blob: 75379beb4a6c12ff5f6d56dbf0aca65232458225 [file] [log] [blame]
#include "caffe2/operators/elementwise_op.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
struct AbsCPUFunctor {
template <typename T>
inline void
operator()(const int n, const T* x, T* y, CPUContext* device_context) {
math::Abs<T, CPUContext>(n, x, y, device_context);
}
};
struct AbsGradientCPUFunctor {
template <typename T>
inline void
Run(const int n, const T* x, const T* dy, T* dx, CPUContext* /* unused */) {
ConstEigenVectorArrayMap<T> dyM(dy, n);
ConstEigenVectorArrayMap<T> xM(x, n);
EigenVectorMap<T>(dx, n) =
(xM == T(0)).select(T(0), (xM > T(0)).select(dyM, -dyM));
}
};
REGISTER_CPU_OPERATOR(
Abs,
UnaryElementwiseOp<TensorTypes<float>, CPUContext, AbsCPUFunctor>);
REGISTER_CPU_OPERATOR(
AbsGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CPUContext,
WithoutBroadcast<AbsGradientCPUFunctor>>);
OPERATOR_SCHEMA(Abs)
.NumInputs(1)
.NumOutputs(1)
.IdenticalTypeAndShape()
.SetDoc(R"DOC(
Calculates the absolute value of the given input tensor, element-wise.
)DOC")
.Input(0, "input", "Input tensor")
.Output(
0,
"output",
"The absolute value of the input tensor computed element-wise")
.InheritOnnxSchema("Abs");
OPERATOR_SCHEMA(AbsGradient).NumInputs(2).NumOutputs(1).IdenticalTypeAndShape();
class GetAbsGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"AbsGradient",
"",
std::vector<string>{I(0), GO(0)},
std::vector<string>{GI(0)});
}
};
REGISTER_GRADIENT(Abs, GetAbsGradient);
} // namespace caffe2