blob: 4bf03b12b1446c35a4405d5197dd3bd9b4d038c6 [file] [log] [blame]
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/OpMathType.h>
#include <ATen/cpu/vec/vec.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/native/Pool.h>
#include <ATen/native/cpu/utils.h>
#include <c10/util/irange.h>
namespace at::native {
namespace {
template <typename scalar_t>
void cpu_avg_pool2d(
const Tensor& output_,
const Tensor& input_,
int64_t kW, int64_t kH,
int64_t dW, int64_t dH,
int64_t padW, int64_t padH,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
using acc_t = at::opmath_type<scalar_t>;
auto input = input_.contiguous();
auto output = output_.contiguous();
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t numel = output.numel();
int64_t ndim = input.ndimension();
// treat batch size and channels as one dimension
int64_t channels = ndim == 3 ? input.size(0) : input.size(0) * input.size(1);
int64_t input_height = input.size(-2);
int64_t input_width = input.size(-1);
int64_t output_height = output.size(-2);
int64_t output_width = output.size(-1);
// parallel on dim N, C, H, W
at::parallel_for(0, numel, 0, [&](int64_t begin, int64_t end) {
int64_t c = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, c, channels, oh, output_height, ow, output_width);
for (const auto i : c10::irange(begin, end)) {
output_data[i] = static_cast<scalar_t>(0);
// local pointers
const scalar_t* input_ptr = input_data + c * input_height * input_width;
// compute the mean of the input image...
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (ih1 - ih0) * (iw1 - iw0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
if (ih0 >= ih1 || iw0 >= iw1) {
// move on to next output index
data_index_step(c, channels, oh, output_height, ow, output_width);
continue;
}
acc_t sum = 0;
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (ih1 - ih0) * (iw1 - iw0);
}
}
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
sum += input_ptr[ih * input_width + iw];
}
}
output_data[i] += scalar_t(sum / divide_factor);
// move on to next output index
data_index_step(c, channels, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous()) {
output_.copy_(output);
}
}
template <typename scalar_t,
typename std::enable_if<!is_reduced_floating_point<scalar_t>::value, int>::type = 0>
void cpu_avg_pool2d_channels_last(
const Tensor& output_,
const Tensor& input_,
int64_t kW, int64_t kH,
int64_t dW, int64_t dH,
int64_t padW, int64_t padH,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
TORCH_CHECK(input_.ndimension() == 4,
"2d average pooling with channels last format supports tensors with 4 dims");
auto memory_format = at::MemoryFormat::ChannelsLast;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_height = input.size(2);
int64_t input_width = input.size(3);
int64_t output_height = output.size(2);
int64_t output_width = output.size(3);
using Vec = vec::Vectorized<scalar_t>;
// parallel on dim N, H, W
at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, oh, output_height, ow, output_width);
int64_t size = channels;
int64_t len = size - (size % Vec::size());
for (const auto i : c10::irange(begin, end)) {
// compute the mean of the input image...
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (ih1 - ih0) * (iw1 - iw0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (ih1 - ih0) * (iw1 - iw0);
}
}
scalar_t* out = output_data + i * channels;
// Pass I: zero the out lane
int64_t d1 = 0;
for (; d1 < len; d1 += Vec::size()) {
Vec out_vec = Vec(scalar_t(0));
out_vec.store(out + d1);
}
for (; d1 < size; d1++) {
out[d1] = scalar_t(0);
}
if (ih0 >= ih1 || iw0 >= iw1) {
// move on to next output index
data_index_step(n, nbatch, oh, output_height, ow, output_width);
continue;
}
// Pass II: compute local sum
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
const scalar_t* in = input_data + n * input_height * input_width * channels +
ih * input_width * channels + iw * channels;
int64_t d2 = 0;
for (; d2 < len; d2 += Vec::size()) {
Vec out_vec = Vec::loadu(out + d2) + Vec::loadu(in + d2);
out_vec.store(out + d2);
}
for (; d2 < size; d2++) {
out[d2] += in[d2];
}
}
}
// Pass III: compute local average
int64_t d3 = 0;
for (; d3 < len; d3 += Vec::size()) {
Vec out_vec = Vec::loadu(out + d3) / Vec(scalar_t(divide_factor));
out_vec.store(out + d3);
}
for (; d3 < size; d3++) {
out[d3] = out[d3] / divide_factor;
}
// move on to next output index
data_index_step(n, nbatch, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
}
template <typename scalar_t,
typename std::enable_if<is_reduced_floating_point<scalar_t>::value, int>::type = 0>
void cpu_avg_pool2d_channels_last(
const Tensor& output_,
const Tensor& input_,
