| #include <torch/csrc/jit/script/init.h> |
| |
| #include <torch/csrc/Device.h> |
| #include <torch/csrc/jit/import.h> |
| #include <torch/csrc/jit/script/compiler.h> |
| #include <torch/csrc/jit/script/module.h> |
| #include <torch/csrc/jit/script/module_python.h> |
| #include <torch/csrc/jit/script/python_sugared_value.h> |
| #include <torch/csrc/jit/script/sugared_value.h> |
| #include <torch/csrc/jit/testing/file_check.h> |
| |
| #include <torch/csrc/jit/constants.h> |
| #include <torch/csrc/jit/graph_executor.h> |
| #include <torch/csrc/jit/hooks_for_testing.h> |
| #include <torch/csrc/jit/import_source.h> |
| #include <torch/csrc/jit/irparser.h> |
| #include <torch/csrc/jit/passes/python_print.h> |
| #include <torch/csrc/jit/pybind_utils.h> |
| #include <torch/csrc/jit/python_tracer.h> |
| #include <torch/csrc/jit/script/logging.h> |
| #include <torch/csrc/jit/script/parser.h> |
| #include <torch/csrc/jit/tracer.h> |
| |
| #include <torch/csrc/api/include/torch/ordered_dict.h> |
| |
| #include <ATen/ATen.h> |
| #include <ATen/core/function_schema.h> |
| #include <ATen/core/qualified_name.h> |
| |
| #include <pybind11/functional.h> |
| #include <pybind11/pybind11.h> |
| #include <pybind11/stl.h> |
| #include <pybind11/stl_bind.h> |
| #include <chrono> |
| #include <cstddef> |
| #include <memory> |
| #include <sstream> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| PYBIND11_MAKE_OPAQUE(torch::jit::script::ExtraFilesMap); |
| |
| namespace torch { |
| namespace jit { |
| namespace script { |
| |
| using ::c10::Argument; |
| using ::c10::FunctionSchema; |
| |
| using ResolutionCallback = std::function<py::function(std::string)>; |
| using FunctionDefaults = std::unordered_map<std::string, py::object>; |
| |
| namespace { |
| |
| // A resolver that will inspect the outer Python scope to find `name`. |
| struct PythonResolver : public Resolver { |
| explicit PythonResolver(ResolutionCallback rcb) : rcb_(std::move(rcb)) {} |
| |
| /** |
| * While compiling classes, the class type we're compiling will not be |
| * available in Python, since we haven't fowner_ defining the class yet. So |
| * in order to make the class type available to its own methods, we need to |
| * explicitly resolve it. |
| * |
| * @param rcb Python function to resolve a name to its Python object in the |
| * enclosing scope |
| * @param classname The unqualified classname of the class currently being |
| * compiled. |
| * @param classType The class's type. |
| */ |
| explicit PythonResolver( |
| ResolutionCallback rcb, |
| std::string classname, |
| ClassTypePtr classType) |
| : rcb_(std::move(rcb)), |
| classname_(std::move(classname)), |
| classType_(std::move(classType)) {} |
| |
| std::shared_ptr<SugaredValue> resolveValue( |
| const std::string& name, |
| Function& m, |
| const SourceRange& loc) const override { |
| AutoGIL ag; |
| py::object obj = rcb_(name); |
| if (obj.is(py::none())) { |
| return nullptr; |
| } |
| return toSugaredValue(obj, m, loc); |
| } |
| |
| static bool isNamedTupleClass(py::object obj) { |
| auto tuple_type = reinterpret_cast<PyObject*>(&PyTuple_Type); |
| return PyObject_IsSubclass(obj.ptr(), tuple_type) && |
| py::hasattr(obj, "_fields"); |
| } |
| |
| TypePtr resolveType(const std::string& name, const SourceRange& loc) |
| const override { |
| if (classType_ && name == classname_) { |
| return classType_; |
| } |
| AutoGIL ag; |
| py::object obj = rcb_(name); |
| if (obj.is(py::none())) { |
| return nullptr; |
| } |
| py::bool_ isClass = py::module::import("inspect").attr("isclass")(obj); |
| if (!py::cast<bool>(isClass)) { |
| return nullptr; |
| } |
| |
| auto qualifiedName = c10::QualifiedName(py::cast<std::string>( |
| py::module::import("torch.jit").attr("_qualified_name")(obj))); |
