| """ | 
 | The weak_script annotation needs to be here instead of inside torch/jit/ so it | 
 | can be used in other places in torch/ (namely torch.nn) without running into | 
 | circular dependency problems | 
 | """ | 
 |  | 
 | import contextlib | 
 | import collections | 
 | import enum | 
 | import inspect | 
 | import ast | 
 | import weakref | 
 | import warnings | 
 | from textwrap import dedent | 
 | import torch | 
 | import sys | 
 | import builtins | 
 | # This is needed. `torch._jit_internal` is imported before `torch.distributed.__init__`. | 
 | # Explicitly ask to import `torch.distributed.__init__` first. | 
 | # Otherwise, "AttributeError: module 'torch' has no attribute 'distributed'" is raised. | 
 | import torch.distributed.rpc | 
 | from torch._utils_internal import get_source_lines_and_file | 
 | from torch.futures import Future | 
 | import torch.package._mangling as package_mangling | 
 | from typing import Tuple, List, Dict, Optional, Union, Any, TypeVar, Generic, Callable  # noqa: F401 | 
 |  | 
 | if sys.version_info[:2] > (3, 7): | 
 |     from typing import Final | 
 | else: | 
 |     from typing_extensions import Final | 
 |  | 
 | # Wrapper functions that can call either of 2 functions depending on a boolean | 
 | # argument | 
 | boolean_dispatched: 'weakref.WeakKeyDictionary[Callable, Dict[str, Callable]]' = weakref.WeakKeyDictionary()  # noqa: T484 | 
 |  | 
 |  | 
 | def createResolutionCallbackFromEnv(lookup_base): | 
 |     """ | 
 |     Creates a resolution callback that will look up qualified names in an | 
 |     environment, starting with `lookup_base` for the base of any qualified | 
 |     names, then proceeding down the lookup chain with the resolved object. | 
 |  | 
 |     You should not use this directly, it should only be used from the other | 
 |     createResolutionCallbackFrom* functions. | 
 |     """ | 
 |     def lookupInModule(qualified_name, module): | 
 |         if '.' in qualified_name: | 
 |             parts = qualified_name.split('.') | 
 |             base = parts[0] | 
 |             remaining_pieces = '.'.join(parts[1:]) | 
 |             module_value = getattr(module, base) | 
 |             return lookupInModule(remaining_pieces, module_value) | 
 |         else: | 
 |             return getattr(module, qualified_name) | 
 |  | 
 |     def parseNestedExpr(expr, module) -> Tuple[Any, int]: | 
 |         i = 0 | 
 |         while i < len(expr) and expr[i] not in (',', '[', ']'): | 
 |             i += 1 | 
 |  | 
 |         base = lookupInModule(expr[:i].strip(), module) | 
 |         assert base is not None, f"Unresolvable type {expr[:i]}" | 
 |         if i == len(expr) or expr[i] != '[': | 
 |             return base, i | 
 |  | 
 |         assert expr[i] == '[' | 
 |         parts = [] | 
 |         while expr[i] != ']': | 
 |             part_len = 0 | 
 |             i += 1 | 
 |             part, part_len = parseNestedExpr(expr[i:], module) | 
 |             parts.append(part) | 
 |             i += part_len | 
 |         if len(parts) > 1: | 
 |             return base[tuple(parts)], i + 1 | 
 |         else: | 
 |             return base[parts[0]], i + 1 | 
 |  | 
 |     def parseExpr(expr, module): | 
 |         try: | 
 |             value, len_parsed = parseNestedExpr(expr, module) | 
 |             assert len_parsed == len(expr), "whole expression was not parsed, falling back to c++ parser" | 
 |             return value | 
 |         except Exception: | 
 |             """ | 
 |             The python resolver fails in several cases in known unit tests, and is intended | 
 |             to fall back gracefully to the c++ resolver in general.  For example, python 2 style | 
 |             annotations which are frequent in our unit tests often fail with types e.g. int not | 
 |             resolvable from the calling frame. | 
 |             """ | 
 |             return None | 
 |  | 
 |     return lambda expr: parseExpr(expr, lookup_base) | 
 |  | 
 |  | 
 | def createResolutionCallbackFromFrame(frames_up=0): | 
 |     """ | 
 |     Creates a function which, given a string variable name, | 
 |     returns the value of the variable in the scope of the caller of | 
 |     the function which called createResolutionCallbackFromFrame (by default). | 
 |  | 
 |     This is used to enable access in-scope Python variables inside | 
 |     TorchScript fragments. | 
 |  | 
 |     frames_up is number of additional frames to go up on the stack. | 
 |     The default value is 0, which correspond to the frame of the caller | 
 |     of createResolutionCallbackFromFrame. Also for example, if frames_up is set | 
 |     to 1, then the frame of the caller's caller of createResolutionCallbackFromFrame | 
 |     will be taken. | 
 |  | 
 |     For example, the following program prints 2:: | 
 |  | 
 |         def bar(): | 
 |             cb = createResolutionCallbackFromFrame(1) | 
 |             print(cb("foo")) | 
 |  | 
 |         def baz(): | 
 |             foo = 2 | 
 |             bar() | 
 |  | 
 |         baz() | 
 |     """ | 
 |     frame = inspect.currentframe() | 
 |     i = 0 | 
 |     while i < frames_up + 1: | 
 |         assert frame is not None | 
 |         frame = frame.f_back | 
 |         i += 1 | 
 |  | 
 |     assert frame is not None | 
 |     f_locals = frame.f_locals | 
 |     f_globals = frame.f_globals | 
 |  | 
 |     class env(object): | 
 |         def __getattr__(self, key): | 
 |             if key in f_locals: | 
 |                 return f_locals[key] | 
 |             elif key in f_globals: | 
 |                 return f_globals[key] | 
 |             elif key in dir(builtins): | 
 |                 return getattr(builtins, key) | 
 |  | 
 |     return createResolutionCallbackFromEnv(env()) | 
 |  | 
 |  | 
 | def get_closure(fn): | 
 |     """ | 
 |     Get a dictionary of closed over variables from a function | 
 |     """ | 
 |     captures = {} | 
 |     captures.update(fn.__globals__) | 
 |  | 
