| #define TORCH_ASSERT_ONLY_METHOD_OPERATORS |
| #include <ATen/core/Tensor.h> |
| |
| #include <ATen/Dispatch.h> |
| #include <ATen/native/AdaptivePooling.h> |
| #include <ATen/Parallel.h> |
| #include <ATen/cpu/vec/vec.h> |
| #include <ATen/cpu/vec/functional.h> |
| #include <ATen/native/cpu/utils.h> |
| #include <c10/util/irange.h> |
| #include <ATen/OpMathType.h> |
| |
| namespace at::native { |
| |
| namespace { |
| |
| template <typename scalar_t, typename accscalar_t> |
| void cpu_adaptive_avg_pool2d( |
| Tensor& output_, |
| const Tensor& input_, |
| IntArrayRef output_size) { |
| auto input = input_.contiguous(); |
| auto output = output_.contiguous(); |
| |
| auto input_data = input.const_data_ptr<scalar_t>(); |
| auto output_data = output.data_ptr<scalar_t>(); |
| |
| int64_t ndim = input.ndimension(); |
| // treat batch size and channels as one dimension |
| int64_t channels = ndim == 3 ? input.size(0) : input.size(0) * input.size(1); |
| int64_t input_height = input.size(-2); |
| int64_t input_width = input.size(-1); |
| int64_t output_height = output_size[0]; |
| int64_t output_width = output_size[1]; |
| |
| // parallel on dim of N, C |
| at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) { |
| for (const auto c : c10::irange(begin, end)) { |
| const scalar_t* input_ptr = input_data + c * input_height * input_width; |
| scalar_t* output_ptr = output_data + c * output_height * output_width; |
| |
| for (const auto oh : c10::irange(output_height)) { |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| for (const auto ow : c10::irange(output_width)) { |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| // compute local average |
| accscalar_t sum = 0; |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| sum += accscalar_t(input_ptr[ih * input_width + iw]); |
| } |
| } |
| output_ptr[oh * output_width + ow] = scalar_t(sum / kh / kw); |
| } |
| } |
| } |
| }); |
| |
| if (!output_.is_contiguous()) { |
| output_.copy_(output); |
| } |
| } |
| |
| template <typename scalar_t> |
| typename std::enable_if_t<std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void> |
| cpu_adaptive_avg_pool2d_channels_last( |
| Tensor& output_, |
| const Tensor& input_, |
| IntArrayRef output_size) { |
| auto memory_format = at::MemoryFormat::ChannelsLast; |
| auto input = input_.contiguous(memory_format); |
| auto output = output_.contiguous(memory_format); |
| |
| auto input_data = input.const_data_ptr<scalar_t>(); |
| auto output_data = output.data_ptr<scalar_t>(); |
| |
| int64_t nbatch = input.size(0); |
| int64_t channels = input.size(1); |
| int64_t input_height = input.size(2); |
| int64_t input_width = input.size(3); |
| int64_t output_height = output_size[0]; |
| int64_t output_width = output_size[1]; |
| |
| using Vec = vec::Vectorized<scalar_t>; |
| // parallel on dim N, H, W |
| at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) { |
| int64_t n = 0; |
| int64_t oh = 0; |
| int64_t ow = 0; |
| data_index_init(begin, n, nbatch, oh, output_height, ow, output_width); |
| |
| for (const auto i : c10::irange(begin, end)) { |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| scalar_t* out = output_data + i * channels; |
| int64_t size = channels; |
| |
| // Note: For ordinary usage scenario, each out lane should |
| // fit in L1 cache; otherwise consider block dim C. |
| // Pass I: zero the out lane |
| int64_t d1 = 0; |
| for (; d1 < size - (size % Vec::size()); d1 += Vec::size()) { |
| Vec out_vec = Vec(scalar_t(0)); |
| out_vec.store(out + d1); |
| } |
| for (; d1 < size; d1++) { |