| |
| if (isNamedTupleClass(obj)) { |
| // Currently don't support default values |
| if (py::hasattr(obj, "_field_defaults")) { |
| auto default_dict = py::cast<std::map<std::string, py::object>>( |
| py::getattr(obj, "_field_defaults")); |
| if (default_dict.size()) { |
| std::string error_msg = |
| "Default values are currently not supported" |
| " on NamedTuple fields in TorchScript. Fields " |
| "with default values: ["; |
| bool first = true; |
| for (const auto& kv : default_dict) { |
| if (!first) { |
| error_msg += ", "; |
| } |
| error_msg += kv.first; |
| } |
| error_msg += "]"; |
| throw ErrorReport(loc) << error_msg; |
| } |
| } |
| |
| py::object props = py::module::import("torch.jit") |
| .attr("_get_named_tuple_properties")(obj); |
| std::string unqualName; |
| std::vector<std::string> fields; |
| std::vector<TypePtr> annotations; |
| std::tie(unqualName, fields, annotations) = py::cast< |
| std::tuple<std::string, decltype(fields), decltype(annotations)>>( |
| props); |
| |
| auto tt = TupleType::create( |
| annotations, |
| qualifiedName, |
| TupleType::namedTupleSchemaFromNamesAndTypes( |
| qualifiedName, fields, annotations)); |
| get_python_cu()->register_class(tt); |
| return tt; |
| } |
| |
| return get_python_cu()->get_class(qualifiedName); |
| } |
| |
| private: |
| ResolutionCallback rcb_; |
| std::string classname_; |
| ClassTypePtr classType_; |
| }; |
| |
| std::shared_ptr<PythonResolver> pythonResolver(ResolutionCallback rcb) { |
| return std::make_shared<PythonResolver>(rcb); |
| } |
| std::shared_ptr<PythonResolver> pythonResolver( |
| ResolutionCallback rcb, |
| std::string classname, |
| ClassTypePtr classType) { |
| return std::make_shared<PythonResolver>( |
| rcb, std::move(classname), std::move(classType)); |
| } |
| } // namespace |
| |
| FunctionSchema getSchemaWithNameAndDefaults( |
| const SourceRange& range, |
| const FunctionSchema& schema, |
| const at::optional<std::string>& new_name, |
| const FunctionDefaults& default_args) { |
| std::vector<Argument> new_args; |
| for (auto& arg : schema.arguments()) { |
| auto it = default_args.find(arg.name()); |
| if (it != default_args.end()) { |
| try { |
| IValue value; |
| auto n = arg.N(); |
| auto list_type = arg.type()->cast<ListType>(); |
| if (n && *n > 0 && list_type) { |
| // BroadcastingList, allow default values T for arg types List[T] |
| value = toIValue(it->second, list_type->getElementType()); |
| } else { |
| value = toIValue(it->second, arg.type()); |
| } |
| new_args.emplace_back( |
| arg.name(), arg.type(), arg.N(), value, arg.kwarg_only()); |
| } catch (py::cast_error& e) { |
| throw ErrorReport(range) |
| << "Expected a default value of type " << arg.type()->python_str() |
| << " on parameter \"" << arg.name() << "\""; |
| } |
| } else { |
| new_args.push_back(arg); |
| } |
| } |
| |
| return FunctionSchema( |
| new_name.value_or(schema.name()), |
| schema.overload_name(), |
| new_args, |
| schema.returns(), |
| schema.is_vararg(), |
| schema.is_varret()); |
| } |
| |
| struct VISIBILITY_HIDDEN ModuleSelf : public Self { |
| ModuleSelf(const Module& m, py::object& py_m) |
| : Self(), module_(m), pyModule_(py_m) {} |
| |
| std::shared_ptr<SugaredValue> makeSugared(Value* v) const override { |
| v->setType(module_.type()); |
| return std::make_shared<ModuleValue>(v, module_, pyModule_); |
| } |
| ClassTypePtr getClassType() const override { |
| return module_.type(); |
| } |
| |
| private: |
| const Module& module_; |
| const py::object& pyModule_; |
| }; |
| |
| static TypePtr getTensorType(const at::Tensor& t, const TypeKind type_kind) { |
| switch (type_kind) { |
| case TypeKind::DimensionedTensorType: |
| return DimensionedTensorType::create(t); |
| case TypeKind::CompleteTensorType: { |
| auto scalar_type = t.scalar_type(); |
| auto sizes = t.sizes(); |
| return CompleteTensorType::create(scalar_type, at::kCPU, sizes); |
| } |
| default: |
| throw std::runtime_error( |
| "Attempted to call getTensorType for type kind other than DimensionedTensorType or CompleteTensorType."); |
| } |
| } |
| |
| static TupleTypePtr getTupleTensorType( |
| const Stack::const_iterator& s_iter, |
| const Stack::const_iterator& s_iter_end, |
| const TypePtr& tupleType, |
| const TypeKind type_kind) { |
| AT_ASSERT(tupleType->kind() == TupleType::Kind); |
| AT_ASSERT(s_iter != s_iter_end); |
| |
| std::vector<TypePtr> types; |
| for (const auto& subType : tupleType->containedTypes()) { |
| if (subType->kind() == TupleType::Kind) { |
| types.push_back( |
| getTupleTensorType(s_iter + 1, s_iter_end, subType, type_kind)); |
| } else { |
| types.push_back(getTensorType(s_iter->toTensor(), type_kind)); |
| } |
| } |
| return TupleType::create(types); |
| } |
| |
| static void setInputTensorTypes( |
| Graph& g, |
| const Stack& stack, |
| const TypeKind type_kind = TypeKind::DimensionedTensorType) { |
| at::ArrayRef<Value*> input_values = g.inputs(); |
| auto s_iter = stack.begin(); |
| for (auto v : input_values) { |
| AT_ASSERT(s_iter != stack.end()); |
| if (v->type()->kind() == TupleType::Kind) { |
| AT_ASSERT(v->node()->kind() == prim::Param); |
| v->setType(getTupleTensorType(s_iter, stack.end(), v->type(), type_kind)); |
| } else { |
| v->setType(getTensorType(s_iter->toTensor(), type_kind)); |
| s_iter++; |
| } |
| } |
| } |
| |
| static std::shared_ptr<Graph> _propagate_shapes( |
| Graph& graph, |
| std::vector<at::Tensor> inputs, |
| bool with_grad = false) { |
| Stack stack(inputs.begin(), inputs.end()); |
| auto retval = graph.copy(); |
| setInputTensorTypes(*retval, stack); |
| PropagateInputShapes(retval); |
| return retval; |
| } |
| |
| static std::shared_ptr<Graph> _propagate_and_assign_input_shapes( |
| Graph& graph, |
| const std::vector<at::Tensor>& inputs, |
| bool with_grad = false, |
| bool propagate = true) { |
| auto retval = graph.copy(); |
| if (propagate) { |
| setInputTensorTypes( |
| *retval, fmap<IValue>(inputs), TypeKind::DimensionedTensorType); |
| PropagateInputShapes(retval); |
| } |
| setInputTensorTypes( |
| *retval, fmap<IValue>(inputs), TypeKind::CompleteTensorType); |
| |
| return retval; |
| } |
| |
| static std::shared_ptr<Graph> _assign_output_shapes( |
| Graph& graph, |
| std::vector<at::Tensor> outputs) { |
| auto retval = graph.copy(); |
| AT_ASSERT(retval->outputs().size() == outputs.size()); |
| for (size_t i = 0; i < outputs.size(); ++i) { |
| auto scalar_type = outputs[i].scalar_type(); |
| auto sizes = outputs[i].sizes(); |
| auto type = |
| torch::jit::CompleteTensorType::create(scalar_type, at::kCPU, sizes); |
| retval->outputs()[i]->setType(type); |
| } |
| return retval; |
| } |
| |
| void addFunctionToModule(Module& module, const StrongFunctionPtr& func) { |
| // Make a graph with a fake self argument |
| auto graph = func.function_->graph()->copy(); |
| auto v = graph->insertInput(0, "self"); |
| v->setType(module.module_object()->type()); |
| const auto name = QualifiedName(module.name(), "forward"); |
| auto method = module.class_compilation_unit()->create_function(name, graph); |
| module.type()->addMethod(method); |
| } |
| |
| void initJitScriptBindings(PyObject* module) { |
| auto m = py::handle(module).cast<py::module>(); |
| |
| // STL containers are not mutable by default and hence we need to bind as |
| // follows. |
| py::bind_map<ExtraFilesMap>(m, "ExtraFilesMap"); |
| |
| // torch.jit.ScriptModule is a subclass of this C++ object. |
| // Methods here are prefixed with _ since they should not be |
| // public. |
| py::class_<Module>(m, "ScriptModule") |
| .def(py::init<std::string, std::shared_ptr<CompilationUnit>, bool>()) |
| .def( |
| "save", |
| [](Module& m, |
| const std::string& filename, |
| const ExtraFilesMap& _extra_files = ExtraFilesMap()) { |
| m.save(filename, _extra_files); |
| }, |
| py::arg("filename"), |
| py::arg("_extra_files") = ExtraFilesMap()) |
| .def( |
| "save_to_buffer", |
| [](Module& m, const ExtraFilesMap& _extra_files = ExtraFilesMap()) { |
| std::ostringstream buf; |
| m.save(buf, _extra_files); |
| return py::bytes(buf.str()); |
| }, |
| py::arg("_extra_files") = ExtraFilesMap()) |
| .def("_set_optimized", &Module::set_optimized) |
| .def( |
| "_define", |
| [](Module& m, |
| py::object py_m, |
| const std::string& script, |
| ResolutionCallback rcb) { |
| const auto self = ModuleSelf(m, py_m); |
| m.class_compilation_unit()->define( |
| m.name(), script, pythonResolver(rcb), &self); |
| didFinishEmitModule(m); |
| }) |
| .def( |
| "_create_methods", |
| [](Module& m, |
| py::object py_m, |
| const std::vector<Def>& defs, |
| const std::vector<ResolutionCallback>& rcbs, |
| const std::vector<FunctionDefaults>& defaults) { |
| TORCH_INTERNAL_ASSERT(defs.size() == rcbs.size()); |
| std::vector<ResolverPtr> resolvers; |
| resolvers.reserve(rcbs.size()); |
| for (auto& callback : rcbs) { |
| resolvers.push_back(pythonResolver(callback)); |
| } |
| const auto& prefix = m.name(); |
| const auto self = ModuleSelf(m, py_m); |
| m.class_compilation_unit()->define(prefix, defs, resolvers, &self); |
| // Stitch in default arguments for each Def if provided |
| auto defaults_it = defaults.begin(); |
| auto defs_it = defs.begin(); |
| while (defs_it != defs.end()) { |
| const auto method_name = |
| QualifiedName(m.name(), (*defs_it).name().name()); |
| auto& method = |
| m.class_compilation_unit()->get_function(method_name); |
| method.setSchema(getSchemaWithNameAndDefaults( |
| defs_it->range(), |
| method.getSchema(), |
| at::nullopt, |
| *defaults_it)); |
| ++defs_it; |
| ++defaults_it; |
| } |
| didFinishEmitModule(m); |
| }) |
| .def( |
| "_get_method", |
| [](Module& self, const std::string& name) -> Method { |
| return self.get_method(name); |
| }, |
| py::keep_alive<0, 1>()) |
| .def("_register_parameter", &Module::register_parameter) |
| .def( |
| "_register_attribute", |
| [](Module& self, std::string name, TypePtr type, py::object value) { |
| self.register_attribute(name, type, toIValue(value, type)); |
| }) |
| .def("_register_module", &Module::register_module) |
| .def("_register_buffer", &Module::register_buffer) |
| .def( |
| "_set_attribute", |
| [](Module& self, const std::string& name, py::object value) { |
| auto attr = self.find_attribute(name); |
| TORCH_CHECK(attr, "Could not find attribute '", name, "'"); |
| auto ivalue = toIValue(value, attr->type()); |
| attr->setValue(ivalue); |
| }) |
| .def("_set_parameter", &Module::set_parameter) |
| .def("_get_parameter", &Module::get_parameter) |
| .def("_get_buffer", &Module::get_buffer) |
| .def("_get_attribute", &Module::get_attribute) |
| .def("_get_module", &Module::get_module) |
| .def( |
| "_get_modules", |
| [](Module& self) { |
| std::vector<std::pair<std::string, Module>> modules; |
| for (Slot s : self.get_module_slots()) { |
| modules.emplace_back(s.name(), s.to_module()); |
| } |
| return modules; |
| }) |
| .def( |
| "_get_parameters", |
| [](Module& self) -> py::tuple { |
| auto parameters = self.get_parameters(); |
| py::tuple result(parameters.size()); |
| auto i = 0; |
| for (Slot p : parameters) { |
| py::tuple r(2); |
| result[i++] = std::make_tuple( |
| p.name(), autograd::as_variable_ref(p.value().toTensor())); |
| } |
| return result; |
| }) |
| .def( |
| "_get_attributes", |
| [](Module& self) -> py::tuple { |
| auto attributes = self.get_attributes(); |
| py::tuple result(attributes.size()); |
| size_t i = 0; |
| for (Slot buffer : attributes) { |
| py::tuple r(3); |
| IValue v = buffer.value(); |
| result[i++] = std::make_tuple( |
| buffer.name(), buffer.type(), toPyObject(std::move(v))); |
| } |
| return result; |
| }) |
| .def( |
| "_has_attribute", |
| [](Module& self, const std::string& name) -> bool { |
| return self.find_attribute(name).has_value(); |
| }) |
| .def( |
| "_has_parameter", |
| [](Module& self, const std::string& name) -> bool { |
| return self.find_parameter(name).has_value(); |
| }) |
| .def( |
| "_has_buffer", |
| [](Module& self, const std::string& name) -> bool { |
| return self.find_buffer(name).has_value(); |
| }) |
| .def( |
| "_has_module", |
| [](Module& self, const std::string& name) { |
| return bool(self.find_module(name)); |
| }) |
| .def( |
| "_has_method", |
| [](Module& self, const std::string& name) { |
| return bool(self.find_method(name)); |
| }) |
| .def( |
| "_method_names", |
| [](Module& self) { |
| return fmap(self.get_methods(), [](const Method& method) { |
| return method.name(); |
| }); |
| }) |
| .def( |
| "_create_method_from_trace", |
| [](Module& self, |
| const std::string& name, |
| py::function func, |
| py::tuple input_tuple, |
| py::function var_lookup_fn, |
| bool force_outplace) { |
| // prereq: Module's buffers and parameters are unique |
| // this was ensured in python before calling this function |
| auto typed_inputs = toTypedStack(input_tuple); |
| auto graph = tracer::createGraphByTracing( |
| func, typed_inputs, var_lookup_fn, force_outplace, &self); |
| const auto method_name = QualifiedName(self.name(), name); |
| auto fn = self.class_compilation_unit()->create_function( |
| method_name, graph); |
| self.type()->addMethod(fn); |
| didFinishEmitModule(self); |
| }) |
| .def( |
| "get_debug_state", |
| [](Module& self) { |
| if (auto m = self.find_method("forward")) { |
| return m->get_executor().getDebugState(); |
| } |
| throw std::runtime_error( |
| "Attempted to call get_debug_state on a Module without a compiled forward()"); |
| }) |
| .def_property_readonly( |
| "code", |
| [](Module& self) { |
| std::ostringstream ss; |
| std::vector<at::Tensor> tensors; |
| std::vector<c10::NamedTypePtr> classes; |
| SourceRangeRecords source_ranges; |
| PythonPrint(ss, source_ranges, self, tensors, classes, false); |
| return ss.str(); |
| }) |
| .def("apply", &Module::apply) |
| .def("_copy_into", &Module::copy_into) |
| .def_property_readonly( |
| "name", [](const Module& self) { return self.name().name(); }) |
| .def( |
| "clone_method", [](Module& m, Module& orig, const std::string& name) { |
| m.clone_method(orig, name); |
| }); |
| |
| py::class_<ErrorReport, std::shared_ptr<ErrorReport>>(m, "ErrorReport") |
| .def(py::init<SourceRange>()) |
| .def("what", &ErrorReport::what); |
| |
| py::class_<CompilationUnit, std::shared_ptr<CompilationUnit>>( |
| m, "CompilationUnit") |
| .def(py::init<>()) |
| .def( |
| "find_function", |
| [](std::shared_ptr<CompilationUnit> self, const std::string& name) { |
| auto& fn = self->get_function(QualifiedName(name)); |
| return StrongFunctionPtr(std::move(self), &fn); |
| }) |
| .def("set_optimized", &CompilationUnit::set_optimized) |
| .def( |
| "define", |
| [](CompilationUnit& cu, |
| const std::string& src, |
| ResolutionCallback rcb) { |
| cu.define(c10::nullopt, src, pythonResolver(rcb), nullptr); |
| }); |
| |
| py::class_<StrongFunctionPtr>(m, "Function", py::dynamic_attr()) |
| .def( |
| "__call__", |
| [](py::args args, py::kwargs kwargs) { |
| // see: [pybind11 varargs] |
| auto strongPtr = py::cast<StrongFunctionPtr>(args[0]); |
| Function& callee = *strongPtr.function_; |
| bool tracing = tracer::isTracing(); |
| if (tracing) { |
| tracer::getTracingState()->graph->push_scope(callee.name()); |
| } |
| py::object result = invokeScriptFunctionFromPython( |
| callee, tuple_slice(std::move(args), 1), std::move(kwargs)); |
| if (tracing) { |
| tracer::getTracingState()->graph->pop_scope(); |
| } |
| return result; |
| }) |
| .def( |
| "save", |
| [](const StrongFunctionPtr& self, |
| const std::string& filename, |
| const ExtraFilesMap& _extra_files = ExtraFilesMap()) { |
| Module module("__main__"); |
| addFunctionToModule(module, self); |
| module.save(filename, _extra_files); |
| }, |
| py::arg("filename"), |
| py::arg("_extra_files") = ExtraFilesMap()) |
| .def( |
| "save_to_buffer", |
| [](const StrongFunctionPtr& self, |
| const ExtraFilesMap& _extra_files = ExtraFilesMap()) { |
| std::ostringstream buf; |
| Module module("__main__"); |
| addFunctionToModule(module, self); |
| module.save(buf, _extra_files); |
| return py::bytes(buf.str()); |
| }, |
| py::arg("_extra_files") = ExtraFilesMap()) |
| .def_property_readonly( |
| "graph", |
| [](const StrongFunctionPtr& self) { return self.function_->graph(); }) |
| .def_property_readonly( |
| "schema", |
| [](const StrongFunctionPtr& self) { |
| return self.function_->getSchema(); |
| }) |
| .def_property_readonly( |
| "code", |
| [](const StrongFunctionPtr& self) { |
| std::ostringstream ss; |
| std::vector<at::Tensor> tensors; |
| std::vector<c10::NamedTypePtr> classes; |
| SourceRangeRecords source_ranges; |
| PythonPrint( |
| ss, |
| source_ranges, |
| *self.function_, |
| false, |
| tensors, |
| classes, |
| false); |
| return ss.str(); |
| }) |
| .def( |
| "get_debug_state", |
| [](const StrongFunctionPtr& self) { |
| return self.function_->get_executor().getDebugState(); |
| }) |
| .def_property_readonly( |
| "name", |
| [](const StrongFunctionPtr& self) { return self.function_->name(); }) |
| .def_property_readonly( |
| "qualified_name", [](const StrongFunctionPtr& self) { |
| return self.function_->qualname().qualifiedName(); |
| }); |
| |
| py::class_<Method>(m, "ScriptMethod", py::dynamic_attr()) |
| .def( |
| "__call__", |
| [](py::args args, py::kwargs kwargs) { |
| // see: [pybind11 varargs] |
| Method& method = py::cast<Method&>(args[0]); |
| return invokeScriptMethodFromPython( |
| method, tuple_slice(std::move(args), 1), std::move(kwargs)); |
| }) |
| .def_property_readonly("graph", &Method::graph) |
| .def("_lowered_graph", &Method::_lowered_graph) |
| .def_property_readonly( |
| "schema", [](Method& m) { return m.function().getSchema(); }) |
| .def_property_readonly("name", &Method::name) |
| .def_property_readonly("code", [](Method& self) { |
| std::ostringstream ss; |
| std::vector<at::Tensor> tensors; |
| std::vector<c10::NamedTypePtr> classes; |
| SourceRangeRecords source_ranges; |
| PythonPrint( |
| ss, source_ranges, self.function(), true, tensors, classes, false); |
| return ss.str(); |
| }); |
| m.def( |
| "_jit_script_compile", |
| [](const std::string& qualname, |
| const Def& def, |
| ResolutionCallback rcb, |
| FunctionDefaults defaults) { |
| C10_LOG_API_USAGE_ONCE("torch.script.compile"); |
| const auto name = c10::QualifiedName(qualname); |
| TORCH_INTERNAL_ASSERT(name.name() == def.name().name()); |
| auto cu = get_python_cu(); |
| auto defined_functions = cu->define( |
| QualifiedName(name.prefix()), |
| {def}, |
| {pythonResolver(std::move(rcb))}, |
| nullptr, |
| true); |
| TORCH_INTERNAL_ASSERT(defined_functions.size() == 1); |
| auto& defined = defined_functions[0]; |
| defined->setSchema(getSchemaWithNameAndDefaults( |
| def.range(), defined->getSchema(), def.name().name(), defaults)); |
| StrongFunctionPtr ret(std::move(cu), defined); |
| didFinishEmitFunction(ret); |
| return ret; |
| }); |
| |
| m.def( |
| "_create_function_from_trace", |
| [](std::string qualname, |
| py::function func, |
| py::tuple input_tuple, |
| py::function var_lookup_fn, |
| bool force_outplace) { |
| auto typed_inputs = toTypedStack(input_tuple); |
| auto graph = tracer::createGraphByTracing( |
| func, typed_inputs, var_lookup_fn, force_outplace); |
| auto cu = get_python_cu(); |
| auto name = c10::QualifiedName(qualname); |
| auto result = cu->create_function( |
| std::move(name), std::move(graph), /*shouldMangle=*/true); |
| StrongFunctionPtr ret(std::move(cu), result); |
| didFinishEmitFunction(ret); |
| return ret; |
| }); |
| |
| m.def( |
| "_jit_script_class_compile", |
| [](const std::string& qualifiedName, |
| const ClassDef& classDef, |
| ResolutionCallback rcb) { |
| C10_LOG_API_USAGE_ONCE("torch.script.class"); |
| if (classDef.superclass().present()) { |
| throw ErrorReport(classDef.range()) |
| << "Torchscript does not support class inheritance."; |
| } |
| auto cu = get_python_cu(); |
| const auto classname = c10::QualifiedName(qualifiedName); |
| auto classType = ClassType::create(classname, cu); |
| cu->register_class(classType); |
| std::vector<ResolverPtr> rcbs; |
| std::vector<Def> methodDefs; |
| for (const auto& def : classDef.body()) { |
| if (def.kind() != TK_DEF) { |
| throw ErrorReport(def.range()) |
| << "Currently class bodies can only contain method " |
| "definitions. File an issue on Github if you want " |
| "something else!"; |
| } |
| methodDefs.emplace_back(Def(def)); |
| rcbs.push_back( |
| pythonResolver(rcb, classDef.name().name(), classType)); |
| } |
| const auto self = SimpleSelf(classType); |
| cu->define(classname, methodDefs, rcbs, &self); |
| }); |
| |
| m.def("parse_type_comment", [](const std::string& comment) { |
| Parser p(std::make_shared<Source>(comment)); |
| return Decl(p.parseTypeComment()); |
| }); |
| |
| m.def("merge_type_from_type_comment", &mergeTypesFromTypeComment); |
| m.def( |
| "import_ir_module", |
| [](std::shared_ptr<CompilationUnit> cu, |
| const std::string& filename, |
| py::object map_location, |
| ExtraFilesMap& extra_files) { |
| c10::optional<at::Device> optional_device; |
| if (!map_location.is(py::none())) { |
| AT_ASSERT(THPDevice_Check(map_location.ptr())); |
| optional_device = |
| reinterpret_cast<THPDevice*>(map_location.ptr())->device; |
| } |
| return import_ir_module( |
| std::move(cu), filename, optional_device, extra_files); |
| }); |
| m.def( |
| "import_ir_module_from_buffer", |
| [](std::shared_ptr<CompilationUnit> cu, |
| const std::string& buffer, |
| py::object map_location, |
| ExtraFilesMap& extra_files) { |
| std::istringstream in(buffer); |
| c10::optional<at::Device> optional_device; |
| if (!map_location.is(py::none())) { |
| AT_ASSERT(THPDevice_Check(map_location.ptr())); |
| optional_device = |
| reinterpret_cast<THPDevice*>(map_location.ptr())->device; |
| } |
| return import_ir_module( |
| std::move(cu), in, optional_device, extra_files); |
| }); |
| |
| m.def( |
| "_jit_import_functions", |
| [](std::shared_ptr<CompilationUnit> cu, |
| const std::string& src, |
| const std::vector<at::Tensor>& constant_table) { |
| import_functions( |
| c10::nullopt, |
| cu, |
| std::make_shared<Source>(src), |
| constant_table, |
| nullptr, |
| nullptr); |
| }); |
| |
| m.def("_jit_set_emit_hooks", setEmitHooks); |
| m.def("_jit_get_emit_hooks", getEmitHooks); |
| m.def("_jit_clear_class_registry", []() { |
| get_python_cu()->_clear_python_cu(); |
| }); |
| m.def( |
| "_debug_set_autodiff_subgraph_inlining", |
| debugSetAutodiffSubgraphInlining); |
| m.def("_propagate_shapes", _propagate_shapes); |
| m.def( |
| "_propagate_and_assign_input_shapes", _propagate_and_assign_input_shapes); |
| m.def("_assign_output_shapes", _assign_output_shapes); |
| m.def("_jit_python_print", [](const py::object& obj) { |
| std::ostringstream ss; |
| std::vector<at::Tensor> constants; |
| std::vector<c10::NamedTypePtr> classes; |
| SourceRangeRecords source_ranges; |
| if (auto self = as_module(obj)) { |
| PythonPrint(ss, source_ranges, *self, constants, classes, true); |
| } else if (auto self = as_function(obj)) { |
| PythonPrint( |
| ss, source_ranges, *self->function_, false, constants, classes, true); |
| } else { |
| auto& m = py::cast<Method&>(obj); |
| PythonPrint( |
| ss, source_ranges, m.function(), true, constants, classes, true); |
| } |
| return std::make_pair(ss.str(), std::move(constants)); |
| }); |
| m.def( |
| "_last_executed_optimized_graph", |
| []() { return lastExecutedOptimizedGraph(); }, |
| "Retrieve the optimized graph that was run the last time the graph executor ran on this thread"); |
| m.def( |
| "_create_function_from_graph", |
| [](const std::string& qualname, std::shared_ptr<Graph> graph) { |
| // TODO this should go in the global Python CU |
| auto cu = std::make_shared<CompilationUnit>(); |
| c10::QualifiedName name(qualname); |
| auto fn = cu->create_function(std::move(name), graph); |
| return StrongFunctionPtr(std::move(cu), fn); |
| }); |
| |
| py::class_<testing::FileCheck>(m, "FileCheck") |
| .def(py::init<>()) |
| .def("check", &testing::FileCheck::check) |
| .def("check_not", &testing::FileCheck::check_not) |
| .def("check_same", &testing::FileCheck::check_same) |
| .def("check_next", &testing::FileCheck::check_next) |
| .def("check_count", &testing::FileCheck::check_count) |
| .def("check_dag", &testing::FileCheck::check_dag) |
| .def("check_count", &testing::FileCheck::check_count) |
| .def( |
| "check_count", |
| [](testing::FileCheck& f, |
| const std::string& str, |
| size_t count, |
| bool exactly) { return f.check_count(str, count, exactly); }, |
| "Check Count", |
| py::arg("str"), |
| py::arg("count"), |
| py::arg("exactly") = false) |
| .def( |
| "run", |
| [](testing::FileCheck& f, const std::string& str) { |
| return f.run(str); |
| }) |
| .def( |
| "run", [](testing::FileCheck& f, const Graph& g) { return f.run(g); }) |
| .def( |
| "run", |
| [](testing::FileCheck& f, |
| const std::string& input, |
| const std::string& output) { return f.run(input, output); }, |
| "Run", |
| py::arg("checks_file"), |
| py::arg("test_file")) |
| .def( |
| "run", |
| [](testing::FileCheck& f, const std::string& input, const Graph& g) { |
| return f.run(input, g); |
| }, |
| "Run", |
| py::arg("checks_file"), |
| py::arg("graph")); |
| |
| m.def( |
| "_logging_set_logger", |
| [](logging::LoggerBase* logger) { return logging::setLogger(logger); }, |
| py::return_value_policy::reference); |
| m.def("_set_graph_executor_optimize", [](bool optimize) { |
| setGraphExecutorOptimize(optimize); |
| }); |
| |
| m.def("_get_graph_executor_optimize", &torch::jit::getGraphExecutorOptimize); |
| |
| py::class_<logging::LoggerBase, std::shared_ptr<logging::LoggerBase>>( |
| m, "LoggerBase"); |
| py::enum_<logging::LockingLogger::AggregationType>(m, "AggregationType") |
| .value("SUM", logging::LockingLogger::AggregationType::SUM) |
| .value("AVG", logging::LockingLogger::AggregationType::AVG) |
| .export_values(); |
| py::class_< |
| logging::LockingLogger, |
| logging::LoggerBase, |
| std::shared_ptr<logging::LockingLogger>>(m, "LockingLogger") |
| .def(py::init<>()) |
| .def("set_aggregation_type", &logging::LockingLogger::setAggregationType) |
| .def("get_counter_val", &logging::LockingLogger::getCounterValue); |
| py::class_< |
| logging::NoopLogger, |
| logging::LoggerBase, |
| std::shared_ptr<logging::NoopLogger>>(m, "NoopLogger") |
| .def(py::init<>()); |
| } |
| } // namespace script |
| } // namespace jit |
| } // namespace torch |