 |     for index, captured_name in enumerate(fn.__code__.co_freevars): | 
 |         captures[captured_name] = fn.__closure__[index].cell_contents | 
 |  | 
 |     return captures | 
 |  | 
 | # [local resolution in python] | 
 | # Depending on where a variable is defined, and where it is used, we may | 
 | # or may not be able to recover its value when recursively compiling a | 
 | # script function. Remember in the general case, a module or function is | 
 | # first defined and then later scripted. This means we do not have a | 
 | # chance to capture the active frames when the function is defined. Hence any | 
 | # name resolution has to happen later on the created closure. The way | 
 | # python captures type annotations restricts what we can recover. The | 
 | # follow example illustrates the different cases: | 
 | # | 
 | #         class MyGlobalClass: | 
 | #         ... | 
 | #         def my_local_scope(): | 
 | #             @torch.jit.script | 
 | #             class MyClass: | 
 | #                 ... | 
 | #             @torch.jit.script | 
 | #             class MyClassUsedAsVar: | 
 | #                 ... | 
 | #             def eg(x: MyClass, y: MyGlobalClass): | 
 | #                 a_local_capture : Foo | 
 | #                 return MyClassUsedAsVar(x) | 
 | # | 
 | # MyGlobalClass is defined in the __globals__ dictionary of function | 
 | # 'eg', so it is always recoverable. my_local_scope introduces a new local | 
 | # variable scope in the function. Classes defined here are only visible as | 
 | # local variables. For the case of MyClassUsedAsVar, it is captured | 
 | # because it is used as a variable inside the body of the function, and we | 
 | # can resolve it using the captures returned from `get_closure`. However, | 
 | # the type annotations are not captured by the closure. In Python | 
 | # 3.0--3.9, the _value_ of MyClass and MyGlobalClass will be available as | 
 | # annotations on `eg``, but starting in Python 4.0, they will represented as | 
 | # strings and no longer present. Furthermore, since the body of `eg` does | 
 | # not reference those names, they do not appear in the list of closed over | 
 | # variables. In Python 2.x, type annotations are in comments, leading to a | 
 | # similar situation where their definitions are not available. We anticipate | 
 | # that most users will not run into this issue because their modules and | 
 | # functions will be defined at a global scope like MyGlobalClass. In cases | 
 | # where they are not, it is possible to work around issues by declaring the | 
 | # values global in the function. | 
 | # In Python 3.9 declaring class as global will make it invisible to | 
 | # `inspect.getsource`, see https://bugs.python.org/issue42666 . | 
 | # This could be worked around by manualy adding it to `global()` dictionary. | 
 |  | 
 |  | 
 |  | 
 | def createResolutionCallbackFromClosure(fn): | 
 |     """ | 
 |     Create a resolutionCallback by introspecting the function instead of | 
 |     looking up the stack for the enclosing scope | 
 |     """ | 
 |     closure = get_closure(fn) | 
 |  | 
 |     class closure_lookup(object): | 
 |         # This is a class since `closure` is a dict and it's easier in | 
 |         # `env_helper` if everything just works with `getattr` calls | 
 |         def __getattr__(self, key): | 
 |             if key in closure: | 
 |                 return closure[key] | 
 |             elif hasattr(builtins, key): | 
 |                 return getattr(builtins, key) | 
 |             return None | 
 |  | 
 |     return createResolutionCallbackFromEnv(closure_lookup()) | 
 |  | 
 |  | 
 | def can_compile_class(cls): | 
 |     # If any of the functions on a type don't have a code object, this type can't | 
 |     # be compiled and is probably a builtin / bound from C | 
 |     if is_ignored_fn(cls): | 
 |         return False | 
 |  | 
 |     # Ignore the following list of built-in classes. | 
 |     ignored_builtin_classes = (torch.nn.Module, tuple, list, Exception) | 
 |     if issubclass(cls, ignored_builtin_classes): | 
 |         return False | 
 |  | 
 |     names = cls.__dict__ | 
 |     fns = [getattr(cls, name) for name in names if inspect.isroutine(getattr(cls, name, None))] | 
 |     has_code = [hasattr(fn, '__code__') for fn in fns] | 
 |     return all(has_code) | 
 |  | 
 |  | 
 | def get_callable_argument_names(fn): | 
 |     """ | 
 |     Gets names of all POSITIONAL_OR_KEYWORD arguments for callable `fn`. | 
 |     Returns an empty list when other types of arguments are present. | 
 |  | 
 |     This is used by `torch.jit.trace` to assign meaningful argument names to | 
 |     traced functions and modules. | 
 |  | 
 |     Args: | 
 |         fn: A callable. | 
 |     Returns: | 
 |         Argument names: List[str] | 
 |     """ | 
 |     # inspect.signature may fail, give up in that case. | 
 |     try: | 
 |         callable_signature = inspect.signature(fn) | 
 |     except Exception: | 
 |         return [] | 
 |  | 
 |     argument_names = [] | 
 |     for name, param in callable_signature.parameters.items(): | 
 |         # All four other types of arguments do not map to individual values | 
 |         # with a keyword as name. | 
 |         if not param.kind == param.POSITIONAL_OR_KEYWORD: | 
 |             return [] | 
 |  | 
 |         argument_names.append(name) | 
 |  | 
 |     return argument_names | 
 |  | 
 |  | 
 | def get_annotation_str(annotation): | 
 |     """ | 
 |     Convert an AST node containing a type annotation to the string present in the source | 
 |     that represents the same annotation. | 
 |     """ | 
 |     if isinstance(annotation, ast.Name): | 
 |         return annotation.id | 
 |     elif isinstance(annotation, ast.Attribute): | 
 |         return '.'.join([get_annotation_str(annotation.value), annotation.attr]) | 
 |     elif isinstance(annotation, ast.Subscript): | 
 |         # In Python3.9+ subscript indicies are not wrapped in ast.Index | 
