPE real_impl (SCALAR_TYPE z) { |
| return z; //No-Op |
| } |
| |
| template<> |
| constexpr c10::complex<float> real_impl <c10::complex<float>> (c10::complex<float> z) { |
| return c10::complex<float>(z.real(), 0.0); |
| } |
| |
| template<> |
| constexpr float real_impl <c10::complex<float>, float> (c10::complex<float> z) { |
| return z.real(); |
| } |
| |
| template<> |
| constexpr c10::complex<double> real_impl <c10::complex<double>> (c10::complex<double> z) { |
| return c10::complex<double>(z.real(), 0.0); |
| } |
| |
| template<> |
| constexpr double real_impl <c10::complex<double>, double> (c10::complex<double> z) { |
| return z.real(); |
| } |
| |
| template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE> |
| constexpr VALUE_TYPE imag_impl (SCALAR_TYPE /*z*/) { |
| return 0; |
| } |
| |
| template<> |
| constexpr c10::complex<float> imag_impl <c10::complex<float>> (c10::complex<float> z) { |
| return c10::complex<float>(z.imag(), 0.0); |
| } |
| |
| template<> |
| constexpr float imag_impl <c10::complex<float>, float> (c10::complex<float> z) { |
| return z.imag(); |
| } |
| |
| template<> |
| constexpr c10::complex<double> imag_impl <c10::complex<double>> (c10::complex<double> z) { |
| return c10::complex<double>(z.imag(), 0.0); |
| } |
| |
| template<> |
| constexpr double imag_impl <c10::complex<double>, double> (c10::complex<double> z) { |
| return z.imag(); |
| } |
| |
| template <typename TYPE> |
| inline TYPE conj_impl (TYPE z) { |
| return z; //No-Op |
| } |
| |
| template<> |
| inline c10::complex<at::Half> conj_impl <c10::complex<at::Half>> (c10::complex<at::Half> z) { |
| return c10::complex<at::Half>{z.real(), -z.imag()}; |
| } |
| |
| template<> |
| inline c10::complex<float> conj_impl <c10::complex<float>> (c10::complex<float> z) { |
| return c10::complex<float>(z.real(), -z.imag()); |
| } |
| |
| template<> |
| inline c10::complex<double> conj_impl <c10::complex<double>> (c10::complex<double> z) { |
| return c10::complex<double>(z.real(), -z.imag()); |
| } |
| |
| template <typename TYPE> |
| inline TYPE ceil_impl (TYPE z) { |
| return std::ceil(z); |
| } |
| |
| template <> |
| inline c10::complex<float> ceil_impl (c10::complex<float> z) { |
| return c10::complex<float>(std::ceil(z.real()), std::ceil(z.imag())); |
| } |
| |
| template <> |
| inline c10::complex<double> ceil_impl (c10::complex<double> z) { |
| return c10::complex<double>(std::ceil(z.real()), std::ceil(z.imag())); |
| } |
| |
| template<typename T> |
| inline c10::complex<T> sgn_impl (c10::complex<T> z) { |
| if (z == c10::complex<T>(0, 0)) { |
| return c10::complex<T>(0, 0); |
| } else { |
| return z / zabs(z); |
| } |
| } |
| |
| template <typename TYPE> |
| inline TYPE floor_impl (TYPE z) { |
| return std::floor(z); |
| } |
| |
| template <> |
| inline c10::complex<float> floor_impl (c10::complex<float> z) { |
| return c10::complex<float>(std::floor(z.real()), std::floor(z.imag())); |
| } |
| |
| template <> |
| inline c10::complex<double> floor_impl (c10::complex<double> z) { |
| return c10::complex<double>(std::floor(z.real()), std::floor(z.imag())); |
| } |
| |
| template <typename TYPE> |
| inline TYPE round_impl (TYPE z) { |
| return std::nearbyint(z); |
| } |
| |
| template <> |
| inline c10::complex<float> round_impl (c10::complex<float> z) { |
| return c10::complex<float>(std::nearbyint(z.real()), std::nearbyint(z.imag())); |
| } |
| |
| template <> |
| inline c10::complex<double> round_impl (c10::complex<double> z) { |
| return c10::complex<double>(std::nearbyint(z.real()), std::nearbyint(z.imag())); |
| } |
| |
| template <typename TYPE> |
| inline TYPE trunc_impl (TYPE z) { |
| return std::trunc(z); |
| } |
| |
| template <> |
| inline c10::complex<float> trunc_impl (c10::complex<float> z) { |
| return c10::complex<float>(std::trunc(z.real()), std::trunc(z.imag())); |
| } |
| |
| template <> |
| inline c10::complex<double> trunc_impl (c10::complex<double> z) { |
| return c10::complex<double>(std::trunc(z.real()), std::trunc(z.imag())); |
| } |
| |
| template <typename TYPE, std::enable_if_t<!c10::is_complex<TYPE>::value, int> = 0> |
| inline TYPE max_impl (TYPE a, TYPE b) { |
| if (_isnan<TYPE>(a) || _isnan<TYPE>(b)) { |
| return std::numeric_limits<TYPE>::quiet_NaN(); |
| } else { |
| return std::max(a, b); |
| } |
| } |
| |
| template <typename TYPE, std::enable_if_t<c10::is_complex<TYPE>::value, int> = 0> |
| inline TYPE max_impl (TYPE a, TYPE b) { |
| if (_isnan<TYPE>(a)) { |
| return a; |
| } else if (_isnan<TYPE>(b)) { |
| return b; |
| } else { |
| return std::abs(a) > std::abs(b) ? a : b; |
| } |
| } |
| |
| template <typename TYPE, std::enable_if_t<!c10::is_complex<TYPE>::value, int> = 0> |
| inline TYPE min_impl (TYPE a, TYPE b) { |
| if (_isnan<TYPE>(a) || _isnan<TYPE>(b)) { |
| return std::numeric_limits<TYPE>::quiet_NaN(); |
| } else { |
| return std::min(a, b); |
| } |
| } |
| |
| template <typename TYPE, std::enable_if_t<c10::is_complex<TYPE>::value, int> = 0> |
| inline TYPE min_impl (TYPE a, TYPE b) { |
| if (_isnan<TYPE>(a)) { |
| return a; |
| } else if (_isnan<TYPE>(b)) { |
| return b; |
| } else { |
| return std::abs(a) < std::abs(b) ? a : b; |
| } |
| } |
| |
| } // end namespace |
| }} //end at::native |