blob: 0d4efddaa899de44cfa6fd03223ee493c6d43f17 [file] [log] [blame]
#include <Python.h>
#include "torch/csrc/jit/export.h"
#include "torch/csrc/onnx/onnx.h"
#include "torch/csrc/autograd/symbolic.h"
#include "torch/csrc/utils/python_numbers.h"
#include "torch/csrc/utils/python_strings.h"
#include "torch/csrc/Exceptions.h"
#include "torch/csrc/utils/functional.h"
#include <ATen/ATen.h>
#include <fstream>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
namespace torch { namespace jit {
namespace {
std::string value_name(Value* n) {
return n->uniqueName();
}
void encodeGraph(onnx::GraphProto * p_g, const std::shared_ptr<Graph> & g, const std::vector<at::Tensor> & initializers);
void encodeTensor(onnx::TensorProto * p, const at::Tensor & tensor) {
for(auto d : tensor.sizes()) {
p->add_dims(d);
}
at::ScalarType at_type;
onnx::DataType onnx_type;
switch(tensor.type().scalarType()) {
case at::kDouble:
onnx_type = onnx::kDOUBLE;
at_type = at::kDouble;
break;
case at::kFloat:
onnx_type = onnx::kFLOAT;
at_type = at::kFloat;
break;
case at::kHalf:
onnx_type = onnx::kFLOAT16;
at_type = at::kHalf;
break;
case at::kByte:
case at::kChar:
onnx_type = onnx::kINT8;
at_type = at::kByte;
break;
case at::kShort:
onnx_type = onnx::kINT16;
at_type = at::kShort;
break;
case at::kInt:
onnx_type = onnx::kINT32;
at_type = at::kInt;
break;
case at::kLong:
onnx_type = onnx::kINT64;
at_type = at::kLong;
break;
default:
torch::barf("unexpected tensor scalar type");
break;
}
p->set_data_type(onnx_type);
// CPU's HalfTensor doesn't have contiguous(), so first calling contiguous()
at::Tensor cont = tensor.contiguous().toType(at::CPU(at_type));
p->set_raw_data(cont);
}
void addAttribute(onnx::NodeProto * n_p, jit::Node * n, jit::Symbol name) {
auto attr = n_p->add_attribute();
attr->set_name(jit::symbolToString(name));
switch(n->kindOf(name)) {
case AttributeKind::f:
attr->set_f(n->f(name));
attr->set_type(onnx::aFLOAT);
break;
case AttributeKind::fs:
attr->set_type(onnx::aFLOATS);
for(auto & v : n->fs(name))
attr->add_floats(v);
break;
case AttributeKind::i:
attr->set_type(onnx::aINT);
attr->set_i(n->i(name));
break;
case AttributeKind::is:
attr->set_type(onnx::aINTS);
for(auto & v : n->is(name))
attr->add_ints(v);
break;
case AttributeKind::s:
attr->set_type(onnx::aSTRING);
attr->set_s(n->s(name));
break;
case AttributeKind::ss:
attr->set_type(onnx::aSTRINGS);
for(auto & v : n->ss(name))
attr->add_strings(v);
break;
case AttributeKind::t: {
attr->set_type(onnx::aTENSOR);
auto t = attr->mutable_t();
encodeTensor(t, n->t(name));
} break;
case AttributeKind::ts:
attr->set_type(onnx::aTENSORS);
for(auto & v : n->ts(name)) {
auto t = attr->add_tensors();
encodeTensor(t, v);
}
break;
case AttributeKind::g: {
attr->set_type(onnx::aGRAPH);
auto g = attr->mutable_g();
encodeGraph(g, n->g(name), {});
} break;
case AttributeKind::gs:
attr->set_type(onnx::aGRAPHS);
for(auto & v : n->gs(name)) {
auto g = attr->add_graphs();
encodeGraph(g, v, {});
}
break;
}
}
void encodeTypeProtoTensorType(onnx::TypeProtoTensorTypeProto* tensor_type, Value* n) {
onnx::TypeProtoTensorShapeProto* shape = tensor_type->mutable_shape();
JIT_ASSERT(n->hasType());
TensorType* node_type = n->type()->expect<TensorType>();
const std::vector<std::int64_t>& sizes = node_type->sizes();
for (std::int64_t s : sizes) {
shape->add_dim(s);
}
onnx::DataType onnx_type;
switch(node_type->scalarType()) {
case at::kDouble:
onnx_type = onnx::kDOUBLE;
break;
case at::kFloat:
onnx_type = onnx::kFLOAT;
break;
case at::kHalf:
onnx_type = onnx::kFLOAT16;
break;
case at::kByte:
case at::kChar:
onnx_type = onnx::kINT8;
break;
case at::kShort:
onnx_type = onnx::kINT16;
break;
case at::kInt:
onnx_type = onnx::kINT32;
break;
case at::kLong:
onnx_type = onnx::kINT64;
break;
default:
torch::barf("unexpected tensor scalar type");
break;
}
tensor_type->set_data_type(onnx_type);
}
void encodeValueInfo(onnx::ValueInfoProto* v, Value* n) {
v->set_name(value_name(n));
onnx::TypeProto* t = v->mutable_type();
onnx::TypeProtoTensorTypeProto* tensor_type = t->mutable_tensor_type();
encodeTypeProtoTensorType(tensor_type, n);
}
void encodeGraph(onnx::GraphProto * p_g, const std::shared_ptr<Graph> & g, const std::vector<at::Tensor> & initializers) {
JIT_ASSERT(p_g != nullptr);
p_g->set_name("torch-jit-export");
for (auto input : g->inputs()) {
onnx::ValueInfoProto* v = p_g->add_input();
encodeValueInfo(v, input);
}
for (auto output : g->outputs()) {
onnx::ValueInfoProto* v = p_g->add_output();
encodeValueInfo(v, output);
}
for (auto node : g->nodes()) {
if (node->kind() == kUndefined && !node->hasUses()) {
// Undefined nodes never show up in ONNX; they're just a tool
// to help symbolics do the right thing.
continue;
}
auto p_n = p_g->add_node();
if (node->getSourceLocation()) {
p_n->set_doc_string(node->getSourceLocation()->python_traceback);
}
for(auto input : node->inputs()) {
p_n->add_input(value_name(input));
}
for(auto output : node->outputs()) {
p_n->add_output(value_name(output));
}
p_n->set_op_type(symbolToString(node->kind()));
for(auto attr_name : node->attributeNames()) {
addAttribute(p_n, node, attr_name);
}
}
auto num_initializers = initializers.size();
int inputs_count = g->inputs().size() - num_initializers;
for (auto & tensor : initializers) {
// TODO: stop using positions to determine which initializers
// match to which inputs
std::string name = p_g->get_input_name(inputs_count++);
auto p = p_g->add_initializer();
p->set_name(name);
encodeTensor(p, tensor);
}
}
void encodeModel(onnx::ModelProto* p_m, const std::shared_ptr<Graph>& g,
const std::vector<at::Tensor>& initializers) {
onnx::GraphProto* p_g = p_m->mutable_graph();
encodeGraph(p_g, g, initializers);
}
void validateGraph(const std::shared_ptr<Graph>& graph) {
for (auto it = graph->begin(); it != graph->end(); ++it) {
// Macro'ed so we get a marginally better line number on failed export
#define FAIL_EXPORT(name) \
throw std::runtime_error(std::string("ONNX export failed: ") + name + "\n\nGraph we tried to export:\n" + graph->toString());
IR_IF(*it, CppOp)
auto cpp_node = static_cast<torch::jit::CppOp*>(value);
FAIL_EXPORT("Couldn't export C++ operator " + cpp_node->name())
IR_ELSEIF(PythonOp)
auto py_node = static_cast<torch::jit::PythonOp*>(value);
FAIL_EXPORT("Couldn't export Python operator " + py_node->name())
IR_ELSE()
// Expand is not a real ONNX operator yet, reject it
if (it->kind() == kExpand) {
FAIL_EXPORT("Couldn't export operator expand; this usually means you used a form of broadcasting that ONNX does not currently support");
}
if (it->kind() == kUndefined) {
FAIL_EXPORT("Couldn't export undefined constant tensor (please file an issue)")
}
std::string n = symbolToString(it->kind());
if (n.size() == 0) {
FAIL_EXPORT("Operator to export had empty name (please file an issue)")
}
// NB: Upper-case is ONNX, lower-case is ATen. If we want to be more
// robust, need to explicitly flag operators as ONNX or ATen
if (!isupper(n[0])) {
FAIL_EXPORT("Couldn't export operator " + n);
}
IR_END()
#undef FAIL_EXPORT
}
}
}
std::string ExportGraph(const std::shared_ptr<Graph>& graph,
const std::vector<at::Tensor> & initializers,
int64_t onnx_opset_version) {
validateGraph(graph);
onnx::ModelProto model_proto;
model_proto.set_producer_name("pytorch");
model_proto.set_producer_version("0.3");
auto* imp = model_proto.add_opset_import();
// This is the version of ONNX operator set we are targeting
imp->set_version(onnx_opset_version);
// Set up nanopb callbacks and compute the amount of space needed to store
// the resulting protobuf
encodeModel(&model_proto, graph, initializers);
size_t out_size;
pb_get_encoded_size(&out_size, onnx_ModelProto_fields, &model_proto.proto);
// Allocate storage and export the graph
std::string out(out_size, '\0');
pb_ostream_t ostream = pb_ostream_from_buffer(reinterpret_cast<pb_byte_t *>(&out[0]), out_size);
pb_encode(&ostream, onnx_ModelProto_fields, &model_proto.proto);
return out;
}
}}