blob: 24fb7278d206f9a10db3c7edddb7aa2b38f858e9 [file] [log] [blame]
import heapq
import json
import math
import os
import subprocess
from pathlib import Path
from typing import Callable, Dict, List, NamedTuple, Optional, Set, Tuple
from warnings import warn
from tools.shared.logging_utils import duration_to_str, pluralize
from tools.stats.import_test_stats import get_disabled_tests, get_slow_tests
from tools.stats.upload_stats_lib import emit_metric
IS_MEM_LEAK_CHECK = os.getenv("PYTORCH_TEST_CUDA_MEM_LEAK_CHECK", "0") == "1"
# NUM_PROCS_FOR_SHARDING_CALC must remain consistent across all shards of a job
# to ensure that sharding is consistent, NUM_PROCS is the actual number of procs
# used to run tests. If they are not equal, the only consequence should be
# unequal shards.
IS_ROCM = os.path.exists("/opt/rocm")
NUM_PROCS = 1 if IS_MEM_LEAK_CHECK else 2
NUM_PROCS_FOR_SHARDING_CALC = NUM_PROCS if not IS_ROCM or IS_MEM_LEAK_CHECK else 2
THRESHOLD = 60 * 10 # 10 minutes
# See Note [ROCm parallel CI testing]
# Special logic for ROCm GHA runners to query number of GPUs available.
# torch.version.hip was not available to check if this was a ROCm self-hosted runner.
# Must check for ROCm runner in another way. We look for /opt/rocm directory.
if IS_ROCM and not IS_MEM_LEAK_CHECK:
try:
# This is the same logic used in GHA health check, see .github/templates/common.yml.j2
lines = (
subprocess.check_output(["rocminfo"], encoding="ascii").strip().split("\n")
)
count = 0
for line in lines:
if " gfx" in line:
count += 1
assert count > 0 # there must be at least 1 GPU
# Limiting to 8 GPUs(PROCS)
NUM_PROCS = 8 if count > 8 else count
except subprocess.CalledProcessError as e:
# The safe default for ROCm GHA runners is to run tests serially.
NUM_PROCS = 1
class ShardedTest(NamedTuple):
name: str
shard: int
num_shards: int
time: Optional[float] # In seconds
def __str__(self) -> str:
return f"{self.name} {self.shard}/{self.num_shards}"
def get_time(self) -> float:
return self.time or 0
class ShardJob:
def __init__(self) -> None:
self.serial: List[ShardedTest] = []
self.parallel: List[ShardedTest] = []
def get_total_time(self) -> float:
procs = [0.0 for _ in range(NUM_PROCS_FOR_SHARDING_CALC)]
for test in self.parallel:
min_index = procs.index(min(procs))
procs[min_index] += test.get_time()
time = max(procs) + sum(test.get_time() for test in self.serial)
return time
def convert_to_tuple(self) -> Tuple[float, List[ShardedTest]]:
return (self.get_total_time(), self.serial + self.parallel)
def get_with_pytest_shard(
tests: List[str], test_file_times: Dict[str, float]
) -> List[ShardedTest]:
sharded_tests: List[ShardedTest] = []
for test in tests:
duration = test_file_times[test]
if duration > THRESHOLD:
num_shards = math.ceil(duration / THRESHOLD)
for i in range(num_shards):
sharded_tests.append(
ShardedTest(test, i + 1, num_shards, duration / num_shards)
)
else:
sharded_tests.append(ShardedTest(test, 1, 1, duration))
return sharded_tests
def calculate_shards(
num_shards: int,
tests: List[str],
test_file_times: Dict[str, float],
must_serial: Optional[Callable[[str], bool]] = None,
) -> List[Tuple[float, List[ShardedTest]]]:
must_serial = must_serial or (lambda x: True)
known_tests = [x for x in tests if x in test_file_times]
unknown_tests: List[str] = [x for x in tests if x not in known_tests]
sorted_tests = sorted(
get_with_pytest_shard(known_tests, test_file_times),
key=lambda j: j.get_time(),
reverse=True,
)
sharded_jobs: List[ShardJob] = [ShardJob() for _ in range(num_shards)]
for test in sorted_tests:
