blob: ae40f1630826c8e4ab70dff77adb8e04a930a772 [file] [log] [blame]
#include <array>
#include <memory>
#include <vector>
#include <gtest/gtest.h>
#include "caffe2/core/blob.h"
#include "caffe2/core/context.h"
#include "caffe2/core/tensor.h"
#include "caffe2/proto/caffe2.pb.h"
#include "caffe2/utils/conversions.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
TEST(MathTest, GemmNoTransNoTrans) {
DeviceOption option;
CPUContext cpu_context(option);
Tensor X(std::vector<int>{5, 10}, CPU);
Tensor W(std::vector<int>{10, 6}, CPU);
Tensor Y(std::vector<int>{5, 6}, CPU);
EXPECT_EQ(X.size(), 50);
EXPECT_EQ(W.size(), 60);
math::Set<float, CPUContext>(
X.size(), 1, X.mutable_data<float>(), &cpu_context);
math::Set<float, CPUContext>(
W.size(), 1, W.mutable_data<float>(), &cpu_context);
EXPECT_EQ(Y.size(), 30);
for (int i = 0; i < X.size(); ++i) {
CHECK_EQ(X.data<float>()[i], 1);
}
for (int i = 0; i < W.size(); ++i) {
CHECK_EQ(W.data<float>()[i], 1);
}
const float kOne = 1.0;
const float kPointFive = 0.5;
const float kZero = 0.0;
math::Gemm<float, CPUContext>(
CblasNoTrans,
CblasNoTrans,
5,
6,
10,
kOne,
X.data<float>(),
W.data<float>(),
kZero,
Y.mutable_data<float>(),
&cpu_context);
EXPECT_EQ(Y.size(), 30);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 10) << i;
}
// Test Accumulate
math::Gemm<float, CPUContext>(
CblasNoTrans,
CblasNoTrans,
5,
6,
10,
kOne,
X.data<float>(),
W.data<float>(),
kPointFive,
Y.mutable_data<float>(),
&cpu_context);
EXPECT_EQ(Y.size(), 30);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 15) << i;
}
// Test Accumulate
math::Gemm<float, CPUContext>(
CblasNoTrans,
CblasNoTrans,
5,
6,
10,
kPointFive,
X.data<float>(),
W.data<float>(),
kOne,
Y.mutable_data<float>(),
&cpu_context);
EXPECT_EQ(Y.size(), 30);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 20) << i;
}
}
TEST(MathTest, GemmNoTransTrans) {
DeviceOption option;
CPUContext cpu_context(option);
Tensor X(std::vector<int>{5, 10}, CPU);
Tensor W(std::vector<int>{6, 10}, CPU);
Tensor Y(std::vector<int>{5, 6}, CPU);
EXPECT_EQ(X.size(), 50);
EXPECT_EQ(W.size(), 60);
math::Set<float, CPUContext>(
X.size(), 1, X.mutable_data<float>(), &cpu_context);
math::Set<float, CPUContext>(
W.size(), 1, W.mutable_data<float>(), &cpu_context);
EXPECT_EQ(Y.size(), 30);
for (int i = 0; i < X.size(); ++i) {
CHECK_EQ(X.data<float>()[i], 1);
}
for (int i = 0; i < W.size(); ++i) {
CHECK_EQ(W.data<float>()[i], 1);
}
const float kOne = 1.0;
const float kPointFive = 0.5;
const float kZero = 0.0;
math::Gemm<float, CPUContext>(
CblasNoTrans,
CblasTrans,
5,
6,
10,
kOne,
X.data<float>(),
W.data<float>(),
kZero,
Y.mutable_data<float>(),
&cpu_context);
EXPECT_EQ(Y.size(), 30);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 10) << i;
}
// Test Accumulate
math::Gemm<float, CPUContext>(
CblasNoTrans,
CblasTrans,
5,
6,
10,
kOne,
X.data<float>(),
W.data<float>(),
kPointFive,
Y.mutable_data<float>(),
&cpu_context);
EXPECT_EQ(Y.size(), 30);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 15) << i;
}
math::Gemm<float, CPUContext>(
CblasNoTrans,
CblasTrans,
5,
6,
10,
kPointFive,
X.data<float>(),
W.data<float>(),
kOne,
Y.mutable_data<float>(),
&cpu_context);
EXPECT_EQ(Y.size(), 30);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 20) << i;
}
}
namespace {
constexpr float kEps = 1e-5;
class GemmBatchedTest
: public testing::TestWithParam<testing::tuple<bool, bool>> {
protected:
void SetUp() override {
cpu_context_ = make_unique<CPUContext>(option_);
X_.Resize(std::vector<TIndex>{3, 5, 10});
W_.Resize(std::vector<TIndex>{3, 6, 10});
Y_.Resize(std::vector<TIndex>{3, 5, 6});
math::Set<float, CPUContext>(
X_.size(), 1, X_.mutable_data<float>(), cpu_context_.get());
math::Set<float, CPUContext>(
W_.size(), 1, W_.mutable_data<float>(), cpu_context_.get());
trans_X_ = std::get<0>(GetParam());
trans_W_ = std::get<1>(GetParam());
}
void RunGemmBatched(const float alpha, const float beta) {
const float* X_data = X_.template data<float>();
const float* W_data = W_.template data<float>();
float* Y_data = Y_.template mutable_data<float>();
const int X_stride = 5 * 10;
const int W_stride = 6 * 10;
const int Y_stride = 5 * 6;
std::array<const float*, 3> X_array = {
X_data, X_data + X_stride, X_data + 2 * X_stride};
std::array<const float*, 3> W_array = {
W_data, W_data + W_stride, W_data + 2 * W_stride};
std::array<float*, 3> Y_array = {
Y_data, Y_data + Y_stride, Y_data + 2 * Y_stride};
math::GemmBatched(
trans_X_ ? CblasTrans : CblasNoTrans,
trans_W_ ? CblasTrans : CblasNoTrans,
3,
5,
6,
10,
alpha,
X_array.data(),
W_array.data(),
beta,
Y_array.data(),
cpu_context_.get());
}
void RunGemmStridedBatched(const float alpha, const float beta) {
const float* X_data = X_.template data<float>();
const float* W_data = W_.template data<float>();
float* Y_data = Y_.template mutable_data<float>();
const int X_stride = 5 * 10;
const int W_stride = 6 * 10;
const int Y_stride = 5 * 6;
math::GemmStridedBatched<float, CPUContext>(
trans_X_ ? CblasTrans : CblasNoTrans,
trans_W_ ? CblasTrans : CblasNoTrans,
3,
5,
6,
10,
alpha,
X_data,
X_stride,
W_data,
W_stride,
beta,
Y_data,
Y_stride,
cpu_context_.get());
}
void VerifyOutput(const float value) const {
for (int i = 0; i < Y_.size(); ++i) {
EXPECT_FLOAT_EQ(value, Y_.template data<float>()[i]);
}
}
DeviceOption option_;
std::unique_ptr<CPUContext> cpu_context_;
Tensor X_{CPU};
Tensor W_{CPU};
Tensor Y_{CPU};
bool trans_X_;
bool trans_W_;
};
TEST_P(GemmBatchedTest, GemmBatchedFloatTest) {
RunGemmBatched(1.0f, 0.0f);
VerifyOutput(10.0f);
RunGemmBatched(1.0f, 0.5f);
VerifyOutput(15.0f);
RunGemmBatched(0.5f, 1.0f);
VerifyOutput(20.0f);
}
TEST_P(GemmBatchedTest, GemmStridedBatchedFloatTest) {
RunGemmStridedBatched(1.0f, 0.0f);
VerifyOutput(10.0f);
RunGemmStridedBatched(1.0f, 0.5f);
VerifyOutput(15.0f);
RunGemmStridedBatched(0.5f, 1.0f);
VerifyOutput(20.0f);
}
INSTANTIATE_TEST_CASE_P(
GemmBatchedTrans,
GemmBatchedTest,
testing::Combine(testing::Bool(), testing::Bool()));
} // namespace
TEST(MathTest, GemvNoTrans) {
DeviceOption option;
CPUContext cpu_context(option);
Tensor A(std::vector<int>{5, 10}, CPU);
Tensor X(std::vector<int>{10}, CPU);
Tensor Y(std::vector<int>{5}, CPU);
EXPECT_EQ(A.size(), 50);
EXPECT_EQ(X.size(), 10);
math::Set<float, CPUContext>(
A.size(), 1, A.mutable_data<float>(), &cpu_context);
math::Set<float, CPUContext>(
X.size(), 1, X.mutable_data<float>(), &cpu_context);
EXPECT_EQ(Y.size(), 5);
for (int i = 0; i < A.size(); ++i) {
CHECK_EQ(A.data<float>()[i], 1);
}
for (int i = 0; i < X.size(); ++i) {
CHECK_EQ(X.data<float>()[i], 1);
}
const float kOne = 1.0;
const float kPointFive = 0.5;
const float kZero = 0.0;
math::Gemv<float, CPUContext>(
CblasNoTrans,
5,
10,
kOne,
A.data<float>(),
X.data<float>(),
kZero,
Y.mutable_data<float>(),
&cpu_context);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 10) << i;
}
// Test Accumulate
math::Gemv<float, CPUContext>(