int64_t kW, int64_t kH,
int64_t dW, int64_t dH,
int64_t padW, int64_t padH,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
TORCH_CHECK(input_.ndimension() == 4,
"2d average pooling with channels last format supports tensors with 4 dims");
auto memory_format = at::MemoryFormat::ChannelsLast;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto input_data = input.const_data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_height = input.size(2);
int64_t input_width = input.size(3);
int64_t output_height = output.size(2);
int64_t output_width = output.size(3);
using bVec = vec::Vectorized<scalar_t>;
using fVec = vec::Vectorized<float>;
// parallel on dim N, H, W
at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, oh, output_height, ow, output_width);
// temp buffer for sum, use float as accumulation type
// can't reuse output buffer to store sum since it is BFloat16/Half
auto sum_arr = std::make_unique<float []>(channels);
float* sum = sum_arr.get();
int64_t size = channels;
for (const auto i : c10::irange(begin, end)) {
// compute the mean of the input image...
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (ih1 - ih0) * (iw1 - iw0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (ih1 - ih0) * (iw1 - iw0);
}
}
scalar_t* out = output_data + i * channels;
// Pass I: zero the out lane
int64_t d1 = 0;
for (; d1 < size - (size % fVec::size()); d1 += fVec::size()) {
fVec sum_fvec = fVec(float(0));
sum_fvec.store(sum + d1);
}
for (; d1 < size; d1++) {
sum[d1] = float(0);
}
if (ih0 >= ih1 || iw0 >= iw1) {
// since we are not directly using output as the accumulation buffer,
// in case the kernel window is out of range, need to zero the output buffer here.
for (int64_t k = 0; k < size; k++) {
out[k] = 0;
}
// move on to next output index
data_index_step(n, nbatch, oh, output_height, ow, output_width);
continue;
}
// Pass II: compute local sum
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
const scalar_t* in = input_data + n * input_height * input_width * channels +
ih * input_width * channels + iw * channels;
int64_t d2 = 0;
for (; d2 < size - (size % bVec::size()); d2 += bVec::size()) {
bVec data_bvec = bVec::loadu(in + d2);
fVec data_fvec0, data_fvec1;
std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec);
fVec sum_fvec0 = fVec::loadu(sum + d2) + data_fvec0;
fVec sum_fvec1 = fVec::loadu(sum + d2 + fVec::size()) + data_fvec1;
sum_fvec0.store(sum + d2);
sum_fvec1.store(sum + d2 + fVec::size());
}
for (; d2 < size; d2++) {
sum[d2] += float(in[d2]);
}
}
}
// Pass III: compute local average
int64_t d3 = 0;
for (; d3 < size - (size % bVec::size()); d3 += bVec::size()) {
fVec out_fvec0 = fVec::loadu(sum + d3) / fVec(float(divide_factor));
fVec out_fvec1 = fVec::loadu(sum + d3 + fVec::size()) / fVec(float(divide_factor));
bVec out_bvec = convert_from_float<scalar_t>(out_fvec0, out_fvec1);
out_bvec.store(out + d3);
}
for (; d3 < size; d3++) {
out[d3] = scalar_t(sum[d3] / divide_factor);
}
// move on to next output index
data_index_step(n, nbatch, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
}
template <typename scalar_t>
void cpu_avg_pool2d_backward(
const Tensor& grad_input_,
const Tensor& grad_output_,
int kW, int kH,
int dW, int dH,
int padW, int padH,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
auto grad_output = grad_output_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.const_data_ptr<scalar_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
int64_t ndim = grad_output.ndimension();
// treat batch size and channels as one dimension
int64_t channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
int64_t input_height = grad_input.size(-2);
int64_t input_width = grad_input.size(-1);
int64_t output_height = grad_output.size(-2);
int64_t output_width = grad_output.size(-1);
// parallel on dim of N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + c * input_height * input_width;
const scalar_t* grad_output_ptr = grad_output_data + c * output_height * output_width;
for (const auto oh : c10::irange(output_height)) {
for (const auto ow : c10::irange(output_width)) {
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (ih1 - ih0) * (iw1 - iw0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (ih1 - ih0) * (iw1 - iw0);
}
}
scalar_t grad_delta = grad_output_ptr[oh * output_width + ow] / divide_factor;
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
grad_input_ptr[ih * input_width + iw] += grad_delta;
}
}
}
}
}
});
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
template <typename scalar_t>
void cpu_avg_pool2d_backward_channels_last(
const Tensor& grad_input_,
const Tensor& grad_output_,
int kW, int kH,
