blob: bd3d5421350e60a307efc47f2afc942069cb44ba [file] [log] [blame]
#include <torch/csrc/python_headers.h>
#include <torch/csrc/distributed/rpc/future_message.h>
#include <torch/csrc/distributed/rpc/process_group_agent.h>
#include <torch/csrc/distributed/rpc/py_rref.h>
#include <torch/csrc/distributed/rpc/python_functions.h>
#include <torch/csrc/distributed/rpc/rpc_agent.h>
#include <torch/csrc/distributed/rpc/rref.h>
#include <torch/csrc/distributed/rpc/rref_context.h>
#include <torch/csrc/distributed/rpc/types.h>
#include <torch/csrc/jit/pybind_utils.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/types.h>
#include <pybind11/chrono.h>
#include <pybind11/operators.h>
namespace torch {
namespace distributed {
namespace rpc {
namespace {
template <typename T>
using shared_ptr_class_ = py::class_<T, std::shared_ptr<T>>;
PyObject* rpc_init(PyObject* /* unused */) {
auto rpc_module =
THPObjectPtr(PyImport_ImportModule("torch.distributed.rpc"));
if (!rpc_module) {
throw python_error();
}
auto module = py::handle(rpc_module).cast<py::module>();
auto rpcBackendOptions =
shared_ptr_class_<RpcBackendOptions>(module, "RpcBackendOptions")
.def_readwrite("rpc_timeout", &RpcBackendOptions::rpcTimeout)
.def_readwrite("init_method", &RpcBackendOptions::initMethod);
auto workerInfo =
shared_ptr_class_<WorkerInfo>(
module,
"WorkerInfo",
R"(Encapsulates information of a worker in the system.)")
.def(
py::init<std::string, worker_id_t>(),
py::arg("name"),
py::arg("id"))
.def_readonly("name", &WorkerInfo::name_, R"(Name of the worker.)")
.def_readonly(
"id", &WorkerInfo::id_, R"(Globally unique id of the worker.)")
.def("__eq__", &WorkerInfo::operator==, py::is_operator())
// pybind11 suggests the syntax .def(hash(py::self)), with the
// unqualified "hash" function call. However the
// argument-dependent lookup for the function "hash" doesn't get
// triggered in this context because it conflicts with the struct
// torch::hash, so we need to use the qualified name
// py::detail::hash, which unfortunately is in a detail namespace.
.def(py::detail::hash(py::self));
auto rpcAgent =
shared_ptr_class_<RpcAgent>(module, "RpcAgent")
.def(
"join", &RpcAgent::join, py::call_guard<py::gil_scoped_release>())
.def(
"sync", &RpcAgent::sync, py::call_guard<py::gil_scoped_release>())
.def(
"get_worker_infos",
&RpcAgent::getWorkerInfos,
py::call_guard<py::gil_scoped_release>())
.def(
"get_debug_info",
&RpcAgent::getDebugInfo,
py::call_guard<py::gil_scoped_release>())
.def(
"get_metrics",
&RpcAgent::getMetrics,
py::call_guard<py::gil_scoped_release>());
auto pyRRef =
shared_ptr_class_<PyRRef>(module, "RRef", R"(
A class encapsulating a reference to a value of some type on a remote
worker. This handle will keep the referenced remote value alive on the
worker.
Example::
Following examples skip RPC initialization and shutdown code
for simplicity. Refer to RPC docs for those details.
1. Create an RRef using rpc.remote
>>> import torch.distributed.rpc as rpc
>>> rref = rpc.remote("worker1", torch.add, args=(torch.ones(2), 3))
>>> # get a copy of value from the RRef
>>> x = rref.to_here()
2. Create an RRef from a local object
>>> from torch.distributed.rpc import RRef
>>> x = torch.zeros(2, 2)
>>> rref = RRef(x)
3. Share an RRef with other workers
On both worker0 and worker1:
>>> def f(rref):
>>> return rref.to_here() + 1
On worker0:
>>> rref = RRef(torch.zeros(2, 2))
>>> # the following RPC shares the rref with worker1, reference
>>> # count is automatically updated.
>>> rpc.rpc_sync("worker1", f, args(rref,))
)")
.def(py::init<const py::object&>())
.def(
// not releasing GIL here to avoid context switch on getters
"is_owner",
&PyRRef::isOwner,
R"(
Returns whether or not the current node is the owner of this
``RRef``.
)")
.def(
// not releasing GIL here to avoid context switch on getters
"owner",
&PyRRef::owner,
R"(
Returns worker information of the node that owns this ``RRef``.
)")
.def(
"to_here",
&PyRRef::toHere,
py::call_guard<py::gil_scoped_release>(),
R"(
Blocking call that copies the value of the RRef from the owner
to the local node and returns it. If the current node is the
owner, returns a reference to the local value.
)")
.def(
"local_value",
&PyRRef::localValue,
py::call_guard<py::gil_scoped_release>(),
R"(
If the current node is the owner, returns a reference to the
local value. Otherwise, throws an exception.
)")
.def(py::pickle(
[](const PyRRef& self) {
// __getstate__
return self.pickle();
},
[](py::tuple t) { // NOLINT
// __setstate__
return PyRRef::unpickle(t);
}))
// not releasing GIL to avoid context switch
.def("__str__", &PyRRef::str);
// future.wait() should not be called after shutdown(), e.g.,
// pythonRpcHandler is cleaned up in shutdown(), after
// shutdown(), python objects returned from rpc python call can not be
// resolved.
auto futureMessage =
shared_ptr_class_<FutureMessage>(module, "FutureMessage")
.def(
"wait",
[&](FutureMessage& fut) { return toPyObj(fut.wait()); },
py::call_guard<py::gil_scoped_release>());
shared_ptr_class_<ProcessGroupRpcBackendOptions>(
module, "ProcessGroupRpcBackendOptions", rpcBackendOptions)
.def(py::init<>())
.def_readwrite(
"num_send_recv_threads",
&ProcessGroupRpcBackendOptions::numSendRecvThreads);
shared_ptr_class_<ProcessGroupAgent>(module, "ProcessGroupAgent", rpcAgent)
.def(
py::init<
std::string,
std::shared_ptr<::c10d::ProcessGroup>,
int,
std::chrono::milliseconds>(),
py::arg("name"),
py::arg("process_group"),
py::arg("num_send_recv_threads"),
py::arg("rpc_timeout"))
.def(
"get_worker_info",
(const WorkerInfo& (ProcessGroupAgent::*)(void)const) &
RpcAgent::getWorkerInfo,
py::call_guard<py::gil_scoped_release>())
.def(
"get_worker_info",
(const WorkerInfo& (ProcessGroupAgent::*)(const std::string&)const) &
ProcessGroupAgent::getWorkerInfo,
py::call_guard<py::gil_scoped_release>())
.def(
"get_worker_infos",
(std::vector<WorkerInfo>(ProcessGroupAgent::*)() const) &
ProcessGroupAgent::getWorkerInfos,
py::call_guard<py::gil_scoped_release>())
.def(
"join",
&ProcessGroupAgent::join,
py::call_guard<py::gil_scoped_release>())
.def(
"shutdown",
&ProcessGroupAgent::shutdown,
py::call_guard<py::gil_scoped_release>())
.def(
"sync",
&ProcessGroupAgent::sync,
py::call_guard<py::gil_scoped_release>());
module.def("_start_rpc_agent", [](const std::shared_ptr<RpcAgent>& agent) {
RpcAgent::setDefaultRpcAgent(agent);
agent->start();
});
module.def("_destroy_rref_context", [](bool ignoreRRefLeak) {
RRefContext::getInstance().destroyInstance(ignoreRRefLeak);
});
module.def("_get_debug_info", []() {
return RRefContext::getInstance().getDebugInfo();
});
module.def("_cleanup_python_rpc_handler", []() {
PythonRpcHandler::getInstance().cleanup();
});
module.def(
"_invoke_rpc_builtin",
[](RpcAgent& agent,
const WorkerInfo& dst,
const std::string& opName,
const py::args& args,
const py::kwargs& kwargs) {
return pyRpcBuiltin(agent, dst, opName, args, kwargs);
});
module.def(
"_invoke_rpc_python_udf",
[](RpcAgent& agent,
const WorkerInfo& dst,
std::string& pickledPythonUDF,
std::vector<torch::Tensor>& tensors) {
return pyRpcPythonUdf(agent, dst, pickledPythonUDF, tensors);
});
module.def(
"_invoke_remote_builtin",
[](RpcAgent& agent,
const WorkerInfo& dst,
const std::string& opName,
const py::args& args,
const py::kwargs& kwargs) {
return pyRemoteBuiltin(agent, dst, opName, args, kwargs);
});
module.def(
"_invoke_remote_python_udf",
[](RpcAgent& agent,
const WorkerInfo& dst,
std::string& pickledPythonUDF,
std::vector<torch::Tensor>& tensors) {
return pyRemotePythonUdf(agent, dst, pickledPythonUDF, tensors);
});
module.def(
"get_rpc_timeout",
[]() { return RpcAgent::getDefaultRpcAgent()->getRpcTimeout(); },
R"(
Retrieve the timeout for all RPCs that was set during RPC initialization.
Returns:
`datetime.timedelta` instance indicating the RPC timeout.
)");
module.def(
"_set_rpc_timeout",
[](const std::chrono::milliseconds& rpcTimeout) {
RpcAgent::getDefaultRpcAgent()->setRpcTimeout(rpcTimeout);
},
R"(
Set the timeout for all RPCs. If an RPC is not completed within this
time, an exception indicating it has timed out will be raised.
)");
Py_RETURN_TRUE;
}
} // namespace
static PyMethodDef methods[] = { // NOLINT
{"_rpc_init", (PyCFunction)rpc_init, METH_NOARGS, nullptr},
{nullptr, nullptr, 0, nullptr}};
PyMethodDef* python_functions() {
return methods;
}
} // namespace rpc
} // namespace distributed
} // namespace torch