if must_serial(test.name):
min_sharded_job = min(sharded_jobs, key=lambda j: j.get_total_time())
min_sharded_job.serial.append(test)
else:
min_sharded_job = min(sharded_jobs, key=lambda j: j.get_total_time())
min_sharded_job.parallel.append(test)
# Round robin the unknown jobs starting with the smallest shard
index = min(range(num_shards), key=lambda i: sharded_jobs[i].get_total_time())
for unknown_test in unknown_tests:
sharded_jobs[index].serial.append(ShardedTest(unknown_test, 1, 1, None))
index = (index + 1) % num_shards
return [job.convert_to_tuple() for job in sharded_jobs]
def _query_changed_test_files() -> List[str]:
default_branch = f"origin/{os.environ.get('GIT_DEFAULT_BRANCH', 'main')}"
merge_base = (
subprocess.check_output(["git", "merge-base", default_branch, "HEAD"])
.decode()
.strip()
)
head = subprocess.check_output(["git", "rev-parse", "HEAD"]).decode().strip()
base_commit = merge_base
if base_commit == head:
# We are on the default branch, so check for changes since the last commit
base_commit = "HEAD^"
proc = subprocess.run(
["git", "diff", "--name-only", base_commit, "HEAD"], capture_output=True
)
if proc.returncode != 0:
raise RuntimeError("Unable to get changed files")
lines = proc.stdout.decode().strip().split("\n")
lines = [line.strip() for line in lines]
return lines
def _get_previously_failing_tests() -> Set[str]:
PYTEST_FAILED_TESTS_CACHE_FILE_PATH = Path(".pytest_cache/v/cache/lastfailed")
if not PYTEST_FAILED_TESTS_CACHE_FILE_PATH.exists():
warn(
f"No pytorch cache found at {PYTEST_FAILED_TESTS_CACHE_FILE_PATH.absolute()}"
)
return set()
with open(PYTEST_FAILED_TESTS_CACHE_FILE_PATH, "r") as f:
last_failed_tests = json.load(f)
prioritized_tests = _parse_prev_failing_test_files(last_failed_tests)
return _python_test_file_to_test_name(prioritized_tests)
def _parse_prev_failing_test_files(last_failed_tests: Dict[str, bool]) -> Set[str]:
prioritized_tests = set()
# The keys are formatted as "test_file.py::test_class::test_method[params]"
# We just need the test_file part
for test in last_failed_tests:
parts = test.split("::")
if len(parts) > 1:
test_file = parts[0]
prioritized_tests.add(test_file)
return prioritized_tests
def _get_modified_tests() -> Set[str]:
try:
changed_files = _query_changed_test_files()
except Exception as e:
warn(f"Can't query changed test files due to {e}")
# If unable to get changed files from git, quit without doing any sorting
return set()
return _python_test_file_to_test_name(set(changed_files))
def _python_test_file_to_test_name(tests: Set[str]) -> Set[str]:
prefix = f"test{os.path.sep}"
valid_tests = {f for f in tests if f.startswith(prefix) and f.endswith(".py")}
valid_tests = {f[len(prefix) : -len(".py")] for f in valid_tests}
return valid_tests
class PoolTimes:
def __init__(self, num_procs: int) -> None:
self.pool_times = [0.0 for _ in range(num_procs)]
self.serial_times = 0.0
def next_test_start_time(self, serial: bool) -> float:
if serial:
# Serial tests are run after all parallel tests complete
return max(self.pool_times) + self.serial_times
return self.pool_times[0]
def schedule_test(self, test: ShardedTest, serial: bool) -> None:
if serial:
self.serial_times += test.get_time()
else:
# pool_times[0] is always the thread with the least amount of time scheduled
heapq.heappushpop(self.pool_times, self.pool_times[0] + test.get_time())
def log_time_savings(
selected_tests: List[ShardedTest],
prioritized_tests: List[ShardedTest],
is_serial_test_fn: Callable[[str], bool],
num_procs: int = NUM_PROCS, # make this customizable for testing
) -> float:
