| #pragma once |
| |
| #include <torch/csrc/python_headers.h> |
| |
| #include <ATen/ATen.h> |
| #include <c10/util/irange.h> |
| #include <pybind11/pybind11.h> |
| #include <pybind11/stl.h> |
| |
| #include <torch/csrc/Device.h> |
| #include <torch/csrc/DynamicTypes.h> |
| #include <torch/csrc/autograd/python_variable.h> |
| #include <torch/csrc/utils/python_tuples.h> |
| #include <torch/csrc/utils/python_numbers.h> |
| #include <torch/csrc/Generator.h> |
| |
| #include <stdexcept> |
| #include <utility> |
| |
| namespace py = pybind11; |
| |
| // This makes intrusive_ptr to be available as a custom pybind11 holder type, |
| // see |
| // https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers |
| PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr<T>, true); |
| |
| namespace pybind11 { namespace detail { |
| |
| // torch.Tensor <-> at::Tensor conversions (without unwrapping) |
| template <> |
| struct type_caster<at::Tensor> { |
| public: |
| // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) |
| PYBIND11_TYPE_CASTER(at::Tensor, _("at::Tensor")); |
| |
| bool load(handle src, bool) { |
| PyObject* obj = src.ptr(); |
| if (THPVariable_Check(obj)) { |
| value = THPVariable_Unpack(obj); |
| return true; |
| } |
| return false; |
| } |
| |
| static handle |
| cast(const at::Tensor& src, return_value_policy /* policy */, handle /* parent */) { |
| return handle(THPVariable_Wrap(src)); |
| } |
| }; |
| |
| // torch._StorageBase <-> at::Storage |
| template <> |
| struct type_caster<at::Storage> { |
| public: |
| // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) |
| PYBIND11_TYPE_CASTER(at::Storage, _("at::Storage")); |
| |
| bool load(handle src, bool) { |
| PyObject* obj = src.ptr(); |
| if (torch::isStorage(obj)) { |
| value = torch::createStorage(obj); |
| return true; |
| } |
| return false; |
| } |
| |
| static handle |
| cast(const at::Storage& src, return_value_policy /* policy */, handle /* parent */) { |
| TORCH_CHECK( |
| false, |
| "NotImplementedError: pybind conversion of at::Storages from C++ to python not supported."); |
| // Storages are untyped, see: https://github.com/pytorch/pytorch/issues/47442 |
| return handle(torch::createPyObject(src, caffe2::TypeMeta())); |
| } |
| }; |
| |
| template <> |
| struct type_caster<at::Generator> { |
| public: |
| // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) |
| PYBIND11_TYPE_CASTER(at::Generator, _("at::Generator")); |
| |
| bool load(handle src, bool) { |
| PyObject* obj = src.ptr(); |
| if (THPGenerator_Check(obj)) { |
| value = reinterpret_cast<THPGenerator*>(obj)->cdata; |
| return true; |
| } |
| return false; |
| } |
| |
| static handle |
| cast(const at::Generator& src, return_value_policy /* policy */, handle /* parent */) { |
| return handle(THPGenerator_Wrap(src)); |
| } |
| }; |
| |
| template<> struct type_caster<at::IntArrayRef> { |
| public: |
| // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) |
| PYBIND11_TYPE_CASTER(at::IntArrayRef, _("at::IntArrayRef")); |
| |
| bool load(handle src, bool) { |
| PyObject *source = src.ptr(); |
| auto tuple = PyTuple_Check(source); |
| if (tuple || PyList_Check(source)) { |
| // NOLINTNEXTLINE(bugprone-branch-clone) |
| const auto size = tuple ? PyTuple_GET_SIZE(source) : PyList_GET_SIZE(source); |
| v_value.resize(size); |
| for(const auto idx : c10::irange(size)) { |
| PyObject* obj = tuple ? PyTuple_GET_ITEM(source, idx) : PyList_GET_ITEM(source, idx); |
| if (THPVariable_Check(obj)) { |
| v_value[idx] = THPVariable_Unpack(obj).item<int64_t>(); |
| } else if (PyLong_Check(obj)) { |
| // use THPUtils_unpackLong after it is safe to include python_numbers.h |
| v_value[idx] = THPUtils_unpackLong(obj); |
| } else { |
| return false; |
| } |
| } |
| value = v_value; |
| return true; |
| } |
| return false; |
| } |
| static handle cast(at::IntArrayRef src, return_value_policy /* policy */, handle /* parent */) { |
| return handle(THPUtils_packInt64Array(src.size(), src.data())); |
| } |
| private: |
| std::vector<int64_t> v_value; |
| }; |
| |
| template <> |