| out[d1] = scalar_t(0); |
| } |
| // Pass II: compute local sum |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| const scalar_t* in = input_data + n * input_height * input_width * channels + |
| ih * input_width * channels + iw * channels; |
| |
| int64_t d2 = 0; |
| for (; d2 < size - (size % Vec::size()); d2 += Vec::size()) { |
| Vec out_vec = Vec::loadu(out + d2) + Vec::loadu(in + d2); |
| out_vec.store(out + d2); |
| } |
| for (; d2 < size; d2++) { |
| out[d2] += in[d2]; |
| } |
| } |
| } |
| // Pass III: compute local average |
| int64_t d3 = 0; |
| for (; d3 < size - (size % Vec::size()); d3 += Vec::size()) { |
| Vec out_vec = Vec::loadu(out + d3) / Vec(scalar_t(kh * kw)); |
| out_vec.store(out + d3); |
| } |
| for (; d3 < size; d3++) { |
| out[d3] = out[d3] / kh / kw; |
| } |
| |
| // move on to next output index |
| data_index_step(n, nbatch, oh, output_height, ow, output_width); |
| } |
| }); |
| |
| if (!output_.is_contiguous(memory_format)) { |
| output_.copy_(output); |
| } |
| } |
| |
| template <typename scalar_t> |
| typename std::enable_if_t<!std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void> |
| cpu_adaptive_avg_pool2d_channels_last( |
| Tensor& output_, |
| const Tensor& input_, |
| IntArrayRef output_size) { |
| auto memory_format = at::MemoryFormat::ChannelsLast; |
| auto input = input_.contiguous(memory_format); |
| auto output = output_.contiguous(memory_format); |
| |
| auto input_data = input.const_data_ptr<scalar_t>(); |
| auto output_data = output.data_ptr<scalar_t>(); |
| |
| int64_t nbatch = input.size(0); |
| int64_t channels = input.size(1); |
| int64_t input_height = input.size(2); |
| int64_t input_width = input.size(3); |
| int64_t output_height = output_size[0]; |
| int64_t output_width = output_size[1]; |
| |
| using bVec = vec::Vectorized<scalar_t>; |
| using fVec = vec::Vectorized<float>; |
| // parallel on dim N, H, W |
| at::parallel_for(0, nbatch * output_height * output_width, 0, [&](int64_t begin, int64_t end) { |
| int64_t n = 0; |
| int64_t oh = 0; |
| int64_t ow = 0; |
| data_index_init(begin, n, nbatch, oh, output_height, ow, output_width); |
| |
| // temp buffer for sum, use float as accumulation type |
| // can't reuse output buffer to store sum since it is BFloat16/Half |
| auto sum_arr = std::make_unique<float []>(channels); |
| float* sum = sum_arr.get(); |
| |
| for (const auto i : c10::irange(begin, end)) { |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| scalar_t* out = output_data + i * channels; |
| int64_t size = channels; |
| |
| // Pass I: zero the out lane |
| int64_t d1 = 0; |
| for (; d1 < size - (size % fVec::size()); d1 += fVec::size()) { |
| fVec sum_fvec = fVec(float(0)); |
| sum_fvec.store(sum + d1); |
| } |
| for (; d1 < size; d1++) { |
| sum[d1] = float(0); |
| } |
| // Pass II: compute local sum |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| const scalar_t* in = input_data + n * input_height * input_width * channels + |
| ih * input_width * channels + iw * channels; |
| |
| int64_t d2 = 0; |
| for (; d2 < size - (size % bVec::size()); d2 += bVec::size()) { |
| bVec data_bvec = bVec::loadu(in + d2); |
| fVec data_fvec0, data_fvec1; |
| std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec); |
| |
| fVec sum_fvec0 = fVec::loadu(sum + d2) + data_fvec0; |
| fVec sum_fvec1 = fVec::loadu(sum + d2 + fVec::size()) + data_fvec1; |
| sum_fvec0.store(sum + d2); |
| sum_fvec1.store(sum + d2 + fVec::size()); |
| } |
| for (; d2 < size; d2++) { |
| sum[d2] += float(in[d2]); |
| } |
| } |
| } |
| // Pass III: compute local average |
