blob: 32d6fa30fd68ab47d0f672eb4645419974a97725 [file] [log] [blame]
#include <torch/csrc/jit/script/init.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/jit/import.h>
#include <torch/csrc/jit/script/compiler.h>
#include <torch/csrc/jit/script/module.h>
#include <torch/csrc/jit/script/module_python.h>
#include <torch/csrc/jit/script/python_sugared_value.h>
#include <torch/csrc/jit/script/sugared_value.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <torch/csrc/jit/constants.h>
#include <torch/csrc/jit/graph_executor.h>
#include <torch/csrc/jit/hooks_for_testing.h>
#include <torch/csrc/jit/import_source.h>
#include <torch/csrc/jit/irparser.h>
#include <torch/csrc/jit/passes/python_print.h>
#include <torch/csrc/jit/pybind_utils.h>
#include <torch/csrc/jit/python_tracer.h>
#include <torch/csrc/jit/script/logging.h>
#include <torch/csrc/jit/script/parser.h>
#include <torch/csrc/jit/tracer.h>
#include <torch/csrc/api/include/torch/ordered_dict.h>
#include <ATen/ATen.h>
#include <ATen/core/function_schema.h>
#include <ATen/core/qualified_name.h>
#include <pybind11/functional.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl_bind.h>
#include <chrono>
#include <cstddef>
#include <memory>
#include <sstream>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
PYBIND11_MAKE_OPAQUE(torch::jit::script::ExtraFilesMap);
namespace torch {
namespace jit {
namespace script {
using ::c10::Argument;
using ::c10::FunctionSchema;
using ResolutionCallback = std::function<py::function(std::string)>;
using FunctionDefaults = std::unordered_map<std::string, py::object>;
namespace {
// A resolver that will inspect the outer Python scope to find `name`.
struct PythonResolver : public Resolver {
explicit PythonResolver(ResolutionCallback rcb) : rcb_(std::move(rcb)) {}
/**
* While compiling classes, the class type we're compiling will not be
* available in Python, since we haven't fowner_ defining the class yet. So
* in order to make the class type available to its own methods, we need to
* explicitly resolve it.
*
* @param rcb Python function to resolve a name to its Python object in the
* enclosing scope
* @param classname The unqualified classname of the class currently being
* compiled.
* @param classType The class's type.
*/
explicit PythonResolver(
ResolutionCallback rcb,
std::string classname,
ClassTypePtr classType)
: rcb_(std::move(rcb)),
classname_(std::move(classname)),
classType_(std::move(classType)) {}
std::shared_ptr<SugaredValue> resolveValue(
const std::string& name,
Function& m,
const SourceRange& loc) const override {
AutoGIL ag;
py::object obj = rcb_(name);
if (obj.is(py::none())) {
return nullptr;
}
return toSugaredValue(obj, m, loc);
}
static bool isNamedTupleClass(py::object obj) {
auto tuple_type = reinterpret_cast<PyObject*>(&PyTuple_Type);
return PyObject_IsSubclass(obj.ptr(), tuple_type) &&
py::hasattr(obj, "_fields");
}
TypePtr resolveType(const std::string& name, const SourceRange& loc)
const override {
if (classType_ && name == classname_) {
return classType_;
}
AutoGIL ag;
py::object obj = rcb_(name);
if (obj.is(py::none())) {
return nullptr;
}
py::bool_ isClass = py::module::import("inspect").attr("isclass")(obj);
if (!py::cast<bool>(isClass)) {
return nullptr;
}
auto qualifiedName = c10::QualifiedName(py::cast<std::string>(
py::module::import("torch.jit").attr("_qualified_name")(obj)));
if (isNamedTupleClass(obj)) {
// Currently don't support default values
if (py::hasattr(obj, "_field_defaults")) {
auto default_dict = py::cast<std::map<std::string, py::object>>(
py::getattr(obj, "_field_defaults"));
if (default_dict.size()) {
std::string error_msg =
"Default values are currently not supported"
" on NamedTuple fields in TorchScript. Fields "
"with default values: [";
bool first = true;
for (const auto& kv : default_dict) {
if (!first) {
error_msg += ", ";
}
error_msg += kv.first;
}
error_msg += "]";
throw ErrorReport(loc) << error_msg;
}
}
py::object props = py::module::import("torch.jit")
.attr("_get_named_tuple_properties")(obj);
std::string unqualName;
std::vector<std::string> fields;
std::vector<TypePtr> annotations;
std::tie(unqualName, fields, annotations) = py::cast<
std::tuple<std::string, decltype(fields), decltype(annotations)>>(
props);
auto tt = TupleType::create(
annotations,
qualifiedName,
TupleType::namedTupleSchemaFromNamesAndTypes(
qualifiedName, fields, annotations));
get_python_cu()->register_class(tt);
return tt;
}
return get_python_cu()->get_class(qualifiedName);
}
private:
ResolutionCallback rcb_;
std::string classname_;
ClassTypePtr classType_;
};
std::shared_ptr<PythonResolver> pythonResolver(ResolutionCallback rcb) {
return std::make_shared<PythonResolver>(rcb);
}
std::shared_ptr<PythonResolver> pythonResolver(
ResolutionCallback rcb,
std::string classname,
ClassTypePtr classType) {
return std::make_shared<PythonResolver>(
rcb, std::move(classname), std::move(classType));
}
} // namespace
FunctionSchema getSchemaWithNameAndDefaults(
const SourceRange& range,
const FunctionSchema& schema,
const at::optional<std::string>& new_name,
const FunctionDefaults& default_args) {
std::vector<Argument> new_args;
for (auto& arg : schema.arguments()) {
auto it = default_args.find(arg.name());
if (it != default_args.end()) {
try {
IValue value;
auto n = arg.N();
auto list_type = arg.type()->cast<ListType>();
if (n && *n > 0 && list_type) {
// BroadcastingList, allow default values T for arg types List[T]
value = toIValue(it->second, list_type->getElementType());
} else {
value = toIValue(it->second, arg.type());
}
new_args.emplace_back(
arg.name(), arg.type(), arg.N(), value, arg.kwarg_only());
} catch (py::cast_error& e) {
throw ErrorReport(range)
<< "Expected a default value of type " << arg.type()->python_str()
<< " on parameter \"" << arg.name() << "\"";
}
} else {
new_args.push_back(arg);
}
}
return FunctionSchema(
new_name.value_or(schema.name()),
schema.overload_name(),
new_args,
schema.returns(),
schema.is_vararg(),
schema.is_varret());
}
struct VISIBILITY_HIDDEN ModuleSelf : public Self {
ModuleSelf(const Module& m, py::object& py_m)
: Self(), module_(m), pyModule_(py_m) {}
std::shared_ptr<SugaredValue> makeSugared(Value* v) const override {
v->setType(module_.type());
return std::make_shared<ModuleValue>(v, module_, pyModule_);
}
ClassTypePtr getClassType() const override {
return module_.type();
}
private:
const Module& module_;
const py::object& pyModule_;
};
static TypePtr getTensorType(const at::Tensor& t, const TypeKind type_kind) {
switch (type_kind) {
case TypeKind::DimensionedTensorType:
return DimensionedTensorType::create(t);
case TypeKind::CompleteTensorType: {
auto scalar_type = t.scalar_type();
auto sizes = t.sizes();
return CompleteTensorType::create(scalar_type, at::kCPU, sizes);
}
default:
throw std::runtime_error(
"Attempted to call getTensorType for type kind other than DimensionedTensorType or CompleteTensorType.");
}
}
static TupleTypePtr getTupleTensorType(
const Stack::const_iterator& s_iter,
const Stack::const_iterator& s_iter_end,
const TypePtr& tupleType,
const TypeKind type_kind) {
AT_ASSERT(tupleType->kind() == TupleType::Kind);
AT_ASSERT(s_iter != s_iter_end);
std::vector<TypePtr> types;
for (const auto& subType : tupleType->containedTypes()) {
if (subType->kind() == TupleType::Kind) {
types.push_back(
getTupleTensorType(s_iter + 1, s_iter_end, subType, type_kind));
} else {
types.push_back(getTensorType(s_iter->toTensor(), type_kind));
}
}
return TupleType::create(types);
}
static void setInputTensorTypes(
Graph& g,
const Stack& stack,
const TypeKind type_kind = TypeKind::DimensionedTensorType) {
at::ArrayRef<Value*> input_values = g.inputs();
auto s_iter = stack.begin();
for (auto v : input_values) {
AT_ASSERT(s_iter != stack.end());
if (v->type()->kind() == TupleType::Kind) {
AT_ASSERT(v->node()->kind() == prim::Param);
v->setType(getTupleTensorType(s_iter, stack.end(), v->type(), type_kind));
} else {
v->setType(getTensorType(s_iter->toTensor(), type_kind));
s_iter++;
}
}
}
static std::shared_ptr<Graph> _propagate_shapes(
Graph& graph,
std::vector<at::Tensor> inputs,
bool with_grad = false) {
Stack stack(inputs.begin(), inputs.end());
auto retval = graph.copy();
setInputTensorTypes(*retval, stack);
PropagateInputShapes(retval);
return retval;
}
static std::shared_ptr<Graph> _propagate_and_assign_input_shapes(
Graph& graph,
const std::vector<at::Tensor>& inputs,
bool with_grad = false,
bool propagate = true) {
auto retval = graph.copy();
if (propagate) {
setInputTensorTypes(
*retval, fmap<IValue>(inputs), TypeKind::DimensionedTensorType);
PropagateInputShapes(retval);
}
setInputTensorTypes(
*retval, fmap<IValue>(inputs), TypeKind::CompleteTensorType);
return retval;
}
static std::shared_ptr<Graph> _assign_output_shapes(
Graph& graph,
std::vector<at::Tensor> outputs) {
auto retval = graph.copy();
AT_ASSERT(retval->outputs().size() == outputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
auto scalar_type = outputs[i].scalar_type();
auto sizes = outputs[i].sizes();
auto type =
torch::jit::CompleteTensorType::create(scalar_type, at::kCPU, sizes);
retval->outputs()[i]->setType(type);
}
return retval;
}
void addFunctionToModule(Module& module, const StrongFunctionPtr& func) {
// Make a graph with a fake self argument
auto graph = func.function_->graph()->copy();
auto v = graph->insertInput(0, "self");
v->setType(module.module_object()->type());
const auto name = QualifiedName(module.name(), "forward");
auto method = module.class_compilation_unit()->create_function(name, graph);
module.type()->addMethod(method);
}
void initJitScriptBindings(PyObject* module) {
auto m = py::handle(module).cast<py::module>();
// STL containers are not mutable by default and hence we need to bind as
// follows.
py::bind_map<ExtraFilesMap>(m, "ExtraFilesMap");
// torch.jit.ScriptModule is a subclass of this C++ object.
// Methods here are prefixed with _ since they should not be
// public.
py::class_<Module>(m, "ScriptModule")
.def(py::init<std::string, std::shared_ptr<CompilationUnit>, bool>())
.def(
"save",
[](Module& m,
const std::string& filename,
const ExtraFilesMap& _extra_files = ExtraFilesMap()) {
m.save(filename, _extra_files);
},
py::arg("filename"),
py::arg("_extra_files") = ExtraFilesMap())
.def(
"save_to_buffer",
[](Module& m, const ExtraFilesMap& _extra_files = ExtraFilesMap()) {
std::ostringstream buf;
m.save(buf, _extra_files);
return py::bytes(buf.str());
},
py::arg("_extra_files") = ExtraFilesMap())
.def("_set_optimized", &Module::set_optimized)
.def(
"_define",
[](Module& m,
py::object py_m,
const std::string& script,
ResolutionCallback rcb) {
const auto self = ModuleSelf(m, py_m);
m.class_compilation_unit()->define(
m.name(), script, pythonResolver(rcb), &self);
didFinishEmitModule(m);
})
.def(
"_create_methods",
[](Module& m,
py::object py_m,
const std::vector<Def>& defs,
const std::vector<ResolutionCallback>& rcbs,
const std::vector<FunctionDefaults>& defaults) {
TORCH_INTERNAL_ASSERT(defs.size() == rcbs.size());
std::vector<ResolverPtr> resolvers;
resolvers.reserve(rcbs.size());
for (auto& callback : rcbs) {
resolvers.push_back(pythonResolver(callback));
}
const auto& prefix = m.name();
const auto self = ModuleSelf(m, py_m);
m.class_compilation_unit()->define(prefix, defs, resolvers, &self);
// Stitch in default arguments for each Def if provided
auto defaults_it = defaults.begin();
auto defs_it = defs.begin();
while (defs_it != defs.end()) {
const auto method_name =
QualifiedName(m.name(), (*defs_it).name().name());
auto& method =
m.class_compilation_unit()->get_function(method_name);
method.setSchema(getSchemaWithNameAndDefaults(
defs_it->range(),
method.getSchema(),
at::nullopt,
*defaults_it));
++defs_it;
++defaults_it;
}
didFinishEmitModule(m);
})
.def(
"_get_method",
[](Module& self, const std::string& name) -> Method {
return self.get_method(name);
},
py::keep_alive<0, 1>())
.def("_register_parameter", &Module::register_parameter)
.def(
"_register_attribute",
[](Module& self, std::string name, TypePtr type, py::object value) {
self.register_attribute(name, type, toIValue(value, type));
})
.def("_register_module", &Module::register_module)
.def("_register_buffer", &Module::register_buffer)
.def(
"_set_attribute",
[](Module& self, const std::string& name, py::object value) {
auto attr = self.find_attribute(name);
TORCH_CHECK(attr, "Could not find attribute '", name, "'");
auto ivalue = toIValue(value, attr->type());
attr->setValue(ivalue);
})
.def("_set_parameter", &Module::set_parameter)
.def("_get_parameter", &Module::get_parameter)
.def("_get_buffer", &Module::get_buffer)
.def("_get_attribute", &Module::get_attribute)
.def("_get_module", &Module::get_module)
.def(
"_get_modules",
[](Module& self) {
std::vector<std::pair<std::string, Module>> modules;
for (Slot s : self.get_module_slots()) {
modules.emplace_back(s.name(), s.to_module());
}
return modules;
})
.def(
"_get_parameters",
[](Module& self) -> py::tuple {
auto parameters = self.get_parameters();
py::tuple result(parameters.size());
auto i = 0;
for (Slot p : parameters) {
py::tuple r(2);
result[i++] = std::make_tuple(
p.name(), autograd::as_variable_ref(p.value().toTensor()));
}
return result;
})
.def(
"_get_attributes",
[](Module& self) -> py::tuple {
auto attributes = self.get_attributes();
py::tuple result(attributes.size());
size_t i = 0;
for (Slot buffer : attributes) {
py::tuple r(3);
IValue v = buffer.value();
result[i++] = std::make_tuple(
buffer.name(), buffer.type(), toPyObject(std::move(v)));
}
return result;
})
.def(
"_has_attribute",
[](Module& self, const std::string& name) -> bool {
return self.find_attribute(name).has_value();
})
.def(
"_has_parameter",
[](Module& self, const std::string& name) -> bool {
return self.find_parameter(name).has_value();
})
.def(
"_has_buffer",
[](Module& self, const std::string& name) -> bool {
return self.find_buffer(name).has_value();
})
.def(
"_has_module",
[](Module& self, const std::string& name) {
return bool(self.find_module(name));
})
.def(
"_has_method",
[](Module& self, const std::string& name) {
return bool(self.find_method(name));
})
.def(
"_method_names",
[](Module& self) {
return fmap(self.get_methods(), [](const Method& method) {
return method.name();
});
})
.def(
"_create_method_from_trace",
[](Module& self,
const std::string& name,
py::function func,
py::tuple input_tuple,
py::function var_lookup_fn,
bool force_outplace) {
// prereq: Module's buffers and parameters are unique
// this was ensured in python before calling this function
auto typed_inputs = toTypedStack(input_tuple);
auto graph = tracer::createGraphByTracing(
func, typed_inputs, var_lookup_fn, force_outplace, &self);
const auto method_name = QualifiedName(self.name(), name);
auto fn = self.class_compilation_unit()->create_function(
method_name, graph);
self.type()->addMethod(fn);
didFinishEmitModule(self);
})
.def(
"get_debug_state",
[](Module& self) {
if (auto m = self.find_method("forward")) {
return m->get_executor().getDebugState();
}
throw std::runtime_error(
"Attempted to call get_debug_state on a Module without a compiled forward()");
})
.def_property_readonly(
"code",
[](Module& self) {
std::ostringstream ss;
std::vector<at::Tensor> tensors;
std::vector<c10::NamedTypePtr> classes;
SourceRangeRecords source_ranges;
PythonPrint(ss, source_ranges, self, tensors, classes, false);
return ss.str();
})
.def("apply", &Module::apply)
.def("_copy_into", &Module::copy_into)
.def_property_readonly(
"name", [](const Module& self) { return self.name().name(); })
.def(
"clone_method", [](Module& m, Module& orig, const std::string& name) {
m.clone_method(orig, name);
});
py::class_<ErrorReport, std::shared_ptr<ErrorReport>>(m, "ErrorReport")
.def(py::init<SourceRange>())
.def("what", &ErrorReport::what);
py::class_<CompilationUnit, std::shared_ptr<CompilationUnit>>(
m, "CompilationUnit")
.def(py::init<>())
.def(
"find_function",
[](std::shared_ptr<CompilationUnit> self, const std::string& name) {
auto& fn = self->get_function(QualifiedName(name));
return StrongFunctionPtr(std::move(self), &fn);
})
.def("set_optimized", &CompilationUnit::set_optimized)
.def(
"define",
[](CompilationUnit& cu,
const std::string& src,
ResolutionCallback rcb) {
cu.define(c10::nullopt, src, pythonResolver(rcb), nullptr);
});
py::class_<StrongFunctionPtr>(m, "Function", py::dynamic_attr())
.def(
"__call__",
[](py::args args, py::kwargs kwargs) {
// see: [pybind11 varargs]
auto strongPtr = py::cast<StrongFunctionPtr>(args[0]);
Function& callee = *strongPtr.function_;
bool tracing = tracer::isTracing();
if (tracing) {
tracer::getTracingState()->graph->push_scope(callee.name());
}
py::object result = invokeScriptFunctionFromPython(
callee, tuple_slice(std::move(args), 1), std::move(kwargs));
if (tracing) {
tracer::getTracingState()->graph->pop_scope();
}
return result;
})
.def(
"save",
[](const StrongFunctionPtr& self,
const std::string& filename,
const ExtraFilesMap& _extra_files = ExtraFilesMap()) {
Module module("__main__");
addFunctionToModule(module, self);
module.save(filename, _extra_files);
},
py::arg("filename"),
py::arg("_extra_files") = ExtraFilesMap())
.def(
"save_to_buffer",
[](const StrongFunctionPtr& self,
const ExtraFilesMap& _extra_files = ExtraFilesMap()) {
std::ostringstream buf;
Module module("__main__");
addFunctionToModule(module, self);
module.save(buf, _extra_files);
return py::bytes(buf.str());
},
py::arg("_extra_files") = ExtraFilesMap())
.def_property_readonly(
"graph",
[](const StrongFunctionPtr& self) { return self.function_->graph(); })
.def_property_readonly(
"schema",
[](const StrongFunctionPtr& self) {
return self.function_->getSchema();
})
.def_property_readonly(
"code",
[](const StrongFunctionPtr& self) {
std::ostringstream ss;
std::vector<at::Tensor> tensors;
std::vector<c10::NamedTypePtr> classes;
SourceRangeRecords source_ranges;
PythonPrint(
ss,
source_ranges,
*self.function_,
false,
tensors,
classes,
false);
return ss.str();
})
.def(
"get_debug_state",
[](const StrongFunctionPtr& self) {
return self.function_->get_executor().getDebugState();
})
.def_property_readonly(
"name",
[](const StrongFunctionPtr& self) { return self.function_->name(); })
.def_property_readonly(
"qualified_name", [](const StrongFunctionPtr& self) {
return self.function_->qualname().qualifiedName();
});
py::class_<Method>(m, "ScriptMethod", py::dynamic_attr())
.def(
"__call__",
[](py::args args, py::kwargs kwargs) {
// see: [pybind11 varargs]
Method& method = py::cast<Method&>(args[0]);
return invokeScriptMethodFromPython(
method, tuple_slice(std::move(args), 1), std::move(kwargs));
})
.def_property_readonly("graph", &Method::graph)
.def("_lowered_graph", &Method::_lowered_graph)
.def_property_readonly(
"schema", [](Method& m) { return m.function().getSchema(); })
.def_property_readonly("name", &Method::name)
.def_property_readonly("code", [](Method& self) {
std::ostringstream ss;
std::vector<at::Tensor> tensors;
std::vector<c10::NamedTypePtr> classes;
SourceRangeRecords source_ranges;
PythonPrint(
ss, source_ranges, self.function(), true, tensors, classes, false);
return ss.str();
});
m.def(
"_jit_script_compile",
[](const std::string& qualname,
const Def& def,
ResolutionCallback rcb,
FunctionDefaults defaults) {
C10_LOG_API_USAGE_ONCE("torch.script.compile");
const auto name = c10::QualifiedName(qualname);
TORCH_INTERNAL_ASSERT(name.name() == def.name().name());
auto cu = get_python_cu();
auto defined_functions = cu->define(
QualifiedName(name.prefix()),
{def},
{pythonResolver(std::move(rcb))},
nullptr,
true);
TORCH_INTERNAL_ASSERT(defined_functions.size() == 1);
auto& defined = defined_functions[0];
defined->setSchema(getSchemaWithNameAndDefaults(
def.range(), defined->getSchema(), def.name().name(), defaults));
StrongFunctionPtr ret(std::move(cu), defined);
didFinishEmitFunction(ret);
return ret;
});
m.def(
"_create_function_from_trace",
[](std::string qualname,
py::function func,
py::tuple input_tuple,
py::function var_lookup_fn,
bool force_outplace) {
auto typed_inputs = toTypedStack(input_tuple);
auto graph = tracer::createGraphByTracing(
func, typed_inputs, var_lookup_fn, force_outplace);
auto cu = get_python_cu();
auto name = c10::QualifiedName(qualname);
auto result = cu->create_function(
std::move(name), std::move(graph), /*shouldMangle=*/true);
StrongFunctionPtr ret(std::move(cu), result);
didFinishEmitFunction(ret);
return ret;
});
m.def(
"_jit_script_class_compile",
[](const std::string& qualifiedName,
const ClassDef& classDef,
ResolutionCallback rcb) {
C10_LOG_API_USAGE_ONCE("torch.script.class");
if (classDef.superclass().present()) {
throw ErrorReport(classDef.range())
<< "Torchscript does not support class inheritance.";
}
auto cu = get_python_cu();
const auto classname = c10::QualifiedName(qualifiedName);
auto classType = ClassType::create(classname, cu);
cu->register_class(classType);
std::vector<ResolverPtr> rcbs;
std::vector<Def> methodDefs;
for (const auto& def : classDef.body()) {
if (def.kind() != TK_DEF) {
throw ErrorReport(def.range())
<< "Currently class bodies can only contain method "
"definitions. File an issue on Github if you want "
"something else!";
}
methodDefs.emplace_back(Def(def));
rcbs.push_back(
pythonResolver(rcb, classDef.name().name(), classType));
}
const auto self = SimpleSelf(classType);
cu->define(classname, methodDefs, rcbs, &self);
});
m.def("parse_type_comment", [](const std::string& comment) {
Parser p(std::make_shared<Source>(comment));
return Decl(p.parseTypeComment());
});
m.def("merge_type_from_type_comment", &mergeTypesFromTypeComment);
m.def(
"import_ir_module",
[](std::shared_ptr<CompilationUnit> cu,
const std::string& filename,
py::object map_location,
ExtraFilesMap& extra_files) {
c10::optional<at::Device> optional_device;
if (!map_location.is(py::none())) {
AT_ASSERT(THPDevice_Check(map_location.ptr()));
optional_device =
reinterpret_cast<THPDevice*>(map_location.ptr())->device;
}
return import_ir_module(
std::move(cu), filename, optional_device, extra_files);
});
m.def(
"import_ir_module_from_buffer",
[](std::shared_ptr<CompilationUnit> cu,
const std::string& buffer,
py::object map_location,
ExtraFilesMap& extra_files) {
std::istringstream in(buffer);
c10::optional<at::Device> optional_device;
if (!map_location.is(py::none())) {
AT_ASSERT(THPDevice_Check(map_location.ptr()));
optional_device =
reinterpret_cast<THPDevice*>(map_location.ptr())->device;
}
return import_ir_module(
std::move(cu), in, optional_device, extra_files);
});
m.def(
"_jit_import_functions",
[](std::shared_ptr<CompilationUnit> cu,
const std::string& src,
const std::vector<at::Tensor>& constant_table) {
import_functions(
c10::nullopt,
cu,
std::make_shared<Source>(src),
constant_table,
nullptr,
nullptr);
});
m.def("_jit_set_emit_hooks", setEmitHooks);
m.def("_jit_get_emit_hooks", getEmitHooks);
m.def("_jit_clear_class_registry", []() {
get_python_cu()->_clear_python_cu();
});
m.def(
"_debug_set_autodiff_subgraph_inlining",
debugSetAutodiffSubgraphInlining);
m.def("_propagate_shapes", _propagate_shapes);
m.def(
"_propagate_and_assign_input_shapes", _propagate_and_assign_input_shapes);
m.def("_assign_output_shapes", _assign_output_shapes);
m.def("_jit_python_print", [](const py::object& obj) {
std::ostringstream ss;
std::vector<at::Tensor> constants;
std::vector<c10::NamedTypePtr> classes;
SourceRangeRecords source_ranges;
if (auto self = as_module(obj)) {
PythonPrint(ss, source_ranges, *self, constants, classes, true);
} else if (auto self = as_function(obj)) {
PythonPrint(
ss, source_ranges, *self->function_, false, constants, classes, true);
} else {
auto& m = py::cast<Method&>(obj);
PythonPrint(
ss, source_ranges, m.function(), true, constants, classes, true);
}
return std::make_pair(ss.str(), std::move(constants));
});
m.def(
"_last_executed_optimized_graph",
[]() { return lastExecutedOptimizedGraph(); },
"Retrieve the optimized graph that was run the last time the graph executor ran on this thread");
m.def(
"_create_function_from_graph",
[](const std::string& qualname, std::shared_ptr<Graph> graph) {
// TODO this should go in the global Python CU
auto cu = std::make_shared<CompilationUnit>();
c10::QualifiedName name(qualname);
auto fn = cu->create_function(std::move(name), graph);
return StrongFunctionPtr(std::move(cu), fn);
});
py::class_<testing::FileCheck>(m, "FileCheck")
.def(py::init<>())
.def("check", &testing::FileCheck::check)
.def("check_not", &testing::FileCheck::check_not)
.def("check_same", &testing::FileCheck::check_same)
.def("check_next", &testing::FileCheck::check_next)
.def("check_count", &testing::FileCheck::check_count)
.def("check_dag", &testing::FileCheck::check_dag)
.def("check_count", &testing::FileCheck::check_count)
.def(
"check_count",
[](testing::FileCheck& f,
const std::string& str,
size_t count,
bool exactly) { return f.check_count(str, count, exactly); },
"Check Count",
py::arg("str"),
py::arg("count"),
py::arg("exactly") = false)
.def(
"run",
[](testing::FileCheck& f, const std::string& str) {
return f.run(str);
})
.def(
"run", [](testing::FileCheck& f, const Graph& g) { return f.run(g); })
.def(
"run",
[](testing::FileCheck& f,
const std::string& input,
const std::string& output) { return f.run(input, output); },
"Run",
py::arg("checks_file"),
py::arg("test_file"))
.def(
"run",
[](testing::FileCheck& f, const std::string& input, const Graph& g) {
return f.run(input, g);
},
"Run",
py::arg("checks_file"),
py::arg("graph"));
m.def(
"_logging_set_logger",
[](logging::LoggerBase* logger) { return logging::setLogger(logger); },
py::return_value_policy::reference);
m.def("_set_graph_executor_optimize", [](bool optimize) {
setGraphExecutorOptimize(optimize);
});
m.def("_get_graph_executor_optimize", &torch::jit::getGraphExecutorOptimize);
py::class_<logging::LoggerBase, std::shared_ptr<logging::LoggerBase>>(
m, "LoggerBase");
py::enum_<logging::LockingLogger::AggregationType>(m, "AggregationType")
.value("SUM", logging::LockingLogger::AggregationType::SUM)
.value("AVG", logging::LockingLogger::AggregationType::AVG)
.export_values();
py::class_<
logging::LockingLogger,
logging::LoggerBase,
std::shared_ptr<logging::LockingLogger>>(m, "LockingLogger")
.def(py::init<>())
.def("set_aggregation_type", &logging::LockingLogger::setAggregationType)
.def("get_counter_val", &logging::LockingLogger::getCounterValue);
py::class_<
logging::NoopLogger,
logging::LoggerBase,
std::shared_ptr<logging::NoopLogger>>(m, "NoopLogger")
.def(py::init<>());
}
} // namespace script
} // namespace jit
} // namespace torch