 |         subscript_slice = annotation.slice if sys.version_info >= (3, 9) else annotation.slice.value  # type: ignore | 
 |         return f"{get_annotation_str(annotation.value)}[{get_annotation_str(subscript_slice)}]" | 
 |     elif isinstance(annotation, ast.Tuple): | 
 |         return ','.join([get_annotation_str(elt) for elt in annotation.elts]) | 
 |     elif isinstance(annotation, ast.Constant) or isinstance(annotation, ast.NameConstant): | 
 |         return f"{annotation.value}" | 
 |  | 
 |     # If an AST node is not handled here, it's probably handled in ScriptTypeParser. | 
 |     return None | 
 |  | 
 |  | 
 | def get_type_hint_captures(fn): | 
 |     """ | 
 |     Get a dictionary containing type resolution mappings necessary to resolve types | 
 |     for the literal annotations on 'fn'. These are not considered to be closed-over by fn | 
 |     and must be obtained separately (e.g. using this function). | 
 |  | 
 |     Args: | 
 |         fn: A callable. | 
 |     Returns: | 
 |         A Dict[str, Any] containing a mapping from the literal annotations used on | 
 |         fn to the Python objects they refer to. | 
 |     """ | 
 |     # Gather a dictionary of parameter name -> type, skipping any parameters whose annotated | 
 |     # types are strings. These are only understood by TorchScript in the context of a type annotation | 
 |     # that refers to a class in its own definition, but trying to include a mapping for this in the result | 
 |     # function would cause infinite recursion because the class is currently being compiled. | 
 |     # In addition, there is logic in ScriptTypeParser to handle this. | 
 |     signature = inspect.signature(fn) | 
 |     name_to_type = { | 
 |         name: parameter.annotation | 
 |         for name, parameter in signature.parameters.items() | 
 |         if parameter.annotation is not inspect.Parameter.empty and not isinstance(parameter.annotation, str) | 
 |     } | 
 |  | 
 |     # Then, get the literal type annotations from the function declaration | 
 |     # by source inspection. This accounts for the case in which aliases are used | 
 |     # to annotate the arguments (e.g device_t = torch.device, and then d: device_t). | 
 |     src = inspect.getsource(fn) | 
 |  | 
 |     # frontend.py cannot be used here because it includes _jit_internal, so use ast instead. | 
 |     a = ast.parse(dedent(src)) | 
 |     if len(a.body) != 1 or not isinstance(a.body[0], ast.FunctionDef): | 
 |         raise RuntimeError(f"Expected {fn} to be a function") | 
 |     f = a.body[0] | 
 |  | 
 |     # Prepare a dictionary of source annotation -> type, which will be the final result of this function, | 
 |     # by using the parsed AST (f) to reconstruct source annotations as strings for each parameter and mapping | 
 |     # them to the type object corresponding to the annotation via name_to_type using the parameter name. | 
 |     annotation_to_type = {} | 
 |  | 
 |     for arg in f.args.args: | 
 |         # Get the source type annotation string for this argument if possible. | 
 |         arg_annotation_str = get_annotation_str(arg.annotation) if arg.annotation else None | 
 |  | 
 |         # If the argument has no annotation or get_annotation_str cannot convert it to a string, | 
 |         # arg_annotation_str will be None. Skip this arg; ScriptTypeParser will probably handle | 
 |         # this in the latter case. | 
 |         if arg_annotation_str is None: | 
 |             continue | 
 |  | 
 |         # Insert {arg_annotation_str: type} into annotation_to_type if possible. One reason arg_name may not | 
 |         # be present in name_to_type is that the annotation itself is a string and not a type object | 
 |         # (common for self-refential annotations in classes). Once again, let ScriptTypeParser handle this. | 
 |         arg_name = arg.arg | 
 |         if arg_name in name_to_type: | 
 |             annotation_to_type[arg_annotation_str] = name_to_type[arg_name] | 
 |  | 
 |     # If there is a valid return annotation, include it in annotation_to_type. As with argument annotations, | 
 |     # the literal annotation has to be convertible to a string by get_annotation_str, and the actual type | 
 |     # of the annotation cannot be a string. | 
 |     literal_return_annotation = get_annotation_str(f.returns) | 
 |     valid_literal_annotation = literal_return_annotation is not None | 
 |     return_annotation = signature.return_annotation | 
 |     valid_return_annotation_type = return_annotation is not inspect.Parameter.empty and not isinstance(return_annotation, str) | 
 |     if valid_literal_annotation and valid_return_annotation_type: | 
 |         annotation_to_type[literal_return_annotation] = return_annotation | 
 |  | 
 |     return annotation_to_type | 
 |  | 
 |  | 
 | def createResolutionCallbackForClassMethods(cls): | 
 |     """ | 
 |     This looks at all the methods defined in a class and pulls their closed-over | 
 |     variables into a dictionary and uses that to resolve variables. | 
 |     """ | 
 |     # cls is a type here, so `ismethod` is false since the methods on the type | 
 |     # aren't bound to anything, so Python treats them as regular functions | 
 |     fns = [getattr(cls, name) for name in cls.__dict__ if inspect.isroutine(getattr(cls, name))] | 
 |     captures = {} | 
 |  | 
 |     for fn in fns: | 
 |         captures.update(get_closure(fn)) | 
 |         captures.update(get_type_hint_captures(fn)) | 
 |  | 
 |     def lookup_in_class(key): | 
 |         if key in captures: | 
 |             return captures[key] | 
 |         else: | 
 |             return getattr(builtins, key, None) | 
 |  | 
 |     return lookup_in_class | 
 |  | 
 |  | 
 | def boolean_dispatch(arg_name, arg_index, default, if_true, if_false, module_name, func_name): | 
 |     """ | 
 |     Dispatches to either of 2 script functions based on a boolean argument. | 
 |     In TorchScript, the boolean argument must be constant so that the correct | 
