| from __future__ import annotations |
| |
| import copy |
| from typing import Optional, Tuple, TypeVar |
| |
| import torch |
| |
| __all__ = ['fuse_conv_bn_eval', 'fuse_conv_bn_weights', 'fuse_linear_bn_eval', 'fuse_linear_bn_weights'] |
| |
| ConvT = TypeVar("ConvT", bound="torch.nn.modules.conv._ConvNd") |
| LinearT = TypeVar("LinearT", bound="torch.nn.Linear") |
| |
| def fuse_conv_bn_eval(conv: ConvT, bn: torch.nn.modules.batchnorm._BatchNorm, transpose: bool = False) -> ConvT: |
| r"""Fuse a convolutional module and a BatchNorm module into a single, new convolutional module. |
| |
| Args: |
| conv (torch.nn.modules.conv._ConvNd): A convolutional module. |
| bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module. |
| transpose (bool, optional): If True, transpose the convolutional weight. Defaults to False. |
| |
| Returns: |
| torch.nn.modules.conv._ConvNd: The fused convolutional module. |
| |
| .. note:: |
| Both ``conv`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed. |
| """ |
| assert not (conv.training or bn.training), "Fusion only for eval!" |
| fused_conv = copy.deepcopy(conv) |
| |
| assert bn.running_mean is not None and bn.running_var is not None |
| fused_conv.weight, fused_conv.bias = fuse_conv_bn_weights( |
| fused_conv.weight, fused_conv.bias, |
| bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias, transpose) |
| |
| return fused_conv |
| |
| def fuse_conv_bn_weights( |
| conv_w: torch.Tensor, |
| conv_b: Optional[torch.Tensor], |
| bn_rm: torch.Tensor, |
| bn_rv: torch.Tensor, |
| bn_eps: float, |
| bn_w: Optional[torch.Tensor], |
| bn_b: Optional[torch.Tensor], |
| transpose: bool = False |
| ) -> Tuple[torch.nn.Parameter, torch.nn.Parameter]: |
| r"""Fuse convolutional module parameters and BatchNorm module parameters into new convolutional module parameters. |
| |
| Args: |
| conv_w (torch.Tensor): Convolutional weight. |
| conv_b (Optional[torch.Tensor]): Convolutional bias. |
| bn_rm (torch.Tensor): BatchNorm running mean. |
| bn_rv (torch.Tensor): BatchNorm running variance. |
| bn_eps (float): BatchNorm epsilon. |
| bn_w (Optional[torch.Tensor]): BatchNorm weight. |
| bn_b (Optional[torch.Tensor]): BatchNorm bias. |
| transpose (bool, optional): If True, transpose the conv weight. Defaults to False. |
| |
| Returns: |
| Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused convolutional weight and bias. |
| """ |
| conv_weight_dtype = conv_w.dtype |
| conv_bias_dtype = conv_b.dtype if conv_b is not None else conv_weight_dtype |
| if conv_b is None: |
| conv_b = torch.zeros_like(bn_rm) |
| if bn_w is None: |
| bn_w = torch.ones_like(bn_rm) |
| if bn_b is None: |
| bn_b = torch.zeros_like(bn_rm) |
| bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps) |
| |
| if transpose: |
| shape = [1, -1] + [1] * (len(conv_w.shape) - 2) |
| else: |
| shape = [-1, 1] + [1] * (len(conv_w.shape) - 2) |
| |
| fused_conv_w = (conv_w * (bn_w * bn_var_rsqrt).reshape(shape)).to(dtype=conv_weight_dtype) |
| fused_conv_b = ((conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b).to(dtype=conv_bias_dtype) |
| |
| return ( |
| torch.nn.Parameter(fused_conv_w, conv_w.requires_grad), torch.nn.Parameter(fused_conv_b, conv_b.requires_grad) |
| ) |
| |
| def fuse_linear_bn_eval(linear: LinearT, bn: torch.nn.modules.batchnorm._BatchNorm) -> LinearT: |
| r"""Fuse a linear module and a BatchNorm module into a single, new linear module. |
| |
| Args: |
| linear (torch.nn.Linear): A Linear module. |
| bn (torch.nn.modules.batchnorm._BatchNorm): A BatchNorm module. |
| |
| Returns: |
| torch.nn.Linear: The fused linear module. |
| |
| .. note:: |
| Both ``linear`` and ``bn`` must be in eval mode, and ``bn`` must have its running buffers computed. |
| """ |
| assert not (linear.training or bn.training), "Fusion only for eval!" |
| fused_linear = copy.deepcopy(linear) |
| |
| """ |
| Linear-BN needs to be fused while preserving the shapes of linear weight/bias. |
| To preserve the shapes of linear weight/bias, the channel dim of bn needs to be broadcastable with the last dim of linear, |
| because bn operates over the channel dim, (N, C_in, H, W) while linear operates over the last dim, (*, H_in). |
| To be broadcastable, the number of features in bn and |
| the number of output features from linear must satisfy the following condition: |
| 1. they are equal, or |
| 2. the number of features in bn is 1 |
| Otherwise, skip the folding path |
| """ |
| assert ( |
| linear.out_features == bn.num_features or bn.num_features == 1 |
| ), "To fuse, linear.out_features == bn.num_features or bn.num_features == 1" |
| |
| assert bn.running_mean is not None and bn.running_var is not None |
| fused_linear.weight, fused_linear.bias = fuse_linear_bn_weights( |
| fused_linear.weight, fused_linear.bias, |
| bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias) |
| |
| return fused_linear |
| |
| def fuse_linear_bn_weights( |
| linear_w: torch.Tensor, |
| linear_b: Optional[torch.Tensor], |
| bn_rm: torch.Tensor, |
| bn_rv: torch.Tensor, |
| bn_eps: float, |
| bn_w: torch.Tensor, |
| bn_b: torch.Tensor, |
| ) -> Tuple[torch.nn.Parameter, torch.nn.Parameter]: |
| r"""Fuse linear module parameters and BatchNorm module parameters into new linear module parameters. |
| |
| Args: |
| linear_w (torch.Tensor): Linear weight. |
| linear_b (Optional[torch.Tensor]): Linear bias. |
| bn_rm (torch.Tensor): BatchNorm running mean. |
| bn_rv (torch.Tensor): BatchNorm running variance. |
| bn_eps (float): BatchNorm epsilon. |
| bn_w (torch.Tensor): BatchNorm weight. |
| bn_b (torch.Tensor): BatchNorm bias. |
| transpose (bool, optional): If True, transpose the conv weight. Defaults to False. |
| |
| Returns: |
| Tuple[torch.nn.Parameter, torch.nn.Parameter]: Fused linear weight and bias. |
| """ |
| if linear_b is None: |
| linear_b = torch.zeros_like(bn_rm) |
| bn_scale = bn_w * torch.rsqrt(bn_rv + bn_eps) |
| |
| fused_w = linear_w * bn_scale.unsqueeze(-1) |
| fused_b = (linear_b - bn_rm) * bn_scale + bn_b |
| |
| return torch.nn.Parameter(fused_w, linear_w.requires_grad), torch.nn.Parameter(fused_b, linear_b.requires_grad) |