| #include <torch/csrc/jit/codegen/cuda/arith.h> |
| #include <torch/csrc/jit/codegen/cuda/executor.h> |
| #include <torch/csrc/jit/codegen/cuda/fusion.h> |
| #include <torch/csrc/jit/codegen/cuda/lower2device.h> |
| #include <torch/csrc/jit/codegen/cuda/ops/all_ops.h> |
| #include <torch/csrc/jit/codegen/cuda/scheduler/all_schedulers.h> |
| |
| #include <benchmark/benchmark.h> |
| |
| #include <cuda_runtime.h> |
| |
| #include "utils.h" |
| |
| using namespace torch::jit::fuser::cuda; |
| |
| static void setupInstanceNorm(Fusion* fusion, DataType dtype) { |
| TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half); |
| |
| FusionGuard fg(fusion); |
| |
| auto input = makeContigTensor(4, dtype); |
| auto weight = makeContigTensor(1, dtype); |
| auto bias = makeContigTensor(1, dtype); |
| auto running_mean = makeContigTensor(1, DataType::Float); |
| auto running_var = makeContigTensor(1, DataType::Float); |
| |
| fusion->addInput(input); |
| fusion->addInput(weight); |
| fusion->addInput(bias); |
| fusion->addInput(running_mean); |
| fusion->addInput(running_var); |
| |
| if (dtype == DataType::Half) { |
| input = castOp(DataType::Float, input); |
| weight = castOp(DataType::Float, weight); |
| bias = castOp(DataType::Float, bias); |
| } |
| |
| const bool kTraining = true; |
| const float kMomentum = 0.1; |
| const float kEps = 1e-5; |
| auto momentum_ptr = new Double(kMomentum); |
| auto eps_ptr = new Double(kEps); |
| |
| auto norm = instance_norm( |
| input, |
| weight, |
| bias, |
| running_mean, |
| running_var, |
| kTraining, |
| momentum_ptr, |
| eps_ptr); |
| |
| auto output = unaryOp(UnaryOpType::Relu, norm.output); |
| |
| if (dtype == DataType::Half) { |
| output = castOp(DataType::Half, output); |
| } |
| |
| fusion->addOutput(output); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static void NvFuserScheduler_InstanceNorm( |
| benchmark::State& benchmark_state, |
| FusionExecutorCache* fusion_executor_cache, |
| DataType dtype) { |
| TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half); |
| |
| std::vector<int64_t> input_shape{ |
| benchmark_state.range(0), |
| benchmark_state.range(2), |
| benchmark_state.range(1), |
| benchmark_state.range(1)}; |
| |
| // inputs |
| at::manual_seed(0); |
| auto options = |
| at::TensorOptions().dtype(data_type_to_aten(dtype)).device(at::kCUDA, 0); |
| auto fp32_options = |
| at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0); |
| at::Tensor at_x = at::randn(input_shape, options); |
| at::Tensor at_weight = at::ones({input_shape[1]}, options); |
| at::Tensor at_bias = at::zeros({input_shape[1]}, options); |
| at::Tensor at_mean = at::zeros({input_shape[1]}, fp32_options); |
| at::Tensor at_var = at::ones({input_shape[1]}, fp32_options); |
| |
| std::vector<c10::IValue> aten_inputs = { |
| at_x, at_weight, at_bias, at_mean, at_var}; |
| std::vector<at::Tensor> outputs; |
| |
| runBenchmarkIterations(benchmark_state, fusion_executor_cache, aten_inputs); |
| |
| const size_t kSize = |
| input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3]; |
| const size_t kChannels = input_shape[1]; |
| |
| // Read: x, weight, bias, running_mean, running_var |
| // Write: y, running_mean, running_var |
| benchmark_state.SetBytesProcessed( |
| benchmark_state.iterations() * |
| ((kChannels * 2 + kSize * 2) * dataTypeSize(dtype) + |
| (kChannels * 2 * 2) * dataTypeSize(DataType::Float))); |
| } |
| |
| static void Baseline_InstanceNorm( |
| benchmark::State& benchmark_state, |
| DataType dtype) { |
| TORCH_INTERNAL_ASSERT(dtype == DataType::Float || dtype == DataType::Half); |
| |