 |     function to use can be determined at compile time. | 
 |     """ | 
 |     def fn(*args, **kwargs): | 
 |         dispatch_flag = False | 
 |         if arg_name in kwargs: | 
 |             dispatch_flag = kwargs[arg_name] | 
 |         elif arg_index < len(args): | 
 |             dispatch_flag = args[arg_index] | 
 |  | 
 |         if dispatch_flag: | 
 |             return if_true(*args, **kwargs) | 
 |         else: | 
 |             return if_false(*args, **kwargs) | 
 |  | 
 |     if if_true.__doc__ is None and if_false.__doc__ is not None: | 
 |         doc = if_false.__doc__ | 
 |         if_true.__doc__ = doc | 
 |     elif if_false.__doc__ is None and if_true.__doc__ is not None: | 
 |         doc = if_true.__doc__ | 
 |         if_false.__doc__ = doc | 
 |     elif if_false.__doc__ is None and if_true.__doc__ is None: | 
 |         # neither function has a docstring | 
 |         doc = None | 
 |     else: | 
 |         raise RuntimeError("only one function can have a docstring") | 
 |     fn.__doc__ = doc | 
 |  | 
 |     if module_name is not None: | 
 |         fn.__module__ = module_name | 
 |     if func_name is not None: | 
 |         fn.__name__ = func_name | 
 |  | 
 |     boolean_dispatched[fn] = { | 
 |         "if_true": if_true, | 
 |         "if_false": if_false, | 
 |         "index": arg_index, | 
 |         "default": default, | 
 |         "arg_name": arg_name | 
 |     } | 
 |     return fn | 
 |  | 
 |  | 
 | class FunctionModifiers(object): | 
 |     """ | 
 |     Used to denote the behavior of a function in TorchScript. See export() and | 
 |     ignore() for details. | 
 |     """ | 
 |     UNUSED = "unused (ignored and replaced with raising of an exception)" | 
 |     IGNORE = "ignore (leave as a call to Python, cannot be torch.jit.save'd)" | 
 |     EXPORT = "export (compile this function even if nothing calls it)" | 
 |     DEFAULT = "default (compile if called from a exported function / forward)" | 
 |     COPY_TO_SCRIPT_WRAPPER = \ | 
 |         "if this method is not scripted, copy the python method onto the scripted model" | 
 |  | 
 |  | 
 | def export(fn): | 
 |     """ | 
 |     This decorator indicates that a method on an ``nn.Module`` is used as an entry point into a | 
 |     :class:`ScriptModule` and should be compiled. | 
 |  | 
 |     ``forward`` implicitly is assumed to be an entry point, so it does not need this decorator. | 
 |     Functions and methods called from ``forward`` are compiled as they are seen | 
 |     by the compiler, so they do not need this decorator either. | 
 |  | 
 |     Example (using ``@torch.jit.export`` on a method): | 
 |  | 
 |     .. testcode:: | 
 |  | 
 |         import torch | 
 |         import torch.nn as nn | 
 |  | 
 |         class MyModule(nn.Module): | 
 |             def implicitly_compiled_method(self, x): | 
 |                 return x + 99 | 
 |  | 
 |             # `forward` is implicitly decorated with `@torch.jit.export`, | 
 |             # so adding it here would have no effect | 
 |             def forward(self, x): | 
 |                 return x + 10 | 
 |  | 
 |             @torch.jit.export | 
 |             def another_forward(self, x): | 
 |                 # When the compiler sees this call, it will compile | 
 |                 # `implicitly_compiled_method` | 
 |                 return self.implicitly_compiled_method(x) | 
 |  | 
 |             def unused_method(self, x): | 
 |                 return x - 20 | 
 |  | 
 |         # `m` will contain compiled methods: | 
 |         #     `forward` | 
 |         #     `another_forward` | 
 |         #     `implicitly_compiled_method` | 
 |         # `unused_method` will not be compiled since it was not called from | 
 |         # any compiled methods and wasn't decorated with `@torch.jit.export` | 
 |         m = torch.jit.script(MyModule()) | 
 |     """ | 
 |     fn._torchscript_modifier = FunctionModifiers.EXPORT | 
 |     return fn | 
 |  | 
 |  | 
 | def unused(fn): | 
 |     """ | 
 |     This decorator indicates to the compiler that a function or method should | 
 |     be ignored and replaced with the raising of an exception. This allows you | 
 |     to leave code in your model that is not yet TorchScript compatible and still | 
 |     export your model. | 
 |  | 
 |         Example (using ``@torch.jit.unused`` on a method):: | 
 |  | 
 |             import torch | 
 |             import torch.nn as nn | 
 |  | 
 |             class MyModule(nn.Module): | 
 |                 def __init__(self, use_memory_efficient): | 
 |                     super(MyModule, self).__init__() | 
 |                     self.use_memory_efficient = use_memory_efficient | 
 |  | 
 |                 @torch.jit.unused | 
 |                 def memory_efficient(self, x): | 
 |                     import pdb | 
 |                     pdb.set_trace() | 
 |                     return x + 10 | 
 |  | 
 |                 def forward(self, x): | 
 |                     # Use not-yet-scriptable memory efficient mode | 
 |                     if self.use_memory_efficient: | 
 |                         return self.memory_efficient(x) | 
 |                     else: | 
 |                         return x + 10 | 
 |  | 
 |             m = torch.jit.script(MyModule(use_memory_efficient=False)) | 
 |             m.save("m.pt") | 
 |  | 
 |             m = torch.jit.script(MyModule(use_memory_efficient=True)) | 
 |             # exception raised | 
 |             m(torch.rand(100)) | 
 |     """ | 
 |     if isinstance(fn, property): | 
 |         prop = fn | 
 |         setattr(prop.fget, "_torchscript_modifier", FunctionModifiers.UNUSED)  # noqa: B010 | 
 |  | 
 |         if prop.fset: | 
 |             setattr(prop.fset, "_torchscript_modifier", FunctionModifiers.UNUSED)  # noqa: B010 | 
 |  | 
 |         return prop | 
 |  | 
 |     fn._torchscript_modifier = FunctionModifiers.UNUSED | 
 |     return fn | 
 |  | 
 | def ignore(drop=False, **kwargs): | 
 |     """ | 