| int64_t d3 = 0; |
| for (; d3 < size - (size % bVec::size()); d3 += bVec::size()) { |
| fVec out_fvec0 = fVec::loadu(sum + d3) / fVec(float(kh * kw)); |
| fVec out_fvec1 = fVec::loadu(sum + d3 + fVec::size()) / fVec(float(kh * kw)); |
| |
| bVec out_bvec = convert_from_float<scalar_t>(out_fvec0, out_fvec1); |
| out_bvec.store(out + d3); |
| } |
| for (; d3 < size; d3++) { |
| out[d3] = scalar_t(sum[d3] / kh / kw); |
| } |
| |
| // move on to next output index |
| data_index_step(n, nbatch, oh, output_height, ow, output_width); |
| } |
| }); |
| |
| if (!output_.is_contiguous(memory_format)) { |
| output_.copy_(output); |
| } |
| } |
| |
| template <typename scalar_t> |
| void cpu_adaptive_avg_pool2d_backward( |
| Tensor& grad_input_, |
| const Tensor& grad_output_) { |
| auto grad_output = grad_output_.contiguous(); |
| auto grad_input = grad_input_.contiguous(); |
| |
| auto grad_output_data = grad_output.const_data_ptr<scalar_t>(); |
| auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>(); |
| |
| int64_t ndim = grad_output.ndimension(); |
| // treat batch size and channels as one dimension |
| int64_t channels = ndim == 3 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1); |
| int64_t input_height = grad_input.size(-2); |
| int64_t input_width = grad_input.size(-1); |
| int64_t output_height = grad_output.size(-2); |
| int64_t output_width = grad_output.size(-1); |
| |
| // parallel on dim of N, C |
| at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) { |
| for (const auto c : c10::irange(begin, end)) { |
| scalar_t* grad_input_ptr = grad_input_data + c * input_height * input_width; |
| const scalar_t* grad_output_ptr = grad_output_data + c * output_height * output_width; |
| |
| for (const auto oh : c10::irange(output_height)) { |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| for (const auto ow : c10::irange(output_width)) { |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| scalar_t grad_delta = grad_output_ptr[oh * output_width + ow] / kh / kw; |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| grad_input_ptr[ih * input_width + iw] += grad_delta; |
| } |
| } |
| } |
| } |
| } |
| }); |
| |
| if (!grad_input_.is_contiguous()) { |
| grad_input_.copy_(grad_input); |
| } |
| } |
| |
| template <typename scalar_t> |
| void cpu_adaptive_avg_pool2d_backward_channels_last( |
| Tensor& grad_input_, |
| const Tensor& grad_output_) { |
| auto memory_format = at::MemoryFormat::ChannelsLast; |
| auto grad_input = grad_input_.contiguous(memory_format); |
| auto grad_output = grad_output_.contiguous(memory_format); |
| |
| auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>(); |
| auto grad_output_data = grad_output.const_data_ptr<scalar_t>(); |
| |
| int64_t nbatch = grad_input.size(0); |
| int64_t channels = grad_input.size(1); |
| int64_t input_height = grad_input.size(2); |
| int64_t input_width = grad_input.size(3); |
| int64_t output_height = grad_output.size(2); |
| int64_t output_width = grad_output.size(3); |
| |
| using Vec = vec::Vectorized<scalar_t>; |
| // parallel on dim N |
| at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) { |
| for (const auto n : c10::irange(begin, end)) { |
| scalar_t* grad_input_ptr = grad_input_data + n * input_height * input_width * channels; |
| const scalar_t* grad_output_ptr = grad_output_data + n * output_height * output_width * channels; |
| |
| for (const auto oh : c10::irange(output_height)) { |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| for (const auto ow : c10::irange(output_width)) { |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| const scalar_t* gout = grad_output_ptr + oh * output_width * channels + ow * channels; |