int dW, int dH,
int padW, int padH,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
auto memory_format = at::MemoryFormat::ChannelsLast;
auto grad_input = grad_input_.contiguous(memory_format);
auto grad_output = grad_output_.contiguous(memory_format);
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto grad_output_data = grad_output.const_data_ptr<scalar_t>();
int64_t nbatch = grad_input.size(0);
int64_t channels = grad_input.size(1);
int64_t input_height = grad_input.size(2);
int64_t input_width = grad_input.size(3);
int64_t output_height = grad_output.size(2);
int64_t output_width = grad_output.size(3);
using Vec = vec::Vectorized<scalar_t>;
// parallel on dim N
at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) {
for (const auto n : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + n * input_height * input_width * channels;
const scalar_t* grad_output_ptr = grad_output_data + n * output_height * output_width * channels;
for (const auto oh : c10::irange(output_height)) {
for (const auto ow : c10::irange(output_width)) {
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (ih1 - ih0) * (iw1 - iw0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (ih1 - ih0) * (iw1 - iw0);
}
}
const scalar_t* gout = grad_output_ptr + oh * output_width * channels + ow * channels;
int64_t size = channels;
int64_t len = size - (size % Vec::size());
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
scalar_t* gin = grad_input_ptr + ih * input_width * channels + iw * channels;
int64_t d = 0;
for (; d < len; d += Vec::size()) {
Vec gin_vec = Vec::loadu(gin + d) + Vec::loadu(gout + d) / Vec(scalar_t(divide_factor));
gin_vec.store(gin + d);
}
for (; d < size; d++) {
gin[d] += gout[d] / divide_factor;
}
}
}
}
}
}
});
if (!grad_input_.is_contiguous(memory_format)) {
grad_input_.copy_(grad_input);
}
}
void avg_pool2d_kernel_impl(
const Tensor& output,
const Tensor& input,
int64_t kW, int64_t kH,
int64_t dW, int64_t dH,
int64_t padW, int64_t padH,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND3(kLong, kBFloat16, kHalf, input.scalar_type(), "avg_pool2d", [&] {
cpu_avg_pool2d<scalar_t>(output, input, kW, kH, dW, dH, padW, padH, count_include_pad, divisor_override);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES_AND3(kLong, kBFloat16, kHalf, input.scalar_type(), "avg_pool2d_channels_last", [&] {
cpu_avg_pool2d_channels_last<scalar_t>(output, input, kW, kH, dW, dH, padW, padH, count_include_pad, divisor_override);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void avg_pool2d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
int kW, int kH,
int dW, int dH,
int padW, int padH,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
switch (grad_output.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND3(kLong, kBFloat16, kHalf, grad_output.scalar_type(), "avg_pool2d_backward", [&] {
cpu_avg_pool2d_backward<scalar_t>(grad_input, grad_output, kW, kH, dW, dH, padW, padH, count_include_pad, divisor_override);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES_AND3(kLong, kBFloat16, kHalf, grad_output.scalar_type(), "avg_pool2d_backward_channels_last", [&] {
cpu_avg_pool2d_backward_channels_last<scalar_t>(grad_input, grad_output, kW, kH, dW, dH, padW, padH, count_include_pad, divisor_override);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
template <typename scalar_t>
void cpu_avg_pool3d(
const Tensor& output_,
const Tensor& input_,
int64_t kW, int64_t kH, int64_t kD,
int64_t dW, int64_t dH, int64_t dD,
int64_t padW, int64_t padH, int64_t padD,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
using acc_t = at::opmath_type<scalar_t>;
auto input = input_.contiguous();
auto output = output_.contiguous();
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t numel = output.numel();
int64_t ndim = input.ndimension();
// treat batch size and channels as one dimension
int64_t channels = ndim == 4 ? input.size(0) : input.size(0) * input.size(1);
int64_t input_depth = input.size(-3);
int64_t input_height = input.size(-2);
int64_t input_width = input.size(-1);
int64_t output_depth = output.size(-3);
int64_t output_height = output.size(-2);
int64_t output_width = output.size(-1);
// parallel on dim N, C, D, H, W
at::parallel_for(0, numel, 0, [&](int64_t begin, int64_t end) {
int64_t c = 0;
int64_t od = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, c, channels, od, output_depth, oh, output_height, ow, output_width);
for (const auto i : c10::irange(begin, end)) {
output_data[i] = static_cast<scalar_t>(0);
// local pointers
scalar_t* input_ptr = input_data + c * input_depth * input_height * input_width;
// compute the mean of the input image...