 |     This decorator indicates to the compiler that a function or method should | 
 |     be ignored and left as a Python function. This allows you to leave code in | 
 |     your model that is not yet TorchScript compatible. If called from TorchScript, | 
 |     ignored functions will dispatch the call to the Python interpreter. Models with ignored | 
 |     functions cannot be exported; use :func:`@torch.jit.unused <torch.jit.unused>` instead. | 
 |  | 
 |     Example (using ``@torch.jit.ignore`` on a method):: | 
 |  | 
 |         import torch | 
 |         import torch.nn as nn | 
 |  | 
 |         class MyModule(nn.Module): | 
 |             @torch.jit.ignore | 
 |             def debugger(self, x): | 
 |                 import pdb | 
 |                 pdb.set_trace() | 
 |  | 
 |             def forward(self, x): | 
 |                 x += 10 | 
 |                 # The compiler would normally try to compile `debugger`, | 
 |                 # but since it is `@ignore`d, it will be left as a call | 
 |                 # to Python | 
 |                 self.debugger(x) | 
 |                 return x | 
 |  | 
 |         m = torch.jit.script(MyModule()) | 
 |  | 
 |         # Error! The call `debugger` cannot be saved since it calls into Python | 
 |         m.save("m.pt") | 
 |  | 
 |     Example (using ``@torch.jit.ignore(drop=True)`` on a method): | 
 |  | 
 |     .. testcode:: | 
 |  | 
 |         import torch | 
 |         import torch.nn as nn | 
 |  | 
 |         class MyModule(nn.Module): | 
 |             @torch.jit.ignore(drop=True) | 
 |             def training_method(self, x): | 
 |                 import pdb | 
 |                 pdb.set_trace() | 
 |  | 
 |             def forward(self, x): | 
 |                 if self.training: | 
 |                     self.training_method(x) | 
 |                 return x | 
 |  | 
 |         m = torch.jit.script(MyModule()) | 
 |  | 
 |         # This is OK since `training_method` is not saved, the call is replaced | 
 |         # with a `raise`. | 
 |         m.save("m.pt") | 
 |  | 
 |     .. testcleanup:: | 
 |  | 
 |         import os | 
 |         os.remove('m.pt') | 
 |     """ | 
 |  | 
 |     if callable(drop): | 
 |         # used without any args, so drop is actually a function | 
 |         #   @torch.jit.ignore | 
 |         #   def fn(...): | 
 |         fn = drop | 
 |         fn._torchscript_modifier = FunctionModifiers.IGNORE | 
 |         return fn | 
 |  | 
 |     if not isinstance(drop, bool): | 
 |         raise RuntimeError("Argument to @torch.jit.ignore must be a bool or " | 
 |                            f"a function but got {drop}") | 
 |  | 
 |     # for backwards compat | 
 |     drop_on_export = kwargs.pop("drop_on_export", None) | 
 |     if drop_on_export: | 
 |         warnings.warn("ignore(drop_on_export=True) has been deprecated. TorchScript will now drop the function " | 
 |                       "call on compilation. Use torch.jit.unused now. {}", category=FutureWarning) | 
 |  | 
 |         drop = drop_on_export | 
 |     elif drop: | 
 |         warnings.warn("ignore(True) has been deprecated. TorchScript will now drop the function " | 
 |                       "call on compilation. Use torch.jit.unused now. {}", category=FutureWarning) | 
 |  | 
 |     def decorator(fn): | 
 |         if drop: | 
 |             fn._torchscript_modifier = FunctionModifiers.UNUSED | 
 |         else: | 
 |             fn._torchscript_modifier = FunctionModifiers.IGNORE | 
 |         return fn | 
 |     return decorator | 
 |  | 
 |  | 
 | def _copy_to_script_wrapper(fn): | 
 |     fn._torchscript_modifier = FunctionModifiers.COPY_TO_SCRIPT_WRAPPER | 
 |     return fn | 
 |  | 
 | def module_has_exports(mod): | 
 |     for name in dir(mod): | 
 |         if hasattr(mod, name): | 
 |             item = getattr(mod, name) | 
 |             if callable(item): | 
 |                 if get_torchscript_modifier(item) is FunctionModifiers.EXPORT: | 
 |                     return True | 
 |     return False | 
 |  | 
 | def should_drop(fn): | 
 |     attr = get_torchscript_modifier(fn) | 
 |     if attr is None: | 
 |         return False | 
 |     return attr is FunctionModifiers.UNUSED | 
 |  | 
 |  | 
 | def is_ignored_fn(fn): | 
 |     mod = get_torchscript_modifier(fn) | 
 |     return mod is FunctionModifiers.UNUSED or mod is FunctionModifiers.IGNORE | 
 |  | 
 |  | 
 | def is_static_fn(cls, fn): | 
 |     return isinstance(inspect.getattr_static(cls, fn, default=None), staticmethod) | 
 |  | 
 | def get_static_fn(cls, fn): | 
 |     return inspect.getattr_static(cls, fn).__func__ | 
 |  | 
 |  | 
 | def get_torchscript_modifier(fn): | 
 |     if not callable(fn): | 
 |         return None | 
 |     if hasattr(fn, '__func__'): | 
 |         fn = fn.__func__ | 
 |     return getattr(fn, '_torchscript_modifier', FunctionModifiers.DEFAULT) | 
 |  | 
 | def copy_torchscript_modifier(orig, new): | 
 |     attr = get_torchscript_modifier(orig) | 
 |     if attr is None: | 
 |         return | 
 |     new._torchscript_modifier = attr | 
 |  | 
 | # overloading registration | 
 | # overloads get registered in this file, and compiled in torch/jit/__init__.py | 
 | # so that they can be imported in nn/functional.py without an import cycle | 
 |  | 
 | # qualified_name => list[overload_functions] | 
 | _overloaded_fns : Dict[str, List[Callable]] = {}  # noqa: T484 | 
 |  | 
 | def _overload(func): | 
 |     qual_name = _qualified_name(func) | 
 |     global _overloaded_fns | 
 |     fn_overload_list = _overloaded_fns.get(qual_name) | 
 |     if fn_overload_list is None: | 
 |         fn_overload_list = [] | 
 |         _overloaded_fns[qual_name] = fn_overload_list | 
 |     fn_overload_list.append(func) | 
 |     return func | 
 |  | 
 | def _get_fn_overloads(qual_name): | 
 |     return _overloaded_fns.get(qual_name) | 
 |  | 
 | def _clear_fn_overloads(qual_name): | 
 |     del _overloaded_fns[qual_name] | 
 |  | 
 | def get_class_name_lineno(method): | 