| int64_t size = channels; |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| scalar_t* gin = grad_input_ptr + ih * input_width * channels + iw * channels; |
| |
| int64_t d = 0; |
| for (; d < size - (size % Vec::size()); d += Vec::size()) { |
| Vec gin_vec = Vec::loadu(gin + d) + Vec::loadu(gout + d) / Vec(scalar_t(kh * kw)); |
| gin_vec.store(gin + d); |
| } |
| for (; d < size; d++) { |
| gin[d] += gout[d] / kh / kw; |
| } |
| } |
| } |
| } |
| } |
| } |
| }); |
| |
| if (!grad_input_.is_contiguous(memory_format)) { |
| grad_input_.copy_(grad_input); |
| } |
| } |
| |
| void adaptive_avg_pool2d_kernel_impl( |
| Tensor& output, |
| const Tensor& input, |
| IntArrayRef output_size) { |
| switch (input.suggest_memory_format()) { |
| case at::MemoryFormat::Contiguous: { |
| AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_avg_pool2d", [&] { |
| using param_t = at::opmath_type<scalar_t>; |
| cpu_adaptive_avg_pool2d<scalar_t, /*accscalar_t*/param_t>(output, input, output_size); |
| }); |
| break; |
| } |
| case at::MemoryFormat::ChannelsLast: { |
| AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_avg_pool2d_channels_last", [&]{ |
| cpu_adaptive_avg_pool2d_channels_last<scalar_t>(output, input, output_size); |
| }); |
| break; |
| } |
| default: |
| TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous"); |
| } |
| } |
| |
| void adapative_avg_pool2d_backward_kernel_impl( |
| Tensor& grad_input, |
| const Tensor& grad_output) { |
| switch (grad_output.suggest_memory_format()) { |
| case at::MemoryFormat::Contiguous: { |
| AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_avg_pool2d_backward", [&] { |
| cpu_adaptive_avg_pool2d_backward<scalar_t>(grad_input, grad_output); |
| }); |
| break; |
| } |
| case at::MemoryFormat::ChannelsLast: { |
| AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_avg_pool2d_backward_channels_last", [&]{ |
| cpu_adaptive_avg_pool2d_backward_channels_last<scalar_t>(grad_input, grad_output); |
| }); |
| break; |
| } |
| default: |
| TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous"); |
| } |
| } |
| |
| |
| template <typename scalar_t, typename accscalar_t> |
| void cpu_adaptive_avg_pool3d( |
| Tensor& output_, |
| const Tensor& input_, |
| IntArrayRef output_size) { |
| auto input = input_.contiguous(); |
| auto output = output_.contiguous(); |
| |
| auto input_data = input.data_ptr<scalar_t>(); |
| auto output_data = output.data_ptr<scalar_t>(); |
| |
| int64_t ndim = input.ndimension(); |
| // treat batch size and channels as one dimension |
| int64_t channels = ndim == 4 ? input.size(0) : input.size(0) * input.size(1); |
| int64_t input_depth = input.size(-3); |
| int64_t input_height = input.size(-2); |
| int64_t input_width = input.size(-1); |
| int64_t output_depth = output_size[0]; |
| int64_t output_height = output_size[1]; |
| int64_t output_width = output_size[2]; |
| |
| // parallel on dim of N, C |
| at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) { |
| for (const auto c : c10::irange(begin, end)) { |
| scalar_t* input_ptr = input_data + c * input_depth * input_height * input_width; |
| scalar_t* output_ptr = output_data + c * output_depth * output_height * output_width; |
| |
| for (const auto od : c10::irange(output_depth)) { |
| int64_t id0 = start_index(od, output_depth, input_depth); |
| int64_t id1 = end_index(od, output_depth, input_depth); |
| int64_t kd = id1 - id0; |
| |