# The tests will be run in [num_procs] parallel threads, so we assume each test
# is allocated to the thread that'll free up first.
# This isn't an exact match (since other factors could change which thread
# pool a test gets scheduled on) but it's a good approximation.
# Simulates the scheduled tests on each thread pool
default_pool = PoolTimes(num_procs) # originally scheduled run
prioritized_pool = PoolTimes(num_procs) # run for prioritized tests
max_time_savings_sec = 0.0
# It's easier to look up prioritized tests by name
prioritized_test_names = {test.name for test in prioritized_tests}
for test in selected_tests:
serial = is_serial_test_fn(test.name)
if test.name in prioritized_test_names:
# Successive tests will always have a greater time savings
max_time_savings_sec = default_pool.next_test_start_time(
serial
) - prioritized_pool.next_test_start_time(serial)
# "schedule" this test on the prioritized pool to get time savings for future prioritized tests
prioritized_pool.schedule_test(test, serial)
# always schedule on the default pool to know what the unprioritized timeline would've looked like
default_pool.schedule_test(test, serial)
print(
f"Prioritized tests will run about {duration_to_str(max_time_savings_sec)} sooner than they would've otherwise"
)
emit_metric(
"test_reordering_time_savings",
{
"time_savings_sec": max_time_savings_sec,
},
)
# Return value used by tests
return max_time_savings_sec
def get_reordered_tests(
tests: List[ShardedTest],
) -> Tuple[List[ShardedTest], List[ShardedTest]]:
"""
Get the reordered test filename list based on github PR history or git changed file.
We prioritize running test files that were changed.
"""
def print_tests(tests: Set[str], test_group_description: str) -> None:
if not tests:
return
print(f"{test_group_description}:")
for test in tests:
print(f" {test}")
prioritized_tests: Set[str] = set()
pri_test = _get_previously_failing_tests()
print_tests(
pri_test, "If run, these tests will prioritized because they previously failed"
)
prioritized_tests |= pri_test
pri_test |= _get_modified_tests()
print_tests(
pri_test, "If run, these tests will be prioritized because they were modified"
)
prioritized_tests |= pri_test
bring_to_front = []
the_rest = []
for test in tests:
if test.name in prioritized_tests:
bring_to_front.append(test)
else:
the_rest.append(test)
if len(tests) != len(bring_to_front) + len(the_rest):
print(
f"Something went wrong in CI reordering, expecting total of {len(tests)}:\n"
f"but found prioritized: {len(bring_to_front)}\nthe rest: {len(the_rest)}\n"
)
return ([], tests)
prioritized_test_names = []
remaining_test_names = []
if bring_to_front:
test_cnt_str = pluralize(len(tests), "test")
print(f"Reordering tests: Prioritizing {len(bring_to_front)} of {test_cnt_str}")
prioritized_test_names = [t.name for t in bring_to_front]
print(f"Prioritized: {prioritized_test_names}")
remaining_test_names = [t.name for t in the_rest]
print(f"The Rest: {remaining_test_names}")
else:
print("Didn't find any tests to prioritize")
emit_metric(
"test_reordering_prioritized_tests",
{
"prioritized_test_cnt": len(bring_to_front),
"total_test_cnt": len(tests),
"prioritized_tests": prioritized_test_names,
"remaining_tests": remaining_test_names,
},
)
return (bring_to_front, the_rest)
def get_test_case_configs(dirpath: str) -> None:
get_slow_tests(dirpath=dirpath)
get_disabled_tests(dirpath=dirpath)