int64_t id0 = od * dD - padD;
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t id1 = std::min(id0 + kD, input_depth + padD);
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
id0 = std::max(id0, (int64_t) 0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
id1 = std::min(id1, input_depth);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
if (id0 >= id1 || ih0 >= ih1 || iw0 >= iw1) {
// move on to next output index
data_index_step(c, channels, od, output_depth, oh, output_height, ow, output_width);
continue;
}
acc_t sum = 0;
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
}
}
for (const auto id : c10::irange(id0, id1)) {
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
sum += input_ptr[id * input_height * input_width + ih * input_width + iw];
}
}
}
output_data[i] += scalar_t(sum / divide_factor);
// move on to next output index
data_index_step(c, channels, od, output_depth, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous()) {
output_.copy_(output);
}
}
template <typename scalar_t,
typename std::enable_if<!is_reduced_floating_point<scalar_t>::value, int>::type = 0>
void cpu_avg_pool3d_channels_last(
const Tensor& output_,
const Tensor& input_,
int64_t kW, int64_t kH, int64_t kD,
int64_t dW, int64_t dH, int64_t dD,
int64_t padW, int64_t padH, int64_t padD,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
TORCH_CHECK(input_.ndimension() == 5,
"3d average pooling with channels last format supports tensors with 5 dims");
auto memory_format = at::MemoryFormat::ChannelsLast3d;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto input_data = input.data_ptr<scalar_t>();
auto output_data = output.data_ptr<scalar_t>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_depth = input.size(2);
int64_t input_height = input.size(3);
int64_t input_width = input.size(4);
int64_t output_depth = output.size(2);
int64_t output_height = output.size(3);
int64_t output_width = output.size(4);
using Vec = vec::Vectorized<scalar_t>;
// parallel on dim N, H, W
at::parallel_for(0, nbatch * output_depth * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t od = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, od, output_depth, oh, output_height, ow, output_width);
int64_t size = channels;
int64_t len = size - (size % Vec::size());
for (const auto i : c10::irange(begin, end)) {
// compute the mean of the input image...