| for (const auto oh : c10::irange(output_height)) { |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| for (const auto ow : c10::irange(output_width)) { |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| // compute local average |
| accscalar_t sum = 0; |
| for (const auto id : c10::irange(id0, id1)) { |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| sum += accscalar_t(input_ptr[id * input_height * input_width + ih * input_width + iw]); |
| } |
| } |
| } |
| output_ptr[od * output_height * output_width + oh * output_width + ow] = scalar_t(sum / kd / kh / kw); |
| } |
| } |
| } |
| } |
| }); |
| |
| if (!output_.is_contiguous()) { |
| output_.copy_(output); |
| } |
| } |
| |
| |
| template <typename scalar_t> |
| typename std::enable_if_t<std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void> |
| cpu_adaptive_avg_pool3d_channels_last( |
| Tensor& output_, |
| const Tensor& input_, |
| IntArrayRef output_size) { |
| auto memory_format = at::MemoryFormat::ChannelsLast3d; |
| auto input = input_.contiguous(memory_format); |
| auto output = output_.contiguous(memory_format); |
| |
| auto input_data = input.data_ptr<scalar_t>(); |
| auto output_data = output.data_ptr<scalar_t>(); |
| |
| int64_t nbatch = input.size(0); |
| int64_t channels = input.size(1); |
| int64_t input_depth = input.size(2); |
| int64_t input_height = input.size(3); |
| int64_t input_width = input.size(4); |
| int64_t output_depth = output_size[0]; |
| int64_t output_height = output_size[1]; |
| int64_t output_width = output_size[2]; |
| |
| using Vec = vec::Vectorized<scalar_t>; |
| // parallel on dim N, H, W |
| at::parallel_for(0, nbatch * output_depth * output_height * output_width, 0, [&](int64_t begin, int64_t end) { |
| int64_t n = 0; |
| int64_t od = 0; |
| int64_t oh = 0; |
| int64_t ow = 0; |
| data_index_init(begin, n, nbatch, od, output_depth, oh, output_height, ow, output_width); |
| |
| for (const auto i : c10::irange(begin, end)) { |
| int64_t id0 = start_index(od, output_depth, input_depth); |
| int64_t id1 = end_index(od, output_depth, input_depth); |
| int64_t kd = id1 - id0; |
| |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| scalar_t* out = output_data + i * channels; |
| int64_t size = channels; |
| |
| // Note: For oridinary usage scenario, each out lane should |
| // fit in L1 cache; otherwise consider block dim C. |
| // Pass I: zero the out lane |
| int64_t d1 = 0; |
| for (; d1 < size - (size % Vec::size()); d1 += Vec::size()) { |
| Vec out_vec = Vec(scalar_t(0)); |
| out_vec.store(out + d1); |
| } |
| for (; d1 < size; d1++) { |
| out[d1] = scalar_t(0); |
| } |
| // Pass II: compute local sum |
| for (const auto id : c10::irange(id0, id1)) { |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| scalar_t* in = input_data + n * input_depth * input_height * input_width * channels + |
| id * input_height * input_width * channels + ih * input_width * channels + iw * channels; |
| |
| int64_t d2 = 0; |
| for (; d2 < size - (size % Vec::size()); d2 += Vec::size()) { |
| Vec out_vec = Vec::loadu(out + d2) + Vec::loadu(in + d2); |
| out_vec.store(out + d2); |
| } |
| for (; d2 < size; d2++) { |
| out[d2] += in[d2]; |
| } |
| } |
| } |
| } |
| // Pass III: compute local average |
| int64_t d3 = 0; |
| for (; d3 < size - (size % Vec::size()); d3 += Vec::size()) { |
| Vec out_vec = Vec::loadu(out + d3) / Vec(scalar_t(kd * kh * kw)); |
| out_vec.store(out + d3); |
| } |
| for (; d3 < size; d3++) { |
| out[d3] = out[d3] / kd / kh / kw; |
| } |
| |
| // move on to next output index |
