| #include <benchmark/benchmark.h> |
| #include <torch/csrc/jit/tensorexpr/ir_simplifier.h> |
| #include <torch/csrc/jit/tensorexpr/loopnest.h> |
| #include <torch/csrc/jit/tensorexpr/tensor.h> |
| #include <torch/csrc/jit/tensorexpr/llvm_codegen.h> |
| #include <torch/torch.h> |
| |
| using namespace torch::jit::tensorexpr; |
| |
| static void log_sleef(benchmark::State& state) { |
| KernelScope ks; |
| auto N = VarHandle("N", kInt); |
| Placeholder A("A", kFloat, {N}); |
| torch::jit::tensorexpr::Tensor* B = |
| Compute("B", {N}, [&](const VarHandle& i) { |
| return log(A.load(i)); |
| }); |
| LoopNest ln({B}); |
| ln.prepareForCodegen(); |
| ln.vectorizeInnerLoops(); |
| Stmt* s = ln.root_stmt(); |
| s = torch::jit::tensorexpr::IRSimplifier::simplify(s); |
| std::vector<CodeGen::BufferArg> args; |
| args.emplace_back(B); |
| args.emplace_back(A); |
| args.emplace_back(N); |
| LLVMCodeGen cg(s, args); |
| at::Tensor A_t = torch::abs(torch::randn({state.range(0)})); |
| at::Tensor B_t = torch::randn({state.range(0)}); |
| auto B_ref = at::log(A_t); |
| cg.call({B_t.data_ptr<float>(), A_t.data_ptr<float>(), state.range(0)}); |
| assert(at::allclose(B_t, B_ref)); |
| for (auto _ : state) { |
| cg.call({B_t.data_ptr<float>(), A_t.data_ptr<float>(), state.range(0)}); |
| } |
| state.counters["log/s"] = benchmark::Counter( |
| uint64_t(state.range(0) * state.iterations()), benchmark::Counter::kIsRate); |
| } |
| |
| static void log_fast(benchmark::State& state) { |
| KernelScope ks; |
| auto N = VarHandle("N", kInt); |
| Placeholder A("A", kFloat, {N}); |
| torch::jit::tensorexpr::Tensor* B = |
| Compute("B", {N}, [&](const VarHandle& i) { |
| return fast_log(A.load(i)); |
| }); |
| LoopNest ln({B}); |
| ln.prepareForCodegen(); |
| ln.vectorizeInnerLoops(); |
| Stmt* s = ln.root_stmt(); |
| s = torch::jit::tensorexpr::IRSimplifier::simplify(s); |
| std::vector<CodeGen::BufferArg> args; |
| args.emplace_back(B); |
| args.emplace_back(A); |
| args.emplace_back(N); |
| LLVMCodeGen cg(s, args); |
| at::Tensor A_t = torch::abs(torch::randn({state.range(0)})); |
| at::Tensor B_t = torch::randn({state.range(0)}); |
| auto B_ref = at::log(A_t); |
| cg.call({B_t.data_ptr<float>(), A_t.data_ptr<float>(), state.range(0)}); |
| assert(at::allclose(B_t, B_ref)); |
| for (auto _ : state) { |
| cg.call({B_t.data_ptr<float>(), A_t.data_ptr<float>(), state.range(0)}); |
| } |
| state.counters["log/s"] = benchmark::Counter( |
| uint64_t(state.range(0) * state.iterations()), benchmark::Counter::kIsRate); |
| } |
| |
| static void log_aten(benchmark::State& state) { |
| at::Tensor A_t = torch::abs(torch::randn({state.range(0)})); |
| at::Tensor B_t = torch::randn({state.range(0)}); |
| for (auto _ : state) { |
| at::native::log_out(B_t, A_t); |
| } |
| state.counters["log/s"] = benchmark::Counter( |
| uint64_t(state.range(0) * state.iterations()), benchmark::Counter::kIsRate); |
| } |
| |
| static void logit_fast(benchmark::State& state) { |
| KernelScope ks; |
| auto N = VarHandle("N", kInt); |
| Placeholder A("A", kFloat, {N}); |
| torch::jit::tensorexpr::Tensor* B = |
| Compute("B", {N}, [&](const VarHandle& i) { |
| auto A_elem = A.load(i); |
| return fast_log(A_elem / (FloatImm::make(1.0f) - A_elem)); |
| }); |
| LoopNest ln({B}); |
| ln.prepareForCodegen(); |
| ln.vectorizeInnerLoops(); |
| Stmt* s = ln.root_stmt(); |
| s = torch::jit::tensorexpr::IRSimplifier::simplify(s); |
| std::vector<CodeGen::BufferArg> args; |
| args.emplace_back(B); |
| args.emplace_back(A); |
| args.emplace_back(N); |
| LLVMCodeGen cg(s, args); |
| at::Tensor A_t = torch::abs(torch::randn({state.range(0)})); |
| at::Tensor B_t = torch::randn({state.range(0)}); |
| auto B_ref = at::logit(A_t); |
| cg.call({B_t.data_ptr<float>(), A_t.data_ptr<float>(), state.range(0)}); |
| assert(at::allclose(B_t, B_ref)); |
| for (auto _ : state) { |
| cg.call({B_t.data_ptr<float>(), A_t.data_ptr<float>(), state.range(0)}); |
| } |
| state.counters["logit/s"] = benchmark::Counter( |
| uint64_t(state.range(0) * state.iterations()), benchmark::Counter::kIsRate); |
| } |
| |
| static void logit_aten(benchmark::State& state) { |
| at::Tensor A_t = torch::abs(torch::randn({state.range(0)})); |
| at::Tensor B_t = torch::randn({state.range(0)}); |
| for (auto _ : state) { |
| at::native::logit_out(B_t, A_t); |
| } |
| state.counters["logit/s"] = benchmark::Counter( |
| uint64_t(state.range(0) * state.iterations()), benchmark::Counter::kIsRate); |
| } |
| |
| BENCHMARK(log_sleef) |
| ->Args({2<<5}) |
| ->Args({2<<8}) |
| ->Args({2<<12}) |
| ->Args({2<<14}); |
| BENCHMARK(log_fast) |
| ->Args({2<<5}) |
| ->Args({2<<8}) |
| ->Args({2<<12}) |
| ->Args({2<<14}); |
| BENCHMARK(log_aten) |
| ->Args({2<<5}) |
| ->Args({2<<8}) |
| ->Args({2<<12}) |
| ->Args({2<<14}); |
| BENCHMARK(logit_fast) |
| ->Args({2<<5}) |
| ->Args({2<<8}) |
| ->Args({2<<12}) |
| ->Args({2<<14}); |
| BENCHMARK(logit_aten) |
| ->Args({2<<5}) |
| ->Args({2<<8}) |
| ->Args({2<<12}) |
| ->Args({2<<14}); |