| #include "caffe2/operators/elementwise_op.h" |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| |
| struct AbsCPUFunctor { |
| template <typename T> |
| inline void |
| operator()(const int n, const T* x, T* y, CPUContext* device_context) { |
| math::Abs<T, CPUContext>(n, x, y, device_context); |
| } |
| }; |
| |
| struct AbsGradientCPUFunctor { |
| template <typename T> |
| inline void |
| Run(const int n, const T* x, const T* dy, T* dx, CPUContext* /* unused */) { |
| ConstEigenVectorArrayMap<T> dyM(dy, n); |
| ConstEigenVectorArrayMap<T> xM(x, n); |
| EigenVectorMap<T>(dx, n) = |
| (xM == T(0)).select(T(0), (xM > T(0)).select(dyM, -dyM)); |
| } |
| }; |
| |
| REGISTER_CPU_OPERATOR( |
| Abs, |
| UnaryElementwiseOp<TensorTypes<float>, CPUContext, AbsCPUFunctor>); |
| REGISTER_CPU_OPERATOR( |
| AbsGradient, |
| BinaryElementwiseOp< |
| TensorTypes<float>, |
| CPUContext, |
| WithoutBroadcast<AbsGradientCPUFunctor>>); |
| |
| OPERATOR_SCHEMA(Abs) |
| .NumInputs(1) |
| .NumOutputs(1) |
| .IdenticalTypeAndShape() |
| .SetDoc(R"DOC( |
| Calculates the absolute value of the given input tensor, element-wise. |
| )DOC") |
| .Input(0, "input", "Input tensor") |
| .Output( |
| 0, |
| "output", |
| "The absolute value of the input tensor computed element-wise") |
| .InheritOnnxSchema("Abs"); |
| |
| OPERATOR_SCHEMA(AbsGradient).NumInputs(2).NumOutputs(1).IdenticalTypeAndShape(); |
| |
| class GetAbsGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| vector<OperatorDef> GetGradientDefs() override { |
| return SingleGradientDef( |
| "AbsGradient", |
| "", |
| std::vector<string>{I(0), GO(0)}, |
| std::vector<string>{GI(0)}); |
| } |
| }; |
| REGISTER_GRADIENT(Abs, GetAbsGradient); |
| } // namespace caffe2 |