| data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width); |
| } |
| }); |
| |
| if (!output_.is_contiguous(memory_format)) { |
| output_.copy_(output); |
| } |
| } |
| |
| template <typename scalar_t> |
| typename std::enable_if_t<!std::is_same_v<scalar_t, at::opmath_type<scalar_t>>, void> |
| cpu_adaptive_avg_pool3d_channels_last( |
| Tensor& output_, |
| const Tensor& input_, |
| IntArrayRef output_size) { |
| auto memory_format = at::MemoryFormat::ChannelsLast3d; |
| auto input = input_.contiguous(memory_format); |
| auto output = output_.contiguous(memory_format); |
| |
| auto input_data = input.data_ptr<scalar_t>(); |
| auto output_data = output.data_ptr<scalar_t>(); |
| |
| int64_t nbatch = input.size(0); |
| int64_t channels = input.size(1); |
| int64_t input_depth = input.size(2); |
| int64_t input_height = input.size(3); |
| int64_t input_width = input.size(4); |
| int64_t output_depth = output_size[0]; |
| int64_t output_height = output_size[1]; |
| int64_t output_width = output_size[2]; |
| |
| using bVec = vec::Vectorized<scalar_t>; |
| using fVec = vec::Vectorized<float>; |
| // parallel on dim N,D, H, W |
| at::parallel_for(0, nbatch * output_depth * output_height * output_width, 0, [&](int64_t begin, int64_t end) { |
| int64_t n = 0; |
| int64_t oh = 0; |
| int64_t ow = 0; |
| int64_t od = 0; |
| data_index_init(begin, n, nbatch, od, output_depth, oh, output_height, ow, output_width); |
| |
| // temp buffer for sum, use float as accumulation type |
| // can't reuse output buffer to store sum since it is BFloat16/Half |
| auto sum_arr = std::make_unique<float []>(channels); |
| float* sum = sum_arr.get(); |
| |
| for (const auto i : c10::irange(begin, end)) { |
| int64_t id0 = start_index(od, output_depth, input_depth); |
| int64_t id1 = end_index(od, output_depth, input_depth); |
| int64_t kd = id1 - id0; |
| |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| scalar_t* out = output_data + i * channels; |
| int64_t size = channels; |
| |
| // Pass I: zero the out lane |
| int64_t d1 = 0; |
| for (; d1 < size - (size % fVec::size()); d1 += fVec::size()) { |
| fVec sum_fvec = fVec(float(0)); |
| sum_fvec.store(sum + d1); |
| } |
| for (; d1 < size; d1++) { |
| sum[d1] = float(0); |
| } |
| // Pass II: compute local sum |
| for (const auto id : c10::irange(id0, id1)) { |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| scalar_t* in = input_data + n * input_depth * input_height * input_width * channels + |
| id * input_height * input_width * channels + |
| ih * input_width * channels + iw * channels; |
| |
| int64_t d2 = 0; |
| for (; d2 < size - (size % bVec::size()); d2 += bVec::size()) { |
| bVec data_bvec = bVec::loadu(in + d2); |
| fVec data_fvec0, data_fvec1; |
| std::tie(data_fvec0, data_fvec1) = convert_to_float<scalar_t>(data_bvec); |
| |
| fVec sum_fvec0 = fVec::loadu(sum + d2) + data_fvec0; |
| fVec sum_fvec1 = fVec::loadu(sum + d2 + fVec::size()) + data_fvec1; |
| sum_fvec0.store(sum + d2); |
| sum_fvec1.store(sum + d2 + fVec::size()); |
| } |
| for (; d2 < size; d2++) { |
| sum[d2] += float(in[d2]); |
| } |
| } |
| } |
| } |
| // Pass III: compute local average |
| int64_t d3 = 0; |
| for (; d3 < size - (size % bVec::size()); d3 += bVec::size()) { |
| fVec out_fvec0 = fVec::loadu(sum + d3) / fVec(float(kd * kh * kw)); |
| fVec out_fvec1 = fVec::loadu(sum + d3 + fVec::size()) / fVec(float(kd * kh * kw)); |
| |
| bVec out_bvec = convert_from_float<scalar_t>(out_fvec0, out_fvec1); |
| out_bvec.store(out + d3); |
| } |
| for (; d3 < size; d3++) { |
| out[d3] = scalar_t(sum[d3] / kd / kh / kw); |
