| #pragma once |
| |
| #include <c10/util/complex.h> |
| #include <ATen/NumericUtils.h> |
| |
| namespace at { namespace native { |
| inline namespace CPU_CAPABILITY { |
| |
| // custom min and max to be used in logcumsumexp for complex arguments |
| template <typename scalar_t> |
| std::pair<c10::complex<scalar_t>, c10::complex<scalar_t>> _logcumsumexp_minmax(c10::complex<scalar_t> x, c10::complex<scalar_t> y) { |
| if (at::_isnan(y)) { // either real is nan or imag is nan |
| return std::make_pair(y, y); |
| } else if (at::_isnan(x)) { // either real is nan or imag is nan |
| return std::make_pair(x, x); |
| } else { |
| return (x.real() < y.real()) ? std::make_pair(x, y) : std::make_pair(y, x); |
| } |
| } |
| |
| template <typename scalar_t> |
| scalar_t _log_add_exp_helper(scalar_t x, scalar_t y) { |
| // Reference : https://www.tensorflow.org/api_docs/python/tf/math/cumulative_logsumexp |
| scalar_t min = at::_isnan(y) ? y : std::min(x, y); // std::min returns first arg if one of the args is nan |
| scalar_t max = at::_isnan(y) ? y : std::max(x, y); // std::max returns first arg if one of the args is nan |
| if (min != max || std::isfinite(min)) { |
| // nan will be propagated here |
| return std::log1p(std::exp(min - max)) + max; |
| } else { |
| // special case to correctly handle infinite cases |
| return x; |
| } |
| } |
| |
| template <typename scalar_t> |
| c10::complex<scalar_t> _log_add_exp_helper(const c10::complex<scalar_t>& x, const c10::complex<scalar_t>& y) { |
| auto [min, max] = _logcumsumexp_minmax<scalar_t>(x, y); |
| auto min_real = std::real(min); |
| auto max_real = std::real(max); |
| |
| if (at::_isnan(min)) { // either real is nan or imag is nan |
| // handling the "infectious" NaNs |
| return {std::numeric_limits<scalar_t>::quiet_NaN(), std::numeric_limits<scalar_t>::quiet_NaN()}; |
| } else if (!std::isfinite(min_real) && (min_real == max_real)) { |
| if (min_real < 0) { |
| // handle the -inf case, the imaginary part here does not really matter as the exp(value) |
| // will be around 0.0 and the angle (i.e. the imaginary part) cannot be determined. |
| // It does not matter if we're taking the exp of this value |
| return min; |
| } else { |
| // handle the +inf case, we don't need the special precision for log1p for small values |
| // and to avoid producing nan in case of real(max) == real(min) == +inf |
| return std::log(std::exp(min) + std::exp(max)); |
| } |
| } else { |
| return std::log1p(std::exp(min - max)) + max; |
| } |
| } |
| |
| } // end namespace |
| }} //end at::native |