blob: fc2e2e3cfd49db72f7122cb58990359ea60b8e89 [file] [log] [blame]
#include <ATen/native/quantized/PackedParams.h>
#include <ATen/native/quantized/cpu/QuantUtils.h>
#include <torch/library.h>
#include <torch/torch.h>
namespace {
using namespace torch::autograd;
using namespace at;
// This class is a custom gradient function that enables quantized tensor to
// pass input gradient back to the previous layers This function can be used
// when the user is adapting mixed precision for traninig after quantization
// From torch layer, we have no access to linear_dynamic operator which needs to
// access via redispatching mechanism TO-DO : currently we are supporting per
// tensor quantization only, will expand to per channel later on
class PackedLinearWeightDynamicBackward
: public Function<PackedLinearWeightDynamicBackward> {
public:
static torch::Tensor forward(
AutogradContext* ctx,
at::Tensor input,
const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight,
bool reduce_range) {
static auto op =
at::Dispatcher::singleton()
.findSchemaOrThrow("quantized::linear_dynamic", "")
.typed<at::Tensor(
at::Tensor,
c10::intrusive_ptr<
LinearPackedParamsBase,
c10::detail::intrusive_target_default_null_type<
LinearPackedParamsBase>> const&,
bool)>();
auto output = op.redispatch(
DispatchKeySet({DispatchKey::CPU}), input, packed_weight, reduce_range);
auto input_contig = input.contiguous();
// Calculate statistics for quantization of input Tensor
float x_min = 0;
float x_max = 0;
if (input.numel() > 0) {
x_min = input_contig.min().item<float>();
x_max = input_contig.max().item<float>();
}
auto q_params = quant_utils::ChooseQuantizationParams(
/*min=*/x_min,
/*max=*/x_max,
/*qmin=*/0,
/*qmax=*/255);
ctx->saved_data["weight"] = packed_weight;
// q_params.scale : shape [1] (per-tensor)
ctx->saved_data["input_scale"] = q_params.scale;
return output;
}
static tensor_list backward(AutogradContext* ctx, tensor_list grad_outputs) {
if (grad_outputs.empty()) {
return {torch::Tensor(), torch::Tensor(), torch::Tensor()};
}
auto packed_weight =
ctx->saved_data["weight"].toCustomClass<LinearPackedParamsBase>();
auto unpacked_parameters = packed_weight->unpack();
auto original_weight = std::get<0>(unpacked_parameters);
auto input_scale = ctx->saved_data["input_scale"].toDouble();
// Gradient for post-scaling
// Let us rewrite this layer by separating the matmul from the output
// scaling: y = (x * s1) @ w * s2 + b So you now back-propagate through four
// operations: + b, * s2, @ W, and * s1. The steps are: start with the
// gradient from the top, aka the adjoint, which is grad_outputs[0].
// gradient for + b: this is a no-op.
// gradient for * s2: scale by s2. That's the affine/per-channel scale baked
// into W. gradient for @ W: matmul with W.t. gradient for * s1: scale by
// s1.
auto grad_output0 = grad_outputs[0];
const auto qtype = original_weight.qscheme();
if (qtype == at::kPerTensorAffine) {
grad_output0 *= original_weight.q_scale();
original_weight = at::permute(original_weight, {1, 0});
} else if (qtype == at::kPerChannelAffine) {
// Per Channel quantizer does not support transpose.
// Manual transpose is necessary
original_weight = original_weight.dequantize();
// kwanghoon(TODO): This is going to be a long term solution that is applicable
// to every models One issue with quantizing a gradient, we can't get good
// enough gradient to improve model accuracy when model become complicated As of
// now, we can disable, and comeback when we figure it out better solution.
#if 0
// Enable Kernel backend for quantized backpropagaiton matrix
// multiplication
original_weight = at::permute(original_weight, {1, 0});
// Take advantage of QNNPACK for matrix multiplication
// Per channel scales & zero point computation
// Sources :
// https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/observer.py#L350-L353
auto [amin, amax] = at::aminmax(original_weight, /*dim* = */ 1);
// QInt8 type signed quantization
auto qmax = 127;
auto qmin = -128;
// Clamp with some epsilon number, so that value does not go below zero
auto epsilon = 1e-9;
auto new_scales = (amax - amin) / float(qmax - qmin);
new_scales = at::clamp(new_scales, epsilon);
auto new_zero_point =
qmin - at::round(amin / new_scales).toType(c10::kInt);
new_zero_point = at::clamp(new_zero_point, qmin, qmax);
// TO-DO (BUGBUG)
// Backend kernel is designed for inference, tightly coded for output
// channel. For mathematical correctness, we should enable to run kernel
// with input channel axis after transpose. As workaround, we are simply
// either exploring per tensor quantization or per channel quantization
// with axis = 0
original_weight = at::quantize_per_channel(
original_weight,
new_scales,
new_zero_point,
/*axis = 1 for transpose, but we are forcing it to non-transposed case
due to above issue*/
0,
c10::kQInt8);
#endif
} else {
TORCH_INTERNAL_ASSERT(false, "Unsupported quantization scheme.");
}
#if 1
// Pure FP32 computation, useful for debugging purpose
auto dLdX1 = torch::matmul(grad_output0, original_weight);
#else
// Take advantage of QNNPACK for matrix multiplication
static auto op = at::Dispatcher::singleton()
.findSchemaOrThrow("quantized::linear_prepack", "")
.typed<c10::intrusive_ptr<LinearPackedParamsBase>(
at::Tensor, c10::optional<at::Tensor>)>();
auto prepacked_weight = op.call(original_weight, nullopt);
auto dLdX1 =
prepacked_weight->apply_dynamic(grad_output0.toType(c10::kFloat));
#endif
auto input_grad0 = dLdX1 * input_scale;
return {input_grad0, torch::Tensor(), torch::Tensor()};
}
};
at::Tensor packed_linear_weight_grad(
c10::DispatchKeySet ks,
at::Tensor input,
const c10::intrusive_ptr<LinearPackedParamsBase>& packed_weight,
bool reduce_range) {
return PackedLinearWeightDynamicBackward::apply(
input, packed_weight, reduce_range);
}
} // namespace
namespace at {
namespace native {
namespace {
TORCH_LIBRARY_IMPL(quantized, Autograd, m) {
m.impl(
TORCH_SELECTIVE_NAME("quantized::linear_dynamic"),
TORCH_FN(packed_linear_weight_grad));
}
} // namespace
} // namespace native
} // namespace at