| } |
| |
| // move on to next output index |
| data_index_step(n, nbatch, od, output_depth, oh, output_height, ow, output_width); |
| } |
| }); |
| |
| if (!output_.is_contiguous(memory_format)) { |
| output_.copy_(output); |
| } |
| } |
| |
| template <typename scalar_t> |
| void cpu_adaptive_avg_pool3d_backward( |
| Tensor& grad_input_, |
| const Tensor& grad_output_) { |
| auto grad_output = grad_output_.contiguous(); |
| auto grad_input = grad_input_.contiguous(); |
| |
| auto grad_output_data = grad_output.data_ptr<scalar_t>(); |
| auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>(); |
| |
| int64_t ndim = grad_output.ndimension(); |
| // treat batch size and channels as one dimension |
| int64_t channels = ndim == 4 ? grad_output.size(0) : grad_output.size(0) * grad_output.size(1); |
| int64_t input_depth = grad_input.size(-3); |
| int64_t input_height = grad_input.size(-2); |
| int64_t input_width = grad_input.size(-1); |
| int64_t output_depth = grad_output.size(-3); |
| int64_t output_height = grad_output.size(-2); |
| int64_t output_width = grad_output.size(-1); |
| |
| // parallel on dim of N, C |
| at::parallel_for(0, channels, 0, [&](int64_t begin, int64_t end) { |
| for (const auto c : c10::irange(begin, end)) { |
| scalar_t* grad_input_ptr = grad_input_data + c * input_depth * input_height * input_width; |
| scalar_t* grad_output_ptr = grad_output_data + c * output_depth * output_height * output_width; |
| |
| for (const auto od : c10::irange(output_depth)) { |
| int64_t id0 = start_index(od, output_depth, input_depth); |
| int64_t id1 = end_index(od, output_depth, input_depth); |
| int64_t kd = id1 - id0; |
| for (const auto oh : c10::irange(output_height)) { |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| for (const auto ow : c10::irange(output_width)) { |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| scalar_t grad_delta = grad_output_ptr[od * output_width * output_height + oh * output_width + ow] / kd / kh / kw; |
| for (const auto id : c10::irange(id0, id1)) { |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| grad_input_ptr[id * input_height * input_width + ih * input_width + iw] += grad_delta; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| }); |
| |
| if (!grad_input_.is_contiguous()) { |
| grad_input_.copy_(grad_input); |
| } |
| } |
| |
| template <typename scalar_t> |
| void cpu_adaptive_avg_pool3d_backward_channels_last( |
| Tensor& grad_input_, |
| const Tensor& grad_output_) { |
| auto memory_format = at::MemoryFormat::ChannelsLast3d; |
| auto grad_input = grad_input_.contiguous(memory_format); |
| auto grad_output = grad_output_.contiguous(memory_format); |
| |
| auto grad_input_data = grad_input.mutable_data_ptr<scalar_t>(); |
| auto grad_output_data = grad_output.data_ptr<scalar_t>(); |
| |
| int64_t nbatch = grad_input.size(0); |
| int64_t channels = grad_input.size(1); |
| int64_t input_depth = grad_input.size(2); |
| int64_t input_height = grad_input.size(3); |
| int64_t input_width = grad_input.size(4); |
| int64_t output_depth = grad_output.size(2); |
| int64_t output_height = grad_output.size(3); |
| int64_t output_width = grad_output.size(4); |
| |
| using Vec = vec::Vectorized<scalar_t>; |
| // parallel on dim N |
| at::parallel_for(0, nbatch, 0, [&](int64_t begin, int64_t end) { |
| for (const auto n : c10::irange(begin, end)) { |
| scalar_t* grad_input_ptr = grad_input_data + n * input_depth * input_height * input_width * channels; |
| scalar_t* grad_output_ptr = grad_output_data + n * output_depth * output_height * output_width * channels; |
| |
| for (const auto od : c10::irange(output_depth)) { |
| int64_t id0 = start_index(od, output_depth, input_depth); |
| int64_t id1 = end_index(od, output_depth, input_depth); |
| int64_t kd = id1 - id0; |
| for (const auto oh : c10::irange(output_height)) { |
| int64_t ih0 = start_index(oh, output_height, input_height); |
| int64_t ih1 = end_index(oh, output_height, input_height); |
| int64_t kh = ih1 - ih0; |
| |
| for (const auto ow : c10::irange(output_width)) { |
| int64_t iw0 = start_index(ow, output_width, input_width); |
| int64_t iw1 = end_index(ow, output_width, input_width); |
| int64_t kw = iw1 - iw0; |
| |
| scalar_t* gout = grad_output_ptr + od * output_depth * channels + oh * output_width * channels + ow * channels; |
| int64_t size = channels; |
| for (const auto id : c10::irange(id0, id1)) { |
| for (const auto ih : c10::irange(ih0, ih1)) { |
| for (const auto iw : c10::irange(iw0, iw1)) { |
| scalar_t* gin = grad_input_ptr + id * input_width * input_height * channels + ih * input_width * channels + iw * channels; |
| |
| int64_t d = 0; |
| for (; d < size - (size % Vec::size()); d += Vec::size()) { |
| Vec gin_vec = Vec::loadu(gin + d) + Vec::loadu(gout + d) / Vec(scalar_t(kd * kh * kw)); |
| gin_vec.store(gin + d); |
| } |
| for (; d < size; d++) { |
| gin[d] += gout[d] / kd / kh / kw; |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| }); |
| |
| if (!grad_input_.is_contiguous(memory_format)) { |
| grad_input_.copy_(grad_input); |
| } |
| } |
| |
| |
| void adaptive_avg_pool3d_kernel_impl( |
| Tensor& output, |
| const Tensor& input, |
| IntArrayRef output_size) { |
| switch (input.suggest_memory_format()) { |
| case at::MemoryFormat::Contiguous: { |
| AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_avg_pool3d", [&] { |
| using param_t = at::opmath_type<scalar_t>; |
| cpu_adaptive_avg_pool3d<scalar_t, /*accscalar_t*/param_t>(output, input, output_size); |
| }); |
| break; |
| } |
| case at::MemoryFormat::ChannelsLast3d: { |
| AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, input.scalar_type(), "adaptive_avg_pool3d_channels_last", [&]{ |
| cpu_adaptive_avg_pool3d_channels_last<scalar_t>(output, input, output_size); |
| }); |
| break; |
| } |
| default: |
| TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous"); |
| } |
| } |
| |
| void adapative_avg_pool3d_backward_kernel_impl( |
| Tensor& grad_input, |
| const Tensor& grad_output) { |
| switch (grad_output.suggest_memory_format()) { |
| case at::MemoryFormat::Contiguous: { |
| AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_avg_pool3d_backward", [&] { |
| cpu_adaptive_avg_pool3d_backward<scalar_t>(grad_input, grad_output); |
| }); |
| break; |
| } |
| case at::MemoryFormat::ChannelsLast3d: { |
| AT_DISPATCH_FLOATING_TYPES_AND2(ScalarType::BFloat16, ScalarType::Half, grad_output.scalar_type(), "adaptive_avg_pool3d_backward_channels_last", [&]{ |
| cpu_adaptive_avg_pool3d_backward_channels_last<scalar_t>(grad_input, grad_output); |
| }); |
| break; |
| } |
| default: |
| TORCH_CHECK(false, "Unsupported memory format. Supports only ChannelsLast, Contiguous"); |
| } |
| } |
| |
| } // anonymous namespace |
| |
| REGISTER_DISPATCH(adaptive_avg_pool2d_kernel, &adaptive_avg_pool2d_kernel_impl); |
| REGISTER_DISPATCH(adaptive_avg_pool2d_backward_kernel, &adapative_avg_pool2d_backward_kernel_impl); |
| REGISTER_DISPATCH(adaptive_avg_pool3d_kernel, &adaptive_avg_pool3d_kernel_impl); |
| REGISTER_DISPATCH(adaptive_avg_pool3d_backward_kernel, &adapative_avg_pool3d_backward_kernel_impl); |
| |
| } // at::native |