 |     current_frame = inspect.currentframe() | 
 |  | 
 |     # one for the get_class_name call, one for _overload_method call | 
 |     for i in range(2): | 
 |         assert current_frame is not None  # assert current frame is not an Optional[FrameType] | 
 |         current_frame = current_frame.f_back | 
 |  | 
 |     assert current_frame is not None  # same here | 
 |     class_name = current_frame.f_code.co_name | 
 |     line_no = current_frame.f_code.co_firstlineno | 
 |     return class_name, line_no | 
 |  | 
 | # At the the point the decorator is applied to class methods the method | 
 | # has no reference to its owning class. _qualified_name would not include | 
 | # the class it is defined in, so any methods with the same name in the same file | 
 | # would have the same _qualified_name, even if they were defined in different | 
 | # classes. This problem only exists in python 2. | 
 | # We get around this problem by looking at the stack frame and identifying | 
 | # the class name, and throwing an error whenever overloads are used | 
 | # when modules of the same name are in the same file | 
 |  | 
 | # qualified_name => class name => list[overload_functions] | 
 | _overloaded_methods : Dict[str, Dict[str, List[Callable]]] = {}  # noqa: T484 | 
 |  | 
 |  | 
 | # (qualified_name, class name) => class_fileno | 
 | _overloaded_method_class_fileno = {} | 
 |  | 
 | def _overload_method(func): | 
 |     qual_name = _qualified_name(func) | 
 |     global _overloaded_methods | 
 |     class_name_map = _overloaded_methods.get(qual_name, None) | 
 |     if class_name_map is None: | 
 |         class_name_map = {} | 
 |         _overloaded_methods[qual_name] = class_name_map | 
 |  | 
 |     class_name, line_no = get_class_name_lineno(func) | 
 |     method_overloads = class_name_map.get(class_name, None) | 
 |     if method_overloads is None: | 
 |         method_overloads = [] | 
 |         class_name_map[class_name] = method_overloads | 
 |         _overloaded_method_class_fileno[(qual_name, class_name)] = line_no | 
 |     else: | 
 |         existing_lineno = _overloaded_method_class_fileno[(qual_name, class_name)] | 
 |         if existing_lineno != line_no: | 
 |             raise RuntimeError("Cannot currently overload the same method name in two different" | 
 |                                " classes with the same name in the same module") | 
 |  | 
 |     method_overloads.append(func) | 
 |     return func | 
 |  | 
 | def _get_overloaded_methods(method, mod_class): | 
 |     # TODO: __name__ not set for submodules in recursive script | 
 |     if not hasattr(method, "__name__"): | 
 |         return None | 
 |     qual_name = _qualified_name(method) | 
 |     class_name_map = _overloaded_methods.get(qual_name, None) | 
 |     if class_name_map is None: | 
 |         return None | 
 |     overloads = class_name_map.get(mod_class.__name__, None) | 
 |     if overloads is None: | 
 |         return None | 
 |  | 
 |     method_line_no = get_source_lines_and_file(method)[1] | 
 |     mod_class_fileno = get_source_lines_and_file(mod_class)[1] | 
 |     mod_end_fileno = mod_class_fileno + len(get_source_lines_and_file(mod_class)[0]) | 
 |     if not (method_line_no >= mod_class_fileno and method_line_no <= mod_end_fileno): | 
 |         raise Exception("Overloads are not useable when a module is redeclared within the same file: " + str(method)) | 
 |     return overloads | 
 |  | 
 |  | 
 | def is_tuple(ann): | 
 |     if ann is Tuple: | 
 |         raise_error_container_parameter_missing("Tuple") | 
 |  | 
 |     # For some reason Python 3.7 violates the Type[A, B].__origin__ == Type rule | 
 |     if not hasattr(ann, '__module__'): | 
 |         return False | 
 |     return ann.__module__ == 'typing' and \ | 
 |         (getattr(ann, '__origin__', None) is Tuple or | 
 |             getattr(ann, '__origin__', None) is tuple) | 
 |  | 
 | def is_list(ann): | 
 |     if ann is List: | 
 |         raise_error_container_parameter_missing("List") | 
 |  | 
 |     if not hasattr(ann, '__module__'): | 
 |         return False | 
 |     return ann.__module__ == 'typing' and \ | 
 |         (getattr(ann, '__origin__', None) is List or | 
 |             getattr(ann, '__origin__', None) is list) | 
 |  | 
 | def is_dict(ann): | 
 |     if ann is Dict: | 
 |         raise_error_container_parameter_missing("Dict") | 
 |  | 
 |     if not hasattr(ann, '__module__'): | 
 |         return False | 
 |     return ann.__module__ == 'typing' and \ | 
 |         (getattr(ann, '__origin__', None) is Dict or | 
 |             getattr(ann, '__origin__', None) is dict) | 
 |  | 
 | def is_optional(ann): | 
 |     if ann is Optional: | 
 |         raise_error_container_parameter_missing("Optional") | 
 |  | 
 |     # Optional[T] is just shorthand for Union[T, None], so check for both | 
 |     def safe_is_subclass(the_type, super_type): | 
 |         # Don't throw if `the_type` isn't a class type (e.g. if it is | 
 |         # another type annotation instance) | 
 |         if not inspect.isclass(the_type): | 
 |             return False | 
 |         return issubclass(the_type, super_type) | 
 |  | 
 |     if not hasattr(ann, '__module__'): | 
 |         return False | 
 |  | 
 |     union_optional = False | 
 |     if ann.__module__ == 'typing' and \ | 
 |        (getattr(ann, '__origin__', None) is Union): | 
 |         args = getattr(ann, '__args__', ()) | 
 |         if len(args) == 2: | 
 |             union_optional = (safe_is_subclass(args[1], type(None)) and not safe_is_subclass(args[0], type(None))) \ | 
 |                 or (safe_is_subclass(args[0], type(None)) and not safe_is_subclass(args[1], type(None))) | 
 |  | 
 |     optional = ann.__module__ == 'typing' and \ | 
 |         (getattr(ann, '__origin__', None) is Optional) | 
 |  | 
 |     return optional or union_optional | 
 |  | 
 | def is_future(ann): | 
 |     if ann is Future: | 
 |         raise RuntimeError( | 
 |             "Attempted to use Future without a " | 