| std::vector<int64_t> input_shape{ |
| benchmark_state.range(0), |
| benchmark_state.range(2), |
| benchmark_state.range(1), |
| benchmark_state.range(1)}; |
| const float kMomentum = 0.1; |
| const float kEps = 1e-5; |
| const auto aten_dtype = data_type_to_aten(dtype); |
| |
| at::manual_seed(0); |
| auto options = at::TensorOptions().dtype(aten_dtype).device(at::kCUDA, 0); |
| auto fp32_options = |
| at::TensorOptions().dtype(at::kFloat).device(at::kCUDA, 0); |
| |
| at::Tensor at_x = at::randn(input_shape, options); |
| at::Tensor at_weight = at::ones({input_shape[1]}, options); |
| at::Tensor at_bias = at::zeros({input_shape[1]}, options); |
| at::Tensor at_mean = at::zeros({input_shape[1]}, fp32_options); |
| at::Tensor at_var = at::ones({input_shape[1]}, fp32_options); |
| |
| auto ato_weight = c10::optional<at::Tensor>(at_weight); |
| auto ato_bias = c10::optional<at::Tensor>(at_bias); |
| auto ato_running_mean = c10::optional<at::Tensor>(at_mean); |
| auto ato_running_var = c10::optional<at::Tensor>(at_var); |
| |
| clearL2Cache(); |
| cudaDeviceSynchronize(); |
| for (auto _ : benchmark_state) { |
| CudaKernelTimer timer; |
| |
| auto norm = at::instance_norm( |
| at_x, |
| ato_weight, |
| ato_bias, |
| ato_running_mean, |
| ato_running_var, |
| true, |
| kMomentum, |
| kEps, |
| false); |
| auto output = at::relu(norm); |
| |
| benchmark_state.SetIterationTime(timer.elapsed() / 1000.0); |
| cudaDeviceSynchronize(); |
| clearL2Cache(); |
| cudaDeviceSynchronize(); |
| } |
| |
| const size_t kSize = |
| input_shape[0] * input_shape[1] * input_shape[2] * input_shape[3]; |
| const size_t kChannels = input_shape[1]; |
| |
| // Read: x, weight, bias, running_mean, running_var |
| // Write: y, running_mean, running_var |
| benchmark_state.SetBytesProcessed( |
| benchmark_state.iterations() * |
| ((kChannels * 2 + kSize * 2) * dataTypeSize(dtype) + |
| (kChannels * 2 * 2) * dataTypeSize(DataType::Float))); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| static void Baseline_InstanceNorm_fp32(benchmark::State& benchmark_state) { |
| Baseline_InstanceNorm(benchmark_state, DataType::Float); |
| } |
| |
| static void Baseline_InstanceNorm_fp16(benchmark::State& benchmark_state) { |
| Baseline_InstanceNorm(benchmark_state, DataType::Half); |
| } |
| |
| //------------------------------------------------------------------------------ |
| |
| NVFUSER_BENCHMARK_DEFINE( |
| NvFuserScheduler_InstanceNorm_fp32, |
| setupInstanceNorm, |
| NvFuserScheduler_InstanceNorm, |
| DataType::Float); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_InstanceNorm_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{8, 8}, {640, 640}, {64, 128}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| NVFUSER_BENCHMARK_DEFINE( |
| NvFuserScheduler_InstanceNorm_fp16, |
| setupInstanceNorm, |
| NvFuserScheduler_InstanceNorm, |
| DataType::Half); |
| |
| NVFUSER_BENCHMARK_RUN(NvFuserScheduler_InstanceNorm_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{8, 8}, {640, 640}, {64, 256}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| //------------------------------------------------------------------------------ |
| |
| BENCHMARK(Baseline_InstanceNorm_fp32) |
| // ->RangeMultiplier(2) |
| ->Ranges({{8, 8}, {640, 640}, {64, 128}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| BENCHMARK(Baseline_InstanceNorm_fp16) |
| // ->RangeMultiplier(2) |
| ->Ranges({{8, 8}, {640, 640}, {64, 256}}) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseManualTime(); |
| |
| //------------------------------------------------------------------------------ |