| #include <ATen/native/Copy.h> |
| |
| #include <ATen/ATen.h> |
| #include <ATen/Dispatch.h> |
| #include <ATen/NativeFunctions.h> |
| #include <ATen/native/TensorIterator.h> |
| #include <ATen/native/quantized/Copy.h> |
| #include <ATen/quantized/Quantizer.h> |
| #include <ATen/MemoryOverlap.h> |
| #include <ATen/NamedTensorUtils.h> |
| #include <ATen/core/op_registration/op_registration.h> |
| |
| namespace { |
| |
| using namespace at; |
| |
| bool copy_transpose_valid(const Tensor& self, const Tensor& src) { |
| const int MIN_SZ = 60 * 60; |
| return self.is_contiguous() && src.numel() != 0 && src.dim() == 2 && |
| src.stride(0) == 1 && src.stride(1) == src.size(0) && |
| self.scalar_type() == src.scalar_type() && |
| self.numel() >= MIN_SZ; |
| } |
| |
| // special case copy where tensor is contiguous and src is a transposed matrix |
| // This can be generalized to most copies, but it's trickier |
| void copy_same_type_transpose_(Tensor& self, const Tensor& src) { |
| int64_t BLOCK_SZ; |
| if (self.scalar_type() == kByte) { |
| BLOCK_SZ = 120; |
| } else { |
| BLOCK_SZ = 60; |
| } |
| Tensor buf = empty({BLOCK_SZ, BLOCK_SZ}, self.options()); |
| |
| AT_DISPATCH_ALL_TYPES_AND3(kHalf, kBool, kBFloat16, self.scalar_type(), "copy_", [&] { |
| scalar_t* sp = src.data_ptr<scalar_t>(); |
| scalar_t* rp = self.data_ptr<scalar_t>(); |
| scalar_t* bp = buf.data_ptr<scalar_t>(); |
| |
| int64_t NR = src.size(0); |
| int64_t NC = src.size(1); |
| for (int64_t R = 0; R < NR; R += BLOCK_SZ) { |
| for (int64_t C = 0; C < NC; C += BLOCK_SZ) { |
| scalar_t* spo = sp + R + C * NR; |
| scalar_t* rpo = rp + C + R * NC; |
| |
| int nr = std::min(NR - R, BLOCK_SZ); |
| int nc = std::min(NC - C, BLOCK_SZ); |
| |
| // 1. copy columns from src to buf |
| for (int c = 0; c < nc; c++) { |
| memcpy(bp + c * BLOCK_SZ, spo + c * NR, nr * sizeof(scalar_t)); |
| } |
| |
| // 2. transpose buf in place |
| int rc_max = std::max(nr, nc); |
| int rc_min = std::min(nr, nc); |
| for (int r = 0; r < rc_max; r++) { |
| int end = std::min(r, rc_min); |
| for (int c = 0; c < end; c++) { |
| scalar_t tmp = bp[r + BLOCK_SZ * c]; |
| bp[r + BLOCK_SZ * c] = bp[r * BLOCK_SZ + c]; |
| bp[r * BLOCK_SZ + c] = tmp; |
| } |
| } |
| |
| // 3. copy rows from buf to dst |
| for (int r = 0; r < nr; r++) { |
| memcpy(rpo + r * NC, bp + r * BLOCK_SZ, nc * sizeof(scalar_t)); |
| } |
| } |
| } |
| }); |
| } |
| |
| // Devices directly supported by this copy implementation. Other device types |
| // (e.g. XLA) may be supported by overriding copy_ and _copy_from. |
| bool is_supported_device(Device device) { |
| DeviceType device_type = device.type(); |
| return device_type == kCPU || device_type == kCUDA || device_type == kHIP; |
| } |
| |
| } // namespace |
| |
| namespace at { |
| namespace native { |
| |
| static Tensor & copy_impl(Tensor & self, const Tensor & src, bool non_blocking) { |
| // TODO: this should be handled during dispatch, but that's missing... |
| TORCH_CHECK(self.defined(), "self is undefined"); |
| TORCH_CHECK(src.defined(), "src is undefined"); |
| |
| if (self.is_sparse() && src.is_sparse()) { |
| return at::copy_sparse_to_sparse_(self, src, non_blocking); |
| } else if (self.is_sparse() || src.is_sparse()) { |
| AT_ERROR("copy_() between dense and sparse Tensors is not implemented! Found self type = ", |
| self.toString(), " and src type = ", src.toString()); |
| } |
| |
| if (self.is_same(src)) { |
| return self; |
| } |
| |
| // Re-dispatch copies when src device not implemented here (e.g. XLA). |
| // This includes: cpu_tensor.copy_(xla_tensor) which |
| // calls xla_tensor._copy_from(cpu_tensor) |
| if (!is_supported_device(src.device())) { |
| TORCH_INTERNAL_ASSERT(is_supported_device(self.device())); |
| at::_copy_from(src, self, non_blocking); |
| return self; |
| } |
| |
| if (self.is_quantized() && !src.is_quantized()) { |
| return quantized_copy_from_float_(self, src); |
| } |
| |
| if (self.is_quantized() && src.is_quantized()) { |
| TORCH_CHECK(self.qscheme() == src.qscheme(), |
| "Quantized Copy only works with same qscheme"); |
| TORCH_CHECK(self.scalar_type() == src.scalar_type()); |
| self.set_quantizer_(src.quantizer()); |
| } |
| |
| if (!self.is_quantized() && src.is_quantized()) { |
| TORCH_CHECK(false, "Copying from quantized Tensor to non-quantized Tensor is not allowed, please use dequantize to get a float Tensor from a quantized Tensor"); |
| } |
| |
| auto iter = TensorIterator(); |
| iter.set_check_mem_overlap(true); |
| iter.add_output(self); |
| iter.add_input(src); |
| iter.dont_resize_outputs(); |
| iter.dont_compute_common_dtype(); |
| iter.build(); |
| |
| if (iter.numel() == 0) { |
| return self; |
| } |
| |
| DeviceType device_type = iter.device_type(0); |
| if (iter.device_type(1) == kCUDA) { |
| device_type = kCUDA; |
| } |
| |
| // TODO: if we need to, we can also enable this path for quantized tensor |
| if (device_type == kCPU && copy_transpose_valid(self, src) && !self.is_quantized()) { |
| copy_same_type_transpose_(self, src); |
| return self; |
| } |
| |
| copy_stub(device_type, iter, non_blocking); |
| return self; |
| } |
| |
| Tensor& copy_(Tensor& self, const Tensor& src, bool non_blocking) { |
| auto maybe_outnames = namedinference::compute_broadcast_outnames(self, src); |
| { |
| NoNamesGuard guard; |
| copy_impl(self, src, non_blocking); |
| } |
| namedinference::propagate_names_if_nonempty(self, maybe_outnames); |
| return self; |
| } |
| |
| static auto registry = torch::RegisterOperators() |
| .op(torch::RegisterOperators::options() |
| .schema("aten::copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)") |
| .impl_unboxedOnlyCatchAllKernel<decltype(copy_), ©_>() |
| .aliasAnalysis(AliasAnalysisKind::FROM_SCHEMA)) |
| ; |
| |
| DEFINE_DISPATCH(copy_stub); |
| |
| } // namespace native |
| } // namespace at |