| struct type_caster<at::Device> { |
| public: |
| // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes) |
| PYBIND11_TYPE_CASTER(at::Device, _("at::Device")); |
| |
| // PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device |
| // cannot be default-initialized, we provide this constructor to explicitly |
| // initialize that field. The value doesn't matter as it will be overwritten |
| // after a successful call to load. |
| type_caster() : value(c10::kCPU) {} |
| |
| bool load(handle src, bool) { |
| PyObject* obj = src.ptr(); |
| if (THPDevice_Check(obj)) { |
| value = reinterpret_cast<THPDevice*>(obj)->device; |
| return true; |
| } |
| return false; |
| } |
| |
| static handle |
| cast(const at::Device& src, return_value_policy /* policy */, handle /* parent */) { |
| return handle(THPDevice_New(src)); |
| } |
| }; |
| |
| // Pybind11 bindings for our optional type. |
| // http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers |
| template <typename T> |
| struct type_caster<c10::optional<T>> : optional_caster<c10::optional<T>> {}; |
| }} // namespace pybind11::detail |
| |
| namespace torch { |
| namespace impl { |
| |
| // Use this function if you have a C++ object that is used from both C++ |
| // and Python contexts, and you need its GIL to be released when you |
| // destruct it in the Python context. |
| // |
| // This function is a valid shared_ptr destructor and can be used to |
| // conveniently allocate a shared_ptr to an object whose destructor will be run |
| // without the GIL. Pass it as the second argument to shared_ptr, e.g., |
| // |
| // shared_ptr<T>(new T(), destroy_without_gil<T>) |
| // |
| // Attaching the GIL release logic to the holder pointer rather than the |
| // actual destructor of T is helpful when T is Python-agnostic and |
| // shouldn't refer to the PYthon API. |
| // |
| // Note there are limitations to the correctness of code that makes use of this. |
| // In particular, if a shared_ptr is constructed from C++ code without this |
| // destructor and then passed to pybind11, pybind11 will happily take ownership |
| // of the shared_ptr (and be willing to destruct it from a context where it is |
| // holding the GIL). unique_ptr with a type branded deleter is less prone to |
| // this problem, because a stock deleter unique_ptr is not convertible with it. |
| // I plan to mitigate this problem by adding DEBUG-only asserts to the true C++ |
| // destructors that the GIL is not held (using a virtual call to get to the |
| // Python interpreter); alternately, we could use a virtual call to simply |
| // ensure we release the GIL in the C++ destructor, however, this is a layering |
| // violation (why does code that is ostensibly Python agnostic calling into the |
| // GIL). |
| // |
| // Adapted from https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510 |
| template <typename T> inline void destroy_without_gil(T *ptr) { |
| // Because the ownership of a shared_ptr is diffuse, it's not possible to |
| // necessarily predict whether or not the last reference to an object will |
| // be destructed from Python or C++. This means that in the destructor here, |
| // we don't necessarily know if we actually have the GIL or not; in fact, |
| // we don't even know if the Python interpreter still exists! Thus, we have |
| // to test for it before releasing the GIL. |
| // |
| // PyGILState_Check is hopefully self explanatory. But Py_IsInitialized or |
| // _PyIsFinalizing? Both get set at the same time during the Python |
| // destruction process: |
| // https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717 |
| // so the operant question is whether or not you want to release the GIL after |
| // finalization has completed (and there is just no Python interpreter). |
| // Clearly there is no need to release GIL in that state, so we want |
| // Py_IsInitialized. |
| if (Py_IsInitialized() && PyGILState_Check()) { |
| pybind11::gil_scoped_release nogil; |
| delete ptr; |
| } else { |
| delete ptr; |
| } |
| } |
| |
| } // namespace impl |
| } // namespace torch |