 |             "contained type. Please add a contained type, e.g. " | 
 |             "Future[int]" | 
 |         ) | 
 |     return getattr(ann, "__origin__", None) is Future | 
 |  | 
 | if torch.distributed.rpc.is_available(): | 
 |     from torch.distributed.rpc import RRef | 
 |  | 
 |     def is_rref(ann): | 
 |         if ann is RRef: | 
 |             raise RuntimeError( | 
 |                 "Attempted to use RRef without a " | 
 |                 "contained type. Please add a contained type, e.g. " | 
 |                 "RRef[int]" | 
 |             ) | 
 |         return getattr(ann, "__origin__", None) is RRef | 
 |  | 
 | def is_final(ann): | 
 |     return ann.__module__ in {'typing', 'typing_extensions'} and \ | 
 |         (getattr(ann, '__origin__', None) is Final or isinstance(ann, type(Final))) | 
 |  | 
 | # allows BroadcastingList instance to be subscriptable | 
 | class BroadcastingListCls(object): | 
 |     def __getitem__(self, types): | 
 |         return | 
 |  | 
 | # mypy doesn't support parameters on types, so we have to explicitly type each | 
 | # list size | 
 | BroadcastingList1 = BroadcastingListCls() | 
 | for i in range(2, 7): | 
 |     globals()[f"BroadcastingList{i}"] = BroadcastingList1 | 
 |  | 
 |  | 
 | def is_scripting(): | 
 |     r""" | 
 |     Function that returns True when in compilation and False otherwise. This | 
 |     is useful especially with the @unused decorator to leave code in your | 
 |     model that is not yet TorchScript compatible. | 
 |     .. testcode:: | 
 |  | 
 |         import torch | 
 |  | 
 |         @torch.jit.unused | 
 |         def unsupported_linear_op(x): | 
 |             return x | 
 |  | 
 |         def linear(x): | 
 |            if torch.jit.is_scripting(): | 
 |               return torch.linear(x) | 
 |            else: | 
 |               return unsupported_linear_op(x) | 
 |     """ | 
 |     return False | 
 |  | 
 |  | 
 | # Retrieves a fully-qualified name (module hierarchy + classname) for a given obj. | 
 | def _qualified_name(obj): | 
 |     # This special case allows us to override the qualified name on a type. | 
 |     # It's currently used in conjunction with tracing, where we create a | 
 |     # fake module to filter only supported attributes. However, since this | 
 |     # new type is defined as a local class, we need a mechanism to override | 
 |     # its qualname so it appears correctly in the TorchScript system. This, | 
 |     # we set '_jit_override_qualname' with the original traced module's | 
 |     # qualified name, which is picked up here | 
 |     if hasattr(obj, '_jit_override_qualname'): | 
 |         return obj._jit_override_qualname | 
 |     # short-circuit in cases where the object already has a known qualified name | 
 |     if isinstance(obj, torch._C.ScriptFunction): | 
 |         return obj.qualified_name | 
 |  | 
 |     if getattr(obj, "__name__", None): | 
 |         name = obj.__name__ | 
 |     # Enum classes do not have `__name__` attr, instead they have `name`. | 
 |     elif isinstance(obj, enum.Enum): | 
 |         name = obj.name | 
 |     else: | 
 |         raise RuntimeError("Could not get name of python class object") | 
 |  | 
 |  | 
 |     if name == '<lambda>': | 
 |         name = '_lambda'  # make name a valid identifier | 
 |  | 
 |     module_name = obj.__module__ | 
 |  | 
 |     # If the module is actually a torchbind module, then we should short circuit | 
 |     if module_name == "torch._classes": | 
 |         return obj.qualified_name | 
 |  | 
 |     # The Python docs are very clear that `__module__` can be None, but I can't | 
 |     # figure out when it actually would be. | 
 |     if module_name is None: | 
 |         raise RuntimeError(f"Could not get qualified name for class '{name}': " | 
 |                            "__module__ can't be None.") | 
 |  | 
 |     # if getattr(sys.modules[module_name], name) is not obj: | 
 |     #     raise RuntimeError(f"Could not get qualified name for class '{name}': " | 
 |     #                        f"the attr {name} on module {module_name} is not the the class") | 
 |  | 
 |     # torch.package and TorchScript have separate mangling schemes to avoid | 
 |     # name collisions from multiple packages. To avoid them interfering with | 
 |     # each other, remove the package mangling here. | 
 |     module_name = package_mangling.demangle(module_name) | 
 |  | 
 |     # __main__ is a builtin module, so rewrite it to "__torch__". | 
 |     if module_name == "__main__": | 
 |         module_name = "__torch__" | 
 |     else: | 
 |         # Everything else gets a "__torch__" prefix to avoid name collisions | 
 |         # with the names of user values. | 
 |         module_name = "__torch__." + module_name | 
 |  | 
 |     if "." in name: | 
 |         raise RuntimeError(f"Could not get qualified name for class '{name}': " | 
 |                            f"'{name}' is not a valid identifier") | 
 |  | 
 |     return module_name + "." + name | 
 |  | 
 |  | 
 | # Thin wrapper around SourceRangeFactory to store extra metadata | 
 | # about the function-to-be-compiled. | 
 | class SourceContext(torch._C._jit_tree_views.SourceRangeFactory): | 
 |     def __init__(self, source, filename, file_lineno, leading_whitespace_len, uses_true_division=True): | 
 |         super(SourceContext, self).__init__(source, filename, file_lineno, leading_whitespace_len) | 
 |         self.uses_true_division = uses_true_division | 
 |  | 
 |  | 
 | def fake_range(): | 
 |     return SourceContext('', None, 0, 0).make_raw_range(0, 1) | 
 |  | 
 |  | 
 | def _try_get_dispatched_fn(fn): | 
 |     if not callable(fn): | 
 |         return None | 
 |     return boolean_dispatched.get(fn) | 
 |  | 
 |  | 
 | def _get_named_tuple_properties(obj): | 
 |     assert issubclass(obj, tuple) and hasattr(obj, '_fields') | 
 |     fields = list(obj._fields) | 
 |     annotations = [] | 
 |     has_annotations = hasattr(obj, '__annotations__') | 