CblasNoTrans,
5,
10,
kOne,
A.data<float>(),
X.data<float>(),
kPointFive,
Y.mutable_data<float>(),
&cpu_context);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 15) << i;
}
// Test Accumulate
math::Gemv<float, CPUContext>(
CblasNoTrans,
5,
10,
kPointFive,
A.data<float>(),
X.data<float>(),
kOne,
Y.mutable_data<float>(),
&cpu_context);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 20) << i;
}
}
TEST(MathTest, GemvTrans) {
DeviceOption option;
CPUContext cpu_context(option);
Tensor A(std::vector<int>{6, 10}, CPU);
Tensor X(std::vector<int>{6}, CPU);
Tensor Y(std::vector<int>{10}, CPU);
EXPECT_EQ(A.size(), 60);
EXPECT_EQ(X.size(), 6);
math::Set<float, CPUContext>(
A.size(), 1, A.mutable_data<float>(), &cpu_context);
math::Set<float, CPUContext>(
X.size(), 1, X.mutable_data<float>(), &cpu_context);
EXPECT_EQ(Y.size(), 10);
for (int i = 0; i < A.size(); ++i) {
CHECK_EQ(A.data<float>()[i], 1);
}
for (int i = 0; i < X.size(); ++i) {
CHECK_EQ(X.data<float>()[i], 1);
}
const float kOne = 1.0;
const float kPointFive = 0.5;
const float kZero = 0.0;
math::Gemv<float, CPUContext>(
CblasTrans,
6,
10,
kOne,
A.data<float>(),
X.data<float>(),
kZero,
Y.mutable_data<float>(),
&cpu_context);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 6) << i;
}
// Test Accumulate
math::Gemv<float, CPUContext>(
CblasTrans,
6,
10,
kOne,
A.data<float>(),
X.data<float>(),
kPointFive,
Y.mutable_data<float>(),
&cpu_context);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 9) << i;
}
// Test Accumulate
math::Gemv<float, CPUContext>(
CblasTrans,
6,
10,
kPointFive,
A.data<float>(),
X.data<float>(),
kOne,
Y.mutable_data<float>(),
&cpu_context);
for (int i = 0; i < Y.size(); ++i) {
CHECK_EQ(Y.data<float>()[i], 12) << i;
}
}
using convert::cpu_float2half_rn;
using convert::cpu_half2float;
TEST(MathTest, FloatToHalfConversion) {
float a = 1.0f;
float b = 1.75f;
float c = 128.125f;
float converted_a = cpu_half2float(cpu_float2half_rn(a));
float converted_b = cpu_half2float(cpu_float2half_rn(b));
float converted_c = cpu_half2float(cpu_float2half_rn(c));
CHECK_EQ(a, converted_a);
CHECK_EQ(b, converted_b);
CHECK_EQ(c, converted_c);
}
namespace {
class ReduceTensorTest : public testing::Test {
protected:
void SetUp() override {
cpu_context_ = make_unique<CPUContext>(option_);
}
template <class ReduceFunc>
void RunRedcueTensorTest(
const ReduceFunc& reduce_func,
const std::vector<int>& X_dims,
const std::vector<int>& axes,
const std::vector<float>& X_data,
const std::vector<float>& Y_data) {
std::vector<int> Y_dims = X_dims;
for (const int axis : axes) {
Y_dims[axis] = 1;
}
X_.Resize(X_dims);
Y_.Resize(Y_dims);
ASSERT_EQ(X_data.size(), X_.size());
cpu_context_->CopyFromCPU<float>(
X_data.size(), X_data.data(), X_.mutable_data<float>());
reduce_func(
X_dims.size(),
X_dims.data(),
axes.size(),
axes.data(),
1.0f,
X_.data<float>(),
Y_.mutable_data<float>(),
cpu_context_.get());
ASSERT_EQ(Y_data.size(), Y_.size());
for (int i = 0; i < Y_.size(); ++i) {
EXPECT_FLOAT_EQ(Y_data[i], Y_.data<float>()[i]);
}
}
DeviceOption option_;
std::unique_ptr<CPUContext> cpu_context_;
Tensor X_{CPU};
Tensor Y_{CPU};
};
TEST_F(ReduceTensorTest, ReduceMinTest) {
const auto& reduce_min = [](const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const float alpha,
const float* X,
float* Y,
CPUContext* context) {
return math::ReduceMin<float, CPUContext>(
num_dims, dims, num_axes, axes, alpha, X, Y, context);
};
// Test for 1D tensor.
RunRedcueTensorTest(reduce_min, {3}, {0}, {1.0f, 2.0f, 3.0f}, {1.0f});
// Test for 2D Tensor.
RunRedcueTensorTest(
reduce_min,
{2, 3},
{1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{1.0f, 4.0f});
RunRedcueTensorTest(
reduce_min,
{2, 3},
{0},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{1.0f, 2.0f, 3.0f});
RunRedcueTensorTest(
reduce_min, {2, 3}, {0, 1}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {1.0f});
// Test for 3D tensor.
RunRedcueTensorTest(
reduce_min,
{2, 2, 2},
{1, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{1.0f, 5.0f});
RunRedcueTensorTest(
reduce_min,
{2, 2, 2},
{0, 1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{1.0f, 2.0f});
RunRedcueTensorTest(
reduce_min,
{2, 2, 2},
{0, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{1.0f, 3.0f});
}
TEST_F(ReduceTensorTest, ReduceMaxTest) {
const auto& reduce_max = [](const int num_dims,
const int* dims,
const int num_axes,
const int* axes,
const float alpha,
const float* X,
float* Y,
CPUContext* context) {
return math::ReduceMax<float, CPUContext>(
num_dims, dims, num_axes, axes, alpha, X, Y, context);
};
// Test for 1D tensor.
RunRedcueTensorTest(reduce_max, {3}, {0}, {1.0f, 2.0f, 3.0f}, {3.0f});
// Test for 2D Tensor.
RunRedcueTensorTest(
reduce_max,
{2, 3},
{1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{3.0f, 6.0f});
RunRedcueTensorTest(
reduce_max,
{2, 3},
{0},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{4.0f, 5.0f, 6.0f});
RunRedcueTensorTest(
reduce_max, {2, 3}, {0, 1}, {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f}, {6.0f});
// Test for 3D tensor.
RunRedcueTensorTest(
reduce_max,
{2, 2, 2},
{1, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{4.0f, 8.0f});
RunRedcueTensorTest(
reduce_max,
{2, 2, 2},
{0, 1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{7.0f, 8.0f});
RunRedcueTensorTest(
reduce_max,
{2, 2, 2},
{0, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{6.0f, 8.0f});
}
TEST_F(ReduceTensorTest, ReduceSumTest) {
// Test for 1D tensor.
RunRedcueTensorTest(
math::ReduceSum<float, CPUContext>, {3}, {0}, {1.0f, 2.0f, 3.0f}, {6.0f});
// Test for 2D Tensor.
RunRedcueTensorTest(
math::ReduceSum<float, CPUContext>,
{2, 3},
{1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{6.0f, 15.0f});
RunRedcueTensorTest(
math::ReduceSum<float, CPUContext>,
{2, 3},
{0},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{5.0f, 7.0f, 9.0f});
RunRedcueTensorTest(
math::ReduceSum<float, CPUContext>,
{2, 3},
{0, 1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{21.0f});
// Test for 3D tensor.
RunRedcueTensorTest(
math::ReduceSum<float, CPUContext>,
{2, 2, 2},
{1, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{10.0f, 26.0f});
RunRedcueTensorTest(
math::ReduceSum<float, CPUContext>,
{2, 2, 2},
{0, 1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{16.0f, 20.0f});
RunRedcueTensorTest(
math::ReduceSum<float, CPUContext>,
{2, 2, 2},
{0, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{14.0f, 22.0f});
}
TEST_F(ReduceTensorTest, ReduceMeanTest) {
// Test for 1D tensor.
RunRedcueTensorTest(
math::ReduceMean<float, CPUContext>,
{3},
{0},
{1.0f, 2.0f, 3.0f},
{2.0f});
// Test for 2D Tensor.
RunRedcueTensorTest(
math::ReduceMean<float, CPUContext>,
{2, 3},
{1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{2.0f, 5.0f});
RunRedcueTensorTest(
math::ReduceMean<float, CPUContext>,
{2, 3},
{0},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{2.5f, 3.5f, 4.5f});
RunRedcueTensorTest(
math::ReduceMean<float, CPUContext>,
{2, 3},
{0, 1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{3.5f});
// Test for 3D tensor.
RunRedcueTensorTest(
math::ReduceMean<float, CPUContext>,
{2, 2, 2},
{1, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{2.5f, 6.5f});
RunRedcueTensorTest(
math::ReduceMean<float, CPUContext>,
{2, 2, 2},
{0, 1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{4.0f, 5.0f});
RunRedcueTensorTest(
math::ReduceMean<float, CPUContext>,
{2, 2, 2},
{0, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{3.5f, 5.5f});
}
class BroadcastTest : public testing::Test {
protected:
void SetUp() override {
cpu_context_ = make_unique<CPUContext>(option_);
}
void RunBroadcastTest(
const std::vector<int>& X_dims,
const std::vector<int>& Y_dims,
const std::vector<float>& X_data,
const std::vector<float>& Y_data) {
X_.Resize(X_dims);
Y_.Resize(Y_dims);
ASSERT_EQ(X_data.size(), X_.size());
cpu_context_->CopyFromCPU<float>(
X_data.size(), X_data.data(), X_.mutable_data<float>());
math::Broadcast<float, CPUContext>(
X_dims.size(),
X_dims.data(),
Y_dims.size(),
Y_dims.data(),
1.0f,
X_.data<float>(),
Y_.mutable_data<float>(),
cpu_context_.get());
ASSERT_EQ(Y_data.size(), Y_.size());
for (int i = 0; i < Y_data.size(); ++i) {
EXPECT_FLOAT_EQ(Y_data[i], Y_.data<float>()[i]);
}
}
DeviceOption option_;
std::unique_ptr<CPUContext> cpu_context_;
Tensor X_{CPU};
Tensor Y_{CPU};
};
TEST_F(BroadcastTest, BroadcastFloatTest) {
RunBroadcastTest({2}, {2}, {1.0f, 2.0f}, {1.0f, 2.0f});
RunBroadcastTest({1}, {2}, {1.0f}, {1.0f, 1.0f});
RunBroadcastTest({1}, {2, 2}, {1.0f}, {1.0f, 1.0f, 1.0f, 1.0f});
RunBroadcastTest({2, 1}, {2, 2}, {1.0f, 2.0f}, {1.0f, 1.0f, 2.0f, 2.0f});
RunBroadcastTest(
{2, 1},
{2, 2, 2},
{1.0f, 2.0f},
{1.0f, 1.0f, 2.0f, 2.0f, 1.0f, 1.0f, 2.0f, 2.0f});
}
class MomentsTest : public testing::Test {
protected:
void SetUp() override {
cpu_context_ = make_unique<CPUContext>(option_);
}
void RunMomentsTest(
const std::vector<int>& X_dims,
const std::vector<int>& axes,
const std::vector<float>& X_data,
const std::vector<float>& mean_data,
const std::vector<float>& variance_data) {
const int ndim = X_dims.size();
std::vector<int> Y_dims = X_dims;
for (const int axis : axes) {
Y_dims[axis] = 1;
}
X_.Resize(X_dims);
mean_.Resize(Y_dims);
variance_.Resize(Y_dims);
ASSERT_EQ(X_data.size(), X_.size());
cpu_context_->CopyFromCPU<float>(
X_data.size(), X_data.data(), X_.mutable_data<float>());
math::Moments<float, CPUContext>(
X_dims.size(),
X_dims.data(),
axes.size(),
axes.data(),
X_.data<float>(),
mean_.mutable_data<float>(),
variance_.mutable_data<float>(),
cpu_context_.get());
ASSERT_EQ(mean_data.size(), mean_.size());
for (int i = 0; i < mean_data.size(); ++i) {
EXPECT_FLOAT_EQ(mean_data[i], mean_.data<float>()[i]);
}
ASSERT_EQ(variance_data.size(), variance_.size());
for (int i = 0; i < variance_data.size(); ++i) {
EXPECT_NEAR(variance_data[i], variance_.data<float>()[i], kEps);
}
}
DeviceOption option_;
std::unique_ptr<CPUContext> cpu_context_;
Tensor X_{CPU};
Tensor mean_{CPU};
Tensor variance_{CPU};
};
TEST_F(MomentsTest, MomentsFloatTest) {
// Test for 1D tensor.
RunMomentsTest({3}, {0}, {1.0f, 2.0f, 3.0f}, {2.0f}, {2.0f / 3.0f});
// Test for 2D Tensor.
RunMomentsTest(
{2, 3},
{1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{2.0f, 5.0f},
{2.0f / 3.0f, 2.0f / 3.0f});
RunMomentsTest(
{2, 3},
{0},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{2.5f, 3.5f, 4.5f},
{2.25f, 2.25f, 2.25f});
RunMomentsTest(
{2, 3},
{0, 1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{3.5f},
{35.0f / 12.0f});
// Test for 3D tensor.
RunMomentsTest(
{2, 2, 2},
{1, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{2.5f, 6.5f},
{1.25, 1.25});
RunMomentsTest(
{2, 2, 2},
{0, 1},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{4.0f, 5.0f},
{5.0f, 5.0f});
RunMomentsTest(
{2, 2, 2},
{0, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{3.5f, 5.5f},
{4.25, 4.25});
}
class TransposeTest : public testing::Test {
protected:
void SetUp() override {
cpu_context_ = make_unique<CPUContext>(option_);
}
void RunTransposeTest(
const std::vector<int>& X_dims,
const std::vector<int>& axes,
const std::vector<float>& X_data,
const std::vector<float>& Y_data) {
const int ndim = X_dims.size();
std::vector<int> Y_dims(ndim);
for (int i = 0; i < ndim; ++i) {
Y_dims[i] = X_dims[axes[i]];
}
X_.Resize(X_dims);
Y_.Resize(Y_dims);
ASSERT_EQ(X_data.size(), X_.size());
cpu_context_->CopyFromCPU<float>(
X_data.size(), X_data.data(), X_.mutable_data<float>());
math::Transpose<float, CPUContext>(
X_dims.size(),
X_dims.data(),
axes.data(),
X_.data<float>(),
Y_.mutable_data<float>(),
cpu_context_.get());
ASSERT_EQ(Y_data.size(), Y_.size());
for (int i = 0; i < Y_.size(); ++i) {
EXPECT_FLOAT_EQ(Y_data[i], Y_.data<float>()[i]);
}
}
DeviceOption option_;
std::unique_ptr<CPUContext> cpu_context_;
Tensor X_{CPU};
Tensor Y_{CPU};
};
TEST_F(TransposeTest, TransposeFloatTest) {
// Test for 1D transpose.
RunTransposeTest({3}, {0}, {1.0f, 2.0f, 3.0f}, {1.0f, 2.0f, 3.0f});
// Test for 2D transpose.
RunTransposeTest(
{2, 3},
{1, 0},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f},
{1.0f, 4.0f, 2.0f, 5.0f, 3.0f, 6.0f});
// Test for 3D transpose.
RunTransposeTest(
{2, 2, 2},
{1, 2, 0},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{1.0f, 5.0f, 2.0f, 6.0f, 3.0f, 7.0f, 4.0f, 8.0f});
RunTransposeTest(
{2, 2, 2},
{1, 0, 2},
{1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f},
{1.0f, 2.0f, 5.0f, 6.0f, 3.0f, 4.0f, 7.0f, 8.0f});
}
} // namespace
} // namespace caffe2