int64_t id0 = od * dD - padD;
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t id1 = std::min(id0 + kD, input_depth + padD);
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
id0 = std::max(id0, (int64_t) 0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
id1 = std::min(id1, input_depth);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
}
}
scalar_t* out = output_data + i * channels;
// Pass I: zero the out lane
int64_t d1 = 0;
for (; d1 < len; d1 += Vec::size()) {
Vec out_vec = Vec(scalar_t(0));
out_vec.store(out + d1);
}
for (; d1 < size; d1++) {
out[d1] = scalar_t(0);
}
if (id0 >= id1 || ih0 >= ih1 || iw0 >= iw1) {
// move on to next output index
data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width);
continue;
}
// Pass II: compute local sum
for (const auto id : c10::irange(id0, id1)) {
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
scalar_t* in = input_data + n * input_depth * input_height * input_width * channels +
id * input_height * input_width * channels + ih * input_width * channels + iw * channels;
int64_t d2 = 0;
for (; d2 < len; d2 += Vec::size()) {
Vec out_vec = Vec::loadu(out + d2) + Vec::loadu(in + d2);
out_vec.store(out + d2);
}
for (; d2 < size; d2++) {
out[d2] += in[d2];
}
}
}
}
// Pass III: compute local average
int64_t d3 = 0;
for (; d3 < len; d3 += Vec::size()) {
Vec out_vec = Vec::loadu(out + d3) / Vec(scalar_t(divide_factor));
out_vec.store(out + d3);
}
for (; d3 < size; d3++) {
out[d3] = out[d3] / divide_factor;
}
// move on to next output index
data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
}
template <typename scalar_t,
typename std::enable_if<is_reduced_floating_point<scalar_t>::value, int>::type = 0>
void cpu_avg_pool3d_channels_last(
const Tensor& output_,
const Tensor& input_,
int64_t kW, int64_t kH, int64_t kD,
int64_t dW, int64_t dH, int64_t dD,
int64_t padW, int64_t padH, int64_t padD,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
TORCH_CHECK(input_.ndimension() == 5,
"3d average pooling with channels last format supports tensors with 5 dims");
auto memory_format = at::MemoryFormat::ChannelsLast3d;
auto input = input_.contiguous(memory_format);
auto output = output_.contiguous(memory_format);
auto input_data = input.data_ptr<BFloat16>();
auto output_data = output.data_ptr<BFloat16>();
int64_t nbatch = input.size(0);
int64_t channels = input.size(1);
int64_t input_depth = input.size(2);
int64_t input_height = input.size(3);
int64_t input_width = input.size(4);
int64_t output_depth = output.size(2);
int64_t output_height = output.size(3);
int64_t output_width = output.size(4);
using bVec = vec::Vectorized<BFloat16>;
using fVec = vec::Vectorized<float>;
// parallel on dim N, H, W
at::parallel_for(0, nbatch * output_depth * output_height * output_width, 0, [&](int64_t begin, int64_t end) {
int64_t n = 0;
int64_t od = 0;
int64_t oh = 0;
int64_t ow = 0;
data_index_init(begin, n, nbatch, od, output_depth, oh, output_height, ow, output_width);
// temp buffer for sum, use float as accumulation type
// can't reuse output buffer to store sum since it is BFloat16
auto sum_arr = std::make_unique<float []>(channels);
float* sum = sum_arr.get();
int64_t size = channels;
for (const auto i : c10::irange(begin, end)) {
// compute the mean of the input image...
int64_t id0 = od * dD - padD;
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t id1 = std::min(id0 + kD, input_depth + padD);
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
id0 = std::max(id0, (int64_t) 0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
id1 = std::min(id1, input_depth);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
}
}
BFloat16* out = output_data + i * channels;
// Pass I: zero the out lane
int64_t d1 = 0;
for (; d1 < size - (size % fVec::size()); d1 += fVec::size()) {
fVec sum_fvec = fVec(float(0));
sum_fvec.store(sum + d1);
}
for (; d1 < size; d1++) {
sum[d1] = float(0);
}
if (id0 >= id1 || ih0 >= ih1 || iw0 >= iw1) {
// since we are not directly using output as the accumulation buffer,
// in case the kernel window is out of range, need to zero the output buffer here.
for (int64_t k = 0; k < size; k++) {
out[k] = 0;
}
// move on to next output index
data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width);
continue;
}
// Pass II: compute local sum
for (const auto id : c10::irange(id0, id1)) {
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
BFloat16* in = input_data + n * input_depth * input_height * input_width * channels +
id * input_height * input_width * channels + ih * input_width * channels + iw * channels;
int64_t d2 = 0;
for (; d2 < size - (size % bVec::size()); d2 += bVec::size()) {
bVec data_bvec = bVec::loadu(in + d2);
fVec data_fvec0, data_fvec1;
std::tie(data_fvec0, data_fvec1) = convert_bfloat16_float(data_bvec);
fVec sum_fvec0 = fVec::loadu(sum + d2) + data_fvec0;
fVec sum_fvec1 = fVec::loadu(sum + d2 + fVec::size()) + data_fvec1;
sum_fvec0.store(sum + d2);
sum_fvec1.store(sum + d2 + fVec::size());
}
for (; d2 < size; d2++) {
sum[d2] += float(in[d2]);
}
}
}
}
// Pass III: compute local average
int64_t d3 = 0;
for (; d3 < size - (size % bVec::size()); d3 += bVec::size()) {
fVec out_fvec0 = fVec::loadu(sum + d3) / fVec(float(divide_factor));
fVec out_fvec1 = fVec::loadu(sum + d3 + fVec::size()) / fVec(float(divide_factor));
bVec out_bvec = convert_float_bfloat16(out_fvec0, out_fvec1);
out_bvec.store(out + d3);
}
for (; d3 < size; d3++) {
out[d3] = BFloat16(sum[d3] / divide_factor);
}
// move on to next output index
data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width);
}
});
if (!output_.is_contiguous(memory_format)) {
output_.copy_(output);
}
}
template <typename scalar_t>
void cpu_avg_pool3d_backward(
const Tensor& grad_input_,
const Tensor& grad_output_,
int kW, int kH, int kD,
int dW, int dH, int dD,
int padW, int padH, int padD,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
auto grad_output = grad_output_.contiguous();
auto grad_input = grad_input_.contiguous();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
int64_t ndim = grad_output.ndimension();
// treat batch size and channels as one dimension
int64_t channels = ndim == 4 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1);
int64_t input_depth = grad_input.size(-3);
int64_t input_height = grad_input.size(-2);
int64_t input_width = grad_input.size(-1);
int64_t output_depth = grad_output.size(-3);
int64_t output_height = grad_output.size(-2);
int64_t output_width = grad_output.size(-1);
// parallel on dim of N, C
at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) {
for (const auto c : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + c * input_depth * input_height * input_width;
scalar_t* grad_output_ptr = grad_output_data + c * output_depth * output_height * output_width;
for (const auto od : c10::irange(output_depth)) {
for (const auto oh : c10::irange(output_height)) {
for (const auto ow : c10::irange(output_width)) {
int64_t id0 = od * dD - padD;
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t id1 = std::min(id0 + kD, input_depth + padD);
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
id0 = std::max(id0, (int64_t) 0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
}
}
scalar_t grad_delta = grad_output_ptr[od * output_height * output_width + oh * output_width + ow] / divide_factor;
for (const auto id : c10::irange(id0, id1)) {
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
grad_input_ptr[id * input_height * input_width + ih * input_width + iw] += grad_delta;
}
}
}
}
}
}
}
});
if (!grad_input_.is_contiguous()) {
grad_input_.copy_(grad_input);
}
}
template <typename scalar_t>
void cpu_avg_pool3d_backward_channels_last(
const Tensor& grad_input_,
const Tensor& grad_output_,
int kW, int kH, int kD,
int dW, int dH, int dD,
int padW, int padH, int padD,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
auto memory_format = at::MemoryFormat::ChannelsLast3d;
auto grad_input = grad_input_.contiguous(memory_format);
auto grad_output = grad_output_.contiguous(memory_format);
auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>();
auto grad_output_data = grad_output.data_ptr<scalar_t>();
int64_t nbatch = grad_input.size(0);
int64_t channels = grad_input.size(1);
int64_t input_depth = grad_input.size(2);
int64_t input_height = grad_input.size(3);
int64_t input_width = grad_input.size(4);
int64_t output_depth = grad_output.size(2);
int64_t output_height = grad_output.size(3);
int64_t output_width = grad_output.size(4);
using Vec = vec::Vectorized<scalar_t>;
// parallel on dim N
at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) {
for (const auto n : c10::irange(begin, end)) {
scalar_t* grad_input_ptr = grad_input_data + n * input_depth * input_height * input_width * channels;
scalar_t* grad_output_ptr = grad_output_data + n * output_height * output_width * channels;
for (const auto od : c10::irange(output_depth)) {
for (const auto oh : c10::irange(output_height)) {
for (const auto ow : c10::irange(output_width)) {
int64_t id0 = od * dD - padD;
int64_t ih0 = oh * dH - padH;
int64_t iw0 = ow * dW - padW;
int64_t id1 = std::min(id0 + kD, input_depth + padD);
int64_t ih1 = std::min(ih0 + kH, input_height + padH);
int64_t iw1 = std::min(iw0 + kW, input_width + padW);
int64_t pool_size = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
id0 = std::max(id0, (int64_t) 0);
ih0 = std::max(ih0, (int64_t) 0);
iw0 = std::max(iw0, (int64_t) 0);
id1 = std::min(id1, input_depth);
ih1 = std::min(ih1, input_height);
iw1 = std::min(iw1, input_width);
int64_t divide_factor;
if (divisor_override.has_value()) {
divide_factor = divisor_override.value();
} else {
if(count_include_pad) {
divide_factor = pool_size;
} else {
divide_factor = (id1 - id0) * (ih1 - ih0) * (iw1 - iw0);
}
}
scalar_t* gout = grad_output_ptr + od * output_height * output_width * channels + oh * output_width * channels + ow * channels;
int64_t size = channels;
int64_t len = size - (size % Vec::size());
for (const auto id : c10::irange(id0, id1)) {
for (const auto ih : c10::irange(ih0, ih1)) {
for (const auto iw : c10::irange(iw0, iw1)) {
scalar_t* gin = grad_input_ptr + id * input_height * input_width * channels + ih * input_width * channels + iw * channels;
int64_t d = 0;
for (; d < len; d += Vec::size()) {
Vec gin_vec = Vec::loadu(gin + d) + Vec::loadu(gout + d) / Vec(scalar_t(divide_factor));
gin_vec.store(gin + d);
}
for (; d < size; d++) {
gin[d] += gout[d] / divide_factor;
}
}
}
}
}
}
}
}
});
if (!grad_input_.is_contiguous(memory_format)) {
grad_input_.copy_(grad_input);
}
}
void avg_pool3d_kernel_impl(
const Tensor& output,
const Tensor& input,
int64_t kW, int64_t kH, int64_t kD,
int64_t dW, int64_t dH, int64_t dD,
int64_t padW, int64_t padH, int64_t padD,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
switch (input.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND3(kLong, kBFloat16, kHalf, input.scalar_type(), "avg_pool3d", [&] {
cpu_avg_pool3d<scalar_t>(output, input, kW, kH, kD, dW, dH, dD, padW, padH, padD, count_include_pad, divisor_override);
});
break;
}
case at::MemoryFormat::ChannelsLast: {
AT_DISPATCH_FLOATING_TYPES_AND3(kLong, kBFloat16, kHalf, input.scalar_type(), "avg_pool3d_channels_last", [&] {
cpu_avg_pool3d_channels_last<scalar_t>(output, input, kW, kH, kD, dW, dH, dD, padW, padH, padD, count_include_pad, divisor_override);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
void avg_pool3d_backward_kernel_impl(
const Tensor& grad_input,
const Tensor& grad_output,
int kW, int kH, int kD,
int dW, int dH, int dD,
int padW, int padH, int padD,
bool count_include_pad,
std::optional<int64_t> divisor_override) {
switch (grad_output.suggest_memory_format()) {
case at::MemoryFormat::Contiguous: {
AT_DISPATCH_FLOATING_TYPES_AND3(kLong, kBFloat16, kHalf, grad_output.scalar_type(), "avg_pool3d_backward", [&] {
cpu_avg_pool3d_backward<scalar_t>(grad_input, grad_output, kW, kH, kD, dW, dH, dD, padW, padH, padD, count_include_pad, divisor_override);
});
break;
}
case at::MemoryFormat::ChannelsLast3d: {
AT_DISPATCH_FLOATING_TYPES_AND3(kLong, kBFloat16, kHalf, grad_output.scalar_type(), "avg_pool3d_backward_channels_last", [&] {
cpu_avg_pool3d_backward_channels_last<scalar_t>(grad_input, grad_output, kW, kH, kD, dW, dH, dD, padW, padH, padD, count_include_pad, divisor_override);
});
break;
}
default:
TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous");
}
}
} // anonymous namespace
REGISTER_DISPATCH(avg_pool2d_kernel, &avg_pool2d_kernel_impl);
REGISTER_DISPATCH(avg_pool2d_backward_kernel, &avg_pool2d_backward_kernel_impl);
REGISTER_DISPATCH(avg_pool3d_kernel, &avg_pool3d_kernel_impl);
REGISTER_DISPATCH(avg_pool3d_backward_kernel, &avg_pool3d_backward_kernel_impl);
} // at::native