 |     for field in fields: | 
 |         if has_annotations and field in obj.__annotations__: | 
 |             the_type = torch.jit.annotations.ann_to_type(obj.__annotations__[field], fake_range()) | 
 |             annotations.append(the_type) | 
 |         else: | 
 |             annotations.append(torch._C.TensorType.getInferred()) | 
 |     return type(obj).__name__, fields, annotations | 
 |  | 
 |  | 
 | def _create_named_tuple(t, unqual_name: str, field_names: List[str]): | 
 |     # mypy: namedtuple() expects a string literal as the first argument | 
 |     TupleType = collections.namedtuple(unqual_name, field_names)  # type: ignore | 
 |     return TupleType(*t) | 
 |  | 
 |  | 
 | @contextlib.contextmanager | 
 | def _disable_emit_hooks(): | 
 |     hooks = torch._C._jit_get_emit_hooks() | 
 |     torch._C._jit_set_emit_hooks(None, None) | 
 |     yield | 
 |     torch._C._jit_set_emit_hooks(hooks[0], hooks[1]) | 
 |  | 
 |  | 
 | def _disable_emit_hooks_decorator(_DecoratorContextManager):  # noqa: F811 | 
 |     def __enter__(self): | 
 |         self.hooks = torch._C._jit_get_emit_hooks() | 
 |         torch._C._jit_set_emit_hooks(None, None) | 
 |  | 
 |     def __exit__(self, *args): | 
 |         torch._C._jit_set_emit_hooks(self.hooks[0], self.hooks[1]) | 
 |  | 
 | def _is_exception(obj): | 
 |     if not inspect.isclass(obj): | 
 |         return False | 
 |     return issubclass(obj, Exception) | 
 |  | 
 | def raise_error_container_parameter_missing(target_type): | 
 |     if target_type == 'Dict': | 
 |         raise RuntimeError( | 
 |             "Attempted to use Dict without " | 
 |             "contained types. Please add contained type, e.g. " | 
 |             "Dict[int, int]" | 
 |         ) | 
 |     raise RuntimeError( | 
 |         f"Attempted to use {target_type} without a " | 
 |         "contained type. Please add a contained type, e.g. " | 
 |         f"{target_type}[int]" | 
 |     ) | 
 |  | 
 |  | 
 | def get_origin(target_type): | 
 |     return getattr(target_type, "__origin__", None) | 
 |  | 
 |  | 
 | def get_args(target_type): | 
 |     return getattr(target_type, "__args__", None) | 
 |  | 
 |  | 
 | def check_args_exist(target_type): | 
 |     if target_type is List or target_type is list: | 
 |         raise_error_container_parameter_missing("List") | 
 |     elif target_type is Tuple or target_type is tuple: | 
 |         raise_error_container_parameter_missing("Tuple") | 
 |     elif target_type is Dict or target_type is dict: | 
 |         raise_error_container_parameter_missing("Dict") | 
 |     elif target_type is None or target_type is Optional: | 
 |         raise_error_container_parameter_missing("Optional") | 
 |  | 
 |  | 
 | # supports List/Dict/Tuple and Optional types | 
 | # TODO support future | 
 | def container_checker(obj, target_type): | 
 |     origin_type = get_origin(target_type) | 
 |     check_args_exist(target_type) | 
 |     if origin_type is list or origin_type is List: | 
 |         if not isinstance(obj, list): | 
 |             return False | 
 |         arg_type = get_args(target_type)[0] | 
 |         arg_origin = get_origin(arg_type) | 
 |         for el in obj: | 
 |             # check if nested container, ex: List[List[str]] | 
 |             if arg_origin:  # processes nested container, ex: List[List[str]] | 
 |                 if not container_checker(el, arg_type): | 
 |                     return False | 
 |             elif not isinstance(el, arg_type): | 
 |                 return False | 
 |         return True | 
 |     elif origin_type is Dict or origin_type is dict: | 
 |         if not isinstance(obj, dict): | 
 |             return False | 
 |         key_type = get_args(target_type)[0] | 
 |         val_type = get_args(target_type)[1] | 
 |         for key, val in obj.items(): | 
 |             # check if keys are of right type | 
 |             if not isinstance(key, key_type): | 
 |                 return False | 
 |             val_origin = get_origin(val_type) | 
 |             if val_origin: | 
 |                 if not container_checker(val, val_type): | 
 |                     return False | 
 |             elif not isinstance(val, val_type): | 
 |                 return False | 
 |         return True | 
 |     elif origin_type is Tuple or origin_type is tuple: | 
 |         if not isinstance(obj, tuple): | 
 |             return False | 
 |         arg_types = get_args(target_type) | 
 |         if len(obj) != len(arg_types): | 
 |             return False | 
 |         for el, el_type in zip(obj, arg_types): | 
 |             el_origin = get_origin(el_type) | 
 |             if el_origin: | 
 |                 if not container_checker(el, el_type): | 
 |                     return False | 
 |             elif not isinstance(el, el_type): | 
 |                 return False | 
 |         return True | 
 |     elif origin_type is Union:  # actually handles Optional Case | 
 |         if obj is None:  # check before recursion because None is always fine | 
 |             return True | 
 |         optional_type = get_args(target_type)[0] | 
 |         optional_origin = get_origin(optional_type) | 
 |         if optional_origin: | 
 |             return container_checker(obj, optional_type) | 
 |         elif isinstance(obj, optional_type): | 
 |             return True | 
 |     return False | 
 |  | 
 |  | 
 | def _isinstance(obj, target_type) -> bool: | 
 |     origin_type = get_origin(target_type) | 
 |     if origin_type: | 
 |         return container_checker(obj, target_type) | 
 |  | 
 |     # Check to handle weird python type behaviors | 
 |     # 1. python 3.6 returns None for origin of containers without | 
 |     #    contained type (intead of returning outer container type) | 
 |     # 2. non-typed optional origin returns as none instead | 
 |     #    of as optional in 3.6-3.8 | 
 |     check_args_exist(target_type) | 
 |  | 
 |     # handle non-containers | 
 |     return isinstance(obj, target_type) |