|  | # Owner(s): ["module: nn"] | 
|  | import math | 
|  | import unittest | 
|  | import itertools | 
|  | import warnings | 
|  | from itertools import product | 
|  |  | 
|  | import torch | 
|  |  | 
|  | import torch.autograd.forward_ad as fwAD | 
|  | import torch.backends.cudnn as cudnn | 
|  | import torch.nn as nn | 
|  | import torch.nn.functional as F | 
|  | from torch.testing._internal.common_dtype import floating_types_and, floating_and_complex_types_and | 
|  | from torch.testing._internal.common_utils import run_tests, \ | 
|  | skipIfRocmVersionLessThan, TEST_SCIPY, TEST_WITH_ROCM, \ | 
|  | download_file, parametrize as parametrize_test, subtest, \ | 
|  | instantiate_parametrized_tests, set_default_dtype | 
|  | from torch.testing._internal.common_cuda import TEST_CUDA, TEST_CUDNN | 
|  | from torch.testing._internal.common_nn import NNTestCase, _test_module_empty_input | 
|  | from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, \ | 
|  | dtypesIfCUDA, precisionOverride, skipCUDAIfNoCudnn, skipCUDAIfCudnnVersionLessThan, onlyCUDA, onlyCPU, \ | 
|  | skipCUDAIfRocm, skipCUDAIfRocmVersionLessThan, \ | 
|  | onlyNativeDeviceTypes, largeTensorTest, skipMeta, \ | 
|  | disableMkldnn, skipCPUIfNoMkldnn, disablecuDNN, skipCUDAIfMiopen, skipCUDAIfNoMiopen | 
|  |  | 
|  | from torch.testing import make_tensor | 
|  | from torch.testing._internal.common_utils import gradcheck, gradgradcheck, \ | 
|  | GRADCHECK_NONDET_TOL | 
|  | from torch.testing._internal.common_utils import dtype2prec_DONTUSE | 
|  | from torch.testing._internal.common_cuda import tf32_on_and_off, tf32_is_not_fp32 | 
|  |  | 
|  | AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32() | 
|  |  | 
|  |  | 
|  | if TEST_SCIPY: | 
|  | import scipy.signal | 
|  | import scipy.ndimage | 
|  |  | 
|  | class TestConvolutionNN(NNTestCase): | 
|  | _do_cuda_memory_leak_check = True | 
|  | _do_cuda_non_default_stream = True | 
|  |  | 
|  | def test_conv_backcompat(self): | 
|  | from torch.serialization import SourceChangeWarning | 
|  |  | 
|  | # This file was generated by running on PyTorch 1.0.1 on Python 2: | 
|  | # | 
|  | #     import torch | 
|  | #     from torch import nn | 
|  | #     m = nn.Conv2d(1, 1, 1) | 
|  | #     torch.save(m, 'legacy_conv2d.pt') | 
|  | # | 
|  | # NB: This Pickle also contains some Unicode data! | 
|  | path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt') | 
|  | with warnings.catch_warnings(): | 
|  | warnings.simplefilter('ignore', SourceChangeWarning) | 
|  | m = torch.load(path, encoding='utf-8') | 
|  | input = torch.randn((1, 1, 1, 1), dtype=torch.float) | 
|  | self.assertEqual(m(input).size(), (1, 1, 1, 1)) | 
|  |  | 
|  | def test_invalid_conv1d(self): | 
|  | for dtype in [torch.bfloat16, torch.float, torch.double, torch.cfloat, torch.cdouble]: | 
|  | module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True).to(dtype) | 
|  | input = torch.randn(1, 3, 4).to(dtype) | 
|  | with self.assertRaisesRegex(RuntimeError, | 
|  | r'Calculated padded input size per channel: \(4\). ' + | 
|  | r'Kernel size: \(10\). Kernel size can\'t be greater than actual input size'): | 
|  | module(input) | 
|  |  | 
|  | # Negative stride check | 
|  | module = nn.Conv1d(in_channels=3, out_channels=6, kernel_size=3, stride=-1, bias=True).to(dtype) | 
|  | input = torch.randn(1, 3, 4).to(dtype) | 
|  | with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): | 
|  | module(input) | 
|  |  | 
|  | def test_mismatch_shape_conv2d(self): | 
|  | for dtype in (torch.float, torch.cfloat): | 
|  | x = torch.randn(1, 10, 1, 28, 28, dtype=dtype) | 
|  | w = torch.randn(6, 1, 5, 5, dtype=dtype) | 
|  |  | 
|  | with self.assertRaisesRegex(RuntimeError, | 
|  | r'Expected 3D \(unbatched\) or 4D \(batched\) input to conv2d, but got ' + | 
|  | r'input of size: \[1, 10, 1, 28, 28\]'): | 
|  |  | 
|  | F.conv2d(x, w) | 
|  |  | 
|  | def test_conv2d_discontiguous_weight(self): | 
|  | for dtype in (torch.float, torch.cfloat): | 
|  | # Test for https://github.com/pytorch/pytorch/issues/55781 | 
|  | x = torch.ones(64, 16, 16, 16, dtype=dtype) | 
|  | weight = torch.arange(0, 1.0, 1 / 2.0 ** 10).reshape(32, 16, 1, 2).to(dtype)[:, :, :, ::2] | 
|  | self.assertFalse(weight.is_contiguous()) | 
|  | y = torch.nn.functional.conv2d(x, weight, None) | 
|  | if torch.backends.mkldnn.is_available(): | 
|  | # Disable MKLDNN explicitly, so that either NNPACK or THCNN will be used | 
|  | with torch.backends.mkldnn.flags(enabled=False): | 
|  | y_ = torch.nn.functional.conv2d(x, weight, None) | 
|  | self.assertEqual(y, y_) | 
|  | self.assertEqual(y.sum(), 4186112.) | 
|  |  | 
|  | def test_invalid_conv2d(self): | 
|  | for dtype in [torch.bfloat16, torch.float, torch.double, torch.cfloat, torch.cdouble]: | 
|  | module = torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype) | 
|  | input = torch.empty(1, 1, 4, 4).to(dtype) | 
|  | self.assertRaises(RuntimeError, lambda: module(input)) | 
|  |  | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True) | 
|  | input = torch.randn(1, 3, 1, 1) | 
|  | with self.assertRaisesRegex(RuntimeError, | 
|  | r'Calculated padded input size per channel: \(1 x 1\). ' + | 
|  | r'Kernel size: \(10 x 10\). Kernel size can\'t be greater than actual input size'): | 
|  | module(input) | 
|  |  | 
|  | # Negative stride check | 
|  | module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=-1, bias=True).to(dtype) | 
|  | input = torch.randn(1, 3, 4, 4).to(dtype) | 
|  | with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): | 
|  | module(input) | 
|  |  | 
|  | # Zero stride check | 
|  | module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=0, bias=True).to(dtype) | 
|  | input = torch.randn(1, 3, 4, 4).to(dtype) | 
|  | with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): | 
|  | module(input) | 
|  |  | 
|  | def test_invalid_conv3d(self): | 
|  | for dtype in [torch.bfloat16, torch.float, torch.double, torch.cfloat, torch.cdouble]: | 
|  | module = torch.nn.Conv3d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype) | 
|  | input = torch.empty(1, 1, 4, 4, 4).to(dtype) | 
|  | self.assertRaises(RuntimeError, lambda: module(input)) | 
|  |  | 
|  | # Negative stride check | 
|  | module = torch.nn.Conv3d(1, 1, kernel_size=3, stride=-2) | 
|  | input = torch.empty(1, 1, 4, 4, 4) | 
|  | with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'): | 
|  | module(input) | 
|  |  | 
|  | def test_conv_invalid_groups(self): | 
|  | with self.assertRaisesRegex(ValueError, 'groups must be a positive integer'): | 
|  | torch.nn.Conv1d(1, 1, kernel_size=3, dilation=2, stride=2, groups=0) | 
|  | with self.assertRaisesRegex(ValueError, 'groups must be a positive integer'): | 
|  | torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2, groups=-1) | 
|  | with self.assertRaisesRegex(ValueError, 'groups must be a positive integer'): | 
|  | torch.nn.Conv3d(1, 1, kernel_size=3, dilation=2, stride=2, groups=-2) | 
|  |  | 
|  | def test_Conv1d_module_same_padding(self): | 
|  | # Compare module against functional: without strides/dilation, asymmetric padding | 
|  | x = torch.rand(1, 1, 20) | 
|  | module = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=10, | 
|  | padding='same') | 
|  | expect = F.conv1d(x, module.weight, module.bias, padding='same') | 
|  | self.assertEqual(expect, module(x)) | 
|  |  | 
|  | # Test dilation, symmetric padding | 
|  | module = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=10, | 
|  | padding='same', dilation=2) | 
|  | expect = F.conv1d(x, module.weight, module.bias, padding='same', dilation=2) | 
|  | self.assertEqual(expect, module(x)) | 
|  |  | 
|  | # Test non-zero padding_mode, requiring explicit padding | 
|  | module = nn.Conv1d(in_channels=1, out_channels=1, kernel_size=10, | 
|  | padding='same', padding_mode='replicate') | 
|  | x_padded = F.pad(x, [4, 5], mode='replicate') | 
|  | expect = F.conv1d(x_padded, module.weight, module.bias, padding='valid') | 
|  | self.assertEqual(expect, module(x)) | 
|  | self.assertEqual(x.size(), expect.size()) | 
|  |  | 
|  | # Test connstruction with invalid padding string raises | 
|  | with self.assertRaisesRegex(ValueError, 'Invalid padding string'): | 
|  | module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, padding='foo') | 
|  |  | 
|  | # Test connstruction with same padding and strides raises | 
|  | with self.assertRaisesRegex(ValueError, "padding='same'"): | 
|  | module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=2) | 
|  |  | 
|  | def test_Conv2d_module_same_padding(self): | 
|  | # Compare module against functional: | 
|  | # without strides/dilation, both symmetric and asymmetric padding | 
|  | x = torch.rand(1, 1, 9, 20) | 
|  | module = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(5, 10), | 
|  | padding='same') | 
|  | expect = F.conv2d(x, module.weight, module.bias, padding='same') | 
|  | self.assertEqual(expect, module(x)) | 
|  |  | 
|  | # with dilation, symmetric padding | 
|  | module = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3, 4), | 
|  | padding='same', dilation=(1, 2)) | 
|  | expect = F.conv2d(x, module.weight, module.bias, padding='same', dilation=(1, 2)) | 
|  | self.assertEqual(expect, module(x)) | 
|  |  | 
|  | # Test non-zero padding_mode, requiring explicit padding | 
|  | module = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(3, 4), | 
|  | padding='same', padding_mode='reflect') | 
|  | x_padded = F.pad(x, [1, 2, 1, 1], mode='reflect') | 
|  | expect = F.conv2d(x_padded, module.weight, module.bias, padding='valid') | 
|  | self.assertEqual(expect, module(x)) | 
|  | self.assertEqual(x.size(), expect.size()) | 
|  |  | 
|  | # Test connstruction with invalid padding string raises | 
|  | with self.assertRaisesRegex(ValueError, 'Invalid padding string'): | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='foo') | 
|  |  | 
|  | # Test connstruction with same padding and strides raises | 
|  | with self.assertRaisesRegex(ValueError, "padding='same'"): | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=2) | 
|  | with self.assertRaisesRegex(ValueError, "padding='same'"): | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(1, 3)) | 
|  | with self.assertRaisesRegex(ValueError, "padding='same'"): | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(4, 1)) | 
|  |  | 
|  | def test_Conv3d_module_same_padding(self): | 
|  | # Compare module against functional: | 
|  | x = torch.rand(1, 1, 4, 4, 4) | 
|  | # without dilation, both symmetric and asymmetric padding | 
|  | module = nn.Conv3d(in_channels=1, out_channels=1, kernel_size=(2, 3, 4), | 
|  | padding='same') | 
|  | expect = F.conv3d(x, module.weight, module.bias, padding='same') | 
|  | self.assertEqual(expect, module(x)) | 
|  |  | 
|  | # with dilation, both symmetric and asymmetric padding | 
|  | module = nn.Conv3d(in_channels=1, out_channels=1, kernel_size=(2, 3, 4), | 
|  | padding='same', dilation=(3, 2, 1)) | 
|  | expect = F.conv3d(x, module.weight, module.bias, padding='same', dilation=(3, 2, 1)) | 
|  | self.assertEqual(expect, module(x)) | 
|  |  | 
|  | # Test non-zero padding_mode, requiring explicit padding | 
|  | module = nn.Conv3d(in_channels=1, out_channels=1, kernel_size=(2, 3, 4), | 
|  | padding='same', padding_mode='circular') | 
|  | x_padded = F.pad(x, [1, 2, 1, 1, 0, 1], mode='circular') | 
|  | expect = F.conv3d(x_padded, module.weight, module.bias, padding='valid') | 
|  | self.assertEqual(expect, module(x)) | 
|  | self.assertEqual(x.size(), expect.size()) | 
|  |  | 
|  | # Test connstruction with invalid padding string raises | 
|  | with self.assertRaisesRegex(ValueError, 'Invalid padding string'): | 
|  | module = nn.Conv3d(in_channels=3, out_channels=33, kernel_size=10, padding='foo') | 
|  |  | 
|  | # Test connstruction with same padding and strides raises | 
|  | with self.assertRaisesRegex(ValueError, "padding='same'"): | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=2) | 
|  | with self.assertRaisesRegex(ValueError, "padding='same'"): | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(1, 1, 3)) | 
|  | with self.assertRaisesRegex(ValueError, "padding='same'"): | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(1, 4, 1)) | 
|  | with self.assertRaisesRegex(ValueError, "padding='same'"): | 
|  | module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, padding='same', stride=(5, 1, 1)) | 
|  |  | 
|  | @unittest.skipIf(not TEST_CUDA, 'CUDA not available') | 
|  | def test_thnn_conv_strided_padded_dilated(self): | 
|  | for convfn, dims, transposed in ( | 
|  | (torch.nn.functional.conv2d, 2, False), | 
|  | (torch.nn.functional.conv_transpose2d, 2, True), | 
|  | (torch.nn.functional.conv3d, 3, False), | 
|  | (torch.nn.functional.conv_transpose3d, 3, True)): | 
|  | for stride, padding, dilation in ( | 
|  | (2, 0, 1), (1, 1, 1), (2, 1, 1), (1, 0, 2)): | 
|  | kwargs = {"stride": stride, "padding": padding, "dilation": dilation} | 
|  | inp_shape = (1, 2) + dims * (4,) | 
|  | weight_shape = (2, 2) + dims * (1,) | 
|  | inputs = torch.randn(inp_shape, dtype=torch.double, device="cuda", requires_grad=True) | 
|  | weight = torch.randn(weight_shape, dtype=torch.double, device="cuda", requires_grad=True) | 
|  | bias = torch.randn(2, dtype=torch.double, device="cuda", requires_grad=True) | 
|  | with torch.backends.cudnn.flags(enabled=False): | 
|  | res = convfn(inputs, weight, bias, **kwargs) | 
|  | res_cpu = convfn(inputs.cpu(), weight.cpu(), bias.cpu(), **kwargs) | 
|  | self.assertEqual(res, res_cpu) | 
|  | with torch.backends.cudnn.flags(enabled=False): | 
|  | torch.autograd.gradcheck( | 
|  | lambda x, w, b: convfn(x, w, b, **kwargs), | 
|  | (inputs, weight, bias) | 
|  | ) | 
|  | torch.autograd.gradcheck( | 
|  | lambda x, w, b: convfn(x, w, b, **kwargs), | 
|  | (inputs.cpu(), weight.cpu(), bias.cpu()) | 
|  | ) | 
|  |  | 
|  | def test_Conv2d_inconsistent_types(self): | 
|  | inputs = torch.randn(4, 1, 7, 7, dtype=torch.float) | 
|  | weights = torch.randn(1, 1, 3, 3, dtype=torch.double) | 
|  | # inconsistent types should raise an exception | 
|  | self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) | 
|  | # but it should work with the same type | 
|  | nn.functional.conv2d(inputs.float(), weights.float()) | 
|  |  | 
|  | @unittest.skipIf(not TEST_CUDA, 'CUDA not available') | 
|  | def test_Conv2d_inconsistent_types_on_GPU_without_cudnn(self): | 
|  | inputs = torch.randn(4, 1, 7, 7, dtype=torch.float, device="cuda") | 
|  | weights = torch.randn(1, 1, 3, 3, dtype=torch.double, device="cuda") | 
|  | bias = torch.randn(1, dtype=torch.double, device="cuda") | 
|  |  | 
|  | with torch.backends.cudnn.flags(enabled=False): | 
|  | # inconsistent types should raise an exception | 
|  | self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) | 
|  | self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights.float(), bias)) | 
|  |  | 
|  | # but it should work with the same type | 
|  | nn.functional.conv2d(inputs.float(), weights.float(), bias.float()) | 
|  |  | 
|  | def test_Conv2d_1x1(self): | 
|  | in_channels = 2 | 
|  | out_channels = 2 | 
|  | mod = torch.nn.Conv2d(2, 2, 1, bias=False).to(dtype=torch.double) | 
|  | input = torch.randn(1, in_channels, 5, 5, requires_grad=True, dtype=torch.double) | 
|  | for enabled in (False, True): | 
|  | with torch.backends.mkldnn.flags(enabled=enabled): | 
|  | gradcheck(F.conv2d, (input, mod.weight)) | 
|  |  | 
|  | def test_Conv2d_OneDNN(self): | 
|  | def run_once(group_val=24, dilation=1): | 
|  | ifm = torch.ones([1, group_val, 6, 6], dtype=torch.float32) | 
|  | weights = torch.ones([group_val, 1, 3, 3], dtype=torch.float32) | 
|  | op = torch.nn.Conv2d( | 
|  | in_channels=group_val, | 
|  | out_channels=group_val, | 
|  | kernel_size=[3, 3], | 
|  | stride=[2, 2], | 
|  | padding=[1, 1], | 
|  | dilation=[dilation, dilation], | 
|  | groups=group_val, | 
|  | bias=False, | 
|  | padding_mode='zeros' | 
|  | ) | 
|  |  | 
|  | op.weight.data = weights | 
|  | res = op(ifm) | 
|  | grad_in = torch.ones(res.shape, dtype=torch.float32) | 
|  | res.backward(grad_in) | 
|  | return op.weight.grad | 
|  |  | 
|  | for gorup_val in (24, 48, 23, 25): | 
|  | for dilation in (1, 2): | 
|  | with torch.backends.mkldnn.flags(enabled=False): | 
|  | without_onednn = run_once(gorup_val, dilation) | 
|  |  | 
|  | with torch.backends.mkldnn.flags(enabled=True): | 
|  | with_onednn = run_once(gorup_val, dilation) | 
|  |  | 
|  | self.assertEqual(without_onednn, with_onednn) | 
|  |  | 
|  | @unittest.skipIf(not TEST_CUDA, 'CUDA not available') | 
|  | @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') | 
|  | def test_cudnn_non_contiguous(self): | 
|  | x = torch.randn(192, 16, 50).cuda() | 
|  | x = x.permute(0, 2, 1).contiguous().permute(0, 2, 1) | 
|  | m = torch.nn.Conv1d( | 
|  | in_channels=16, | 
|  | out_channels=32, | 
|  | kernel_size=2, | 
|  | bias=True).cuda() | 
|  | result = m(x) | 
|  |  | 
|  | @unittest.skipIf(not TEST_CUDA, 'CUDA not available') | 
|  | @unittest.skipIf(not TEST_CUDNN, 'CUDNN not available') | 
|  | def test_Conv2d_inconsistent_types_on_GPU_with_cudnn(self): | 
|  | inputs = torch.randn(4, 1, 7, 7, dtype=torch.float, device="cuda") | 
|  | weights = torch.randn(1, 1, 3, 3, dtype=torch.double, device="cuda") | 
|  | bias = torch.randn(1, dtype=torch.double, device="cuda") | 
|  |  | 
|  | with torch.backends.cudnn.flags(enabled=True): | 
|  | # inconsistent types should raise an exception | 
|  | self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights)) | 
|  | self.assertRaises(RuntimeError, lambda: nn.functional.conv2d(inputs, weights.float(), bias)) | 
|  |  | 
|  | # but it should work with the same type | 
|  | nn.functional.conv2d(inputs.float(), weights.float(), bias.float()) | 
|  |  | 
|  | def test_Conv2d_missing_argument(self): | 
|  | c = nn.Conv2d(3, 3, 3) | 
|  | self.assertRaises(TypeError, lambda: c(None)) | 
|  |  | 
|  | def test_Conv2d_backward_twice(self): | 
|  | input = torch.randn(2, 3, 5, 5) | 
|  | c = nn.Conv2d(3, 3, 3) | 
|  | o1 = c(input) | 
|  | o1.sum().backward() | 
|  | self.assertRaisesRegex(RuntimeError, 'Specify retain_graph=True', | 
|  | lambda: o1.sum().backward()) | 
|  |  | 
|  |  | 
|  | def test_conv_modules_raise_error_on_incorrect_input_size(self): | 
|  | for dtype in [torch.bfloat16, torch.double, torch.float]: | 
|  | modules = [nn.Conv1d(3, 8, 3).to(dtype), nn.ConvTranspose1d(3, 8, 3).to(dtype), | 
|  | nn.Conv2d(3, 8, 3).to(dtype), nn.ConvTranspose2d(3, 8, 3).to(dtype), | 
|  | nn.Conv3d(3, 8, 3).to(dtype), nn.ConvTranspose3d(3, 8, 3).to(dtype)] | 
|  |  | 
|  | invalid_input_dims = [(1, 4), (1, 4), | 
|  | (2, 5), (2, 5), | 
|  | (3, 6), (3, 6)] | 
|  |  | 
|  | for invalid_dims, module in zip(invalid_input_dims, modules): | 
|  | for dims in invalid_dims: | 
|  | input = torch.empty(torch.Size((3, ) * dims)) | 
|  | self.assertRaises(RuntimeError, lambda: module(input)) | 
|  |  | 
|  | def test_conv_shapecheck(self): | 
|  | def test(should_raise, module, input_size, dtype): | 
|  | input = torch.empty(3, *input_size).to(dtype) | 
|  | if should_raise: | 
|  | self.assertRaises(RuntimeError, lambda: module(input)) | 
|  | else: | 
|  | # just run it to ensure no exception raised. | 
|  | module(input) | 
|  |  | 
|  | for dtype in [torch.bfloat16, torch.float, torch.double, torch.cfloat, torch.cdouble]: | 
|  | # Conv1d | 
|  | test(True, nn.Conv1d(1, 1, 3).to(dtype), (1, 2), dtype) | 
|  | test(True, nn.Conv1d(1, 1, 3, stride=2).to(dtype), (1, 2), dtype) | 
|  | test(False, nn.Conv1d(1, 1, 2).to(dtype), (1, 2), dtype) | 
|  | test(False, nn.Conv1d(1, 1, 2, stride=2).to(dtype), (1, 2), dtype) | 
|  | test(False, nn.Conv1d(1, 1, 3, stride=2, padding=1).to(dtype), (1, 2), dtype) | 
|  |  | 
|  | # Conv2d | 
|  | test(True, nn.Conv2d(1, 1, (3, 3)).to(dtype), (1, 2, 2), dtype) | 
|  | test(False, nn.Conv2d(1, 1, (3, 3)).to(dtype), (1, 3, 3), dtype) | 
|  | test(False, nn.Conv2d(1, 1, (3, 3), padding=1).to(dtype), (1, 2, 2), dtype) | 
|  |  | 
|  | # Conv3D | 
|  | test(True, nn.Conv3d(1, 1, (3, 3, 3)).to(dtype), (1, 2, 2, 2), dtype) | 
|  | test(False, nn.Conv3d(1, 1, (3, 3, 3)).to(dtype), (1, 3, 3, 3), dtype) | 
|  | test(False, nn.Conv3d(1, 1, (3, 3, 3), padding=1).to(dtype), (1, 2, 2, 2), dtype) | 
|  |  | 
|  | def test_ConvTranspose2d_output_size(self): | 
|  | m = nn.ConvTranspose2d(3, 4, 3, 3, 0, 2) | 
|  | i = torch.randn(2, 3, 6, 6) | 
|  | for h in range(15, 22): | 
|  | for w in range(15, 22): | 
|  | if 18 <= h <= 20 and 18 <= w <= 20: | 
|  | output = m(i, output_size=(h, w)) | 
|  | self.assertEqual(output.size()[2:], (h, w)) | 
|  | else: | 
|  | self.assertRaises(ValueError, lambda: m(i, (h, w))) | 
|  |  | 
|  | def test_ConvTranspose2d_output_size_downsample_upsample(self): | 
|  | b, c, hid_c = 2, 3, 2 | 
|  | for h in range(13, 24): | 
|  | for w in range(13, 17): | 
|  | for k in range(2, 5): | 
|  | for d in range(1, 5): | 
|  | for s in range(1, 4): | 
|  | for p in range(3): | 
|  | conv = nn.Conv2d( | 
|  | in_channels=c, | 
|  | out_channels=hid_c, | 
|  | kernel_size=k, | 
|  | stride=s, | 
|  | padding=p, | 
|  | dilation=d, | 
|  | ) | 
|  |  | 
|  | t_conv = nn.ConvTranspose2d( | 
|  | in_channels=hid_c, | 
|  | out_channels=c, | 
|  | kernel_size=k, | 
|  | stride=s, | 
|  | padding=p, | 
|  | dilation=d, | 
|  | ) | 
|  |  | 
|  | i = torch.randn(b, c, h, w) | 
|  |  | 
|  | out = t_conv(conv(i), output_size=i.shape) | 
|  |  | 
|  | self.assertEqual(out.size()[2:], i.size()[2:]) | 
|  |  | 
|  | def test_ConvTranspose3d_correct_output_size(self): | 
|  | # Check that ConvTranspose3d can take a 5d output_size. | 
|  | m = nn.ConvTranspose3d(2, 2, 2) | 
|  | i = torch.rand(1, 2, 1, 1, 1) | 
|  | out = m(i, output_size=(1, 2, 2, 2, 2)) | 
|  |  | 
|  | @unittest.skipIf(not TEST_CUDA, 'CUDA not available') | 
|  | def test_ConvTranspose2d_half_cublas_gemm(self): | 
|  | with torch.backends.cudnn.flags(enabled=False): | 
|  | inputs = torch.randn(1, 1, 16, 16, device='cuda', dtype=torch.half) | 
|  | deconv = nn.ConvTranspose2d( | 
|  | 1, 1, 3, stride=2, padding=1, output_padding=1).cuda().half() | 
|  | output = deconv(inputs) | 
|  | output.mean().backward() | 
|  |  | 
|  | # For https://github.com/pytorch/pytorch/pull/1273 | 
|  | # Almost identical to the above `test_Conv2d_naive_groups` | 
|  | @torch.backends.cudnn.flags(enabled=True, benchmark=False) | 
|  | def test_Conv2d_groups_nobias(self): | 
|  | dev_dtypes = [("cpu", torch.float)] | 
|  | if TEST_CUDA: | 
|  | dev_dtypes += [("cuda", torch.float), ("cuda", torch.half)] | 
|  | if AMPERE_OR_ROCM: | 
|  | dev_dtypes += [("cuda", torch.bfloat16)] | 
|  | for device, dtype in dev_dtypes: | 
|  | m = nn.Conv2d(4, 4, kernel_size=3, groups=2, bias=False).to(device, dtype) | 
|  | i = torch.randn(2, 4, 6, 6, device=device, dtype=dtype, requires_grad=True) | 
|  | output = m(i) | 
|  | grad_output = torch.randn(2, 4, 4, 4, device=device, dtype=dtype) | 
|  | output.backward(grad_output) | 
|  |  | 
|  | m1 = nn.Conv2d(2, 2, kernel_size=3, bias=False).to(device, dtype) | 
|  | m1.weight.data.copy_(m.weight.data[:2]) | 
|  | i1 = i.data[:, :2].contiguous().requires_grad_(True) | 
|  | output1 = m1(i1) | 
|  | output1.backward(grad_output[:, :2].contiguous()) | 
|  |  | 
|  | m2 = nn.Conv2d(2, 2, kernel_size=3, bias=False).to(device, dtype) | 
|  | m2.weight.data.copy_(m.weight.data[2:]) | 
|  | i2 = i.data[:, 2:].contiguous().requires_grad_(True) | 
|  | output2 = m2(i2) | 
|  | output2.backward(grad_output[:, 2:].contiguous()) | 
|  |  | 
|  | self.assertEqual(output, torch.cat([output1, output2], 1)) | 
|  | self.assertEqual(i.grad.data, | 
|  | torch.cat([i1.grad.data, i2.grad.data], 1), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(m.weight.grad.data, | 
|  | torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), | 
|  | atol=1e-1 if dtype == torch.half else dtype2prec_DONTUSE[dtype], rtol=0) | 
|  |  | 
|  | # Almost identical to the above `test_Conv2d_naive_groups` | 
|  | # Covering special case when group > 1, input-channel / group < 16 and output-channel is multiple of 16 | 
|  | # See also https://github.com/pytorch/pytorch/pull/18463#issuecomment-476563686 | 
|  | # and https://github.com/pytorch/pytorch/pull/18463#issuecomment-477001024 | 
|  | @torch.backends.cudnn.flags(enabled=True, benchmark=False) | 
|  | def test_Conv2d_groups_nobias_v2(self): | 
|  | torch.manual_seed(123) | 
|  | dev_dtypes = [("cpu", torch.float)] | 
|  | if TEST_CUDA: | 
|  | dev_dtypes += [("cuda", torch.float), ("cuda", torch.half)] | 
|  | if AMPERE_OR_ROCM: | 
|  | dev_dtypes += [("cuda", torch.bfloat16)] | 
|  | for device, dtype in dev_dtypes: | 
|  | m = nn.Conv2d(4, 16, kernel_size=3, groups=2, bias=False).to(device, dtype) | 
|  | i = torch.randn(2, 4, 6, 6, device=device, dtype=dtype, requires_grad=True) | 
|  | output = m(i) | 
|  | grad_output = torch.randn(2, 16, 4, 4, device=device, dtype=dtype) | 
|  | output.backward(grad_output) | 
|  |  | 
|  | m1 = nn.Conv2d(2, 8, kernel_size=3, bias=False).to(device, dtype) | 
|  | m1.weight.data.copy_(m.weight.data[:8]) | 
|  | i1 = i.data[:, :2].contiguous().requires_grad_(True) | 
|  | output1 = m1(i1) | 
|  | output1.backward(grad_output[:, :8].contiguous()) | 
|  |  | 
|  | m2 = nn.Conv2d(2, 8, kernel_size=3, bias=False).to(device, dtype) | 
|  | m2.weight.data.copy_(m.weight.data[8:]) | 
|  | i2 = i.data[:, 2:].contiguous().requires_grad_(True) | 
|  | output2 = m2(i2) | 
|  | output2.backward(grad_output[:, 8:].contiguous()) | 
|  |  | 
|  | self.assertEqual(output, torch.cat([output1, output2], 1)) | 
|  | self.assertEqual(i.grad.data, | 
|  | torch.cat([i1.grad.data, i2.grad.data], 1), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(m.weight.grad.data, | 
|  | torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), | 
|  | atol=1e-1 if dtype == torch.half else dtype2prec_DONTUSE[dtype], rtol=0) | 
|  |  | 
|  | # CPU-only test for group conv3d fast implementation using bmm | 
|  | # See: https://github.com/pytorch/pytorch/pull/36355 | 
|  | def test_Conv3d_groups_nobias(self): | 
|  | torch.manual_seed(123) | 
|  | m = nn.Conv3d(4, 16, kernel_size=3, groups=2, bias=False).to("cpu", torch.float) | 
|  | i = torch.randn(2, 4, 6, 6, 6, device="cpu", dtype=torch.float, requires_grad=True) | 
|  | output = m(i) | 
|  | grad_output = torch.randn(2, 16, 4, 4, 4, device="cpu", dtype=torch.float) | 
|  | output.backward(grad_output) | 
|  |  | 
|  | m1 = nn.Conv3d(2, 8, kernel_size=3, bias=False).to("cpu", torch.float) | 
|  | m1.weight.data.copy_(m.weight.data[:8]) | 
|  | i1 = i.data[:, :2].contiguous().requires_grad_(True) | 
|  | output1 = m1(i1) | 
|  | output1.backward(grad_output[:, :8].contiguous()) | 
|  |  | 
|  | m2 = nn.Conv3d(2, 8, kernel_size=3, bias=False).to("cpu", torch.float) | 
|  | m2.weight.data.copy_(m.weight.data[8:]) | 
|  | i2 = i.data[:, 2:].contiguous().requires_grad_(True) | 
|  | output2 = m2(i2) | 
|  | output2.backward(grad_output[:, 8:].contiguous()) | 
|  |  | 
|  | self.assertEqual(output, torch.cat([output1, output2], 1)) | 
|  | self.assertEqual(i.grad.data, | 
|  | torch.cat([i1.grad.data, i2.grad.data], 1), | 
|  | atol=dtype2prec_DONTUSE[torch.float], rtol=0) | 
|  | self.assertEqual(m.weight.grad.data, | 
|  | torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), | 
|  | atol=dtype2prec_DONTUSE[torch.float], rtol=dtype2prec_DONTUSE[torch.float]) | 
|  |  | 
|  | def test_Conv3d_groups_wbias(self): | 
|  | torch.manual_seed(123) | 
|  | m = nn.Conv3d(4, 16, kernel_size=3, groups=2, bias=True).to("cpu", torch.float) | 
|  | i = torch.randn(2, 4, 6, 6, 6, device="cpu", dtype=torch.float, requires_grad=True) | 
|  | output = m(i) | 
|  | grad_output = torch.randn(2, 16, 4, 4, 4, device="cpu", dtype=torch.float) | 
|  | output.backward(grad_output) | 
|  |  | 
|  | m1 = nn.Conv3d(2, 8, kernel_size=3, bias=True).to("cpu", torch.float) | 
|  | m1.weight.data.copy_(m.weight.data[:8]) | 
|  | m1.bias.data.copy_(m.bias.data[:8]) | 
|  | i1 = i.data[:, :2].contiguous().requires_grad_(True) | 
|  | output1 = m1(i1) | 
|  | output1.backward(grad_output[:, :8].contiguous()) | 
|  |  | 
|  | m2 = nn.Conv3d(2, 8, kernel_size=3, bias=True).to("cpu", torch.float) | 
|  | m2.weight.data.copy_(m.weight.data[8:]) | 
|  | m2.bias.data.copy_(m.bias.data[8:]) | 
|  | i2 = i.data[:, 2:].contiguous().requires_grad_(True) | 
|  | output2 = m2(i2) | 
|  | output2.backward(grad_output[:, 8:].contiguous()) | 
|  |  | 
|  | self.assertEqual(output, torch.cat([output1, output2], 1)) | 
|  | self.assertEqual(i.grad.data, | 
|  | torch.cat([i1.grad.data, i2.grad.data], 1), | 
|  | atol=dtype2prec_DONTUSE[torch.float], | 
|  | rtol=dtype2prec_DONTUSE[torch.float]) | 
|  | self.assertEqual(m.weight.grad.data, | 
|  | torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), | 
|  | atol=dtype2prec_DONTUSE[torch.float], | 
|  | rtol=dtype2prec_DONTUSE[torch.float]) | 
|  | self.assertEqual(m.bias.grad.data, | 
|  | torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0), | 
|  | atol=dtype2prec_DONTUSE[torch.float], rtol=dtype2prec_DONTUSE[torch.float]) | 
|  |  | 
|  | def test_conv_tbc(self): | 
|  | with set_default_dtype(torch.double): | 
|  | inp = torch.randn(9, 4, 5, requires_grad=True) | 
|  | weight = torch.randn(3, 5, 6, requires_grad=True) | 
|  | bias = torch.randn(6, requires_grad=True) | 
|  |  | 
|  | gradcheck(lambda i, w, b, pad: F.conv_tbc(i, w, b, pad), (inp, weight, bias, 3)) | 
|  |  | 
|  | @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") | 
|  | @unittest.skipIf(not TEST_CUDNN, "needs cudnn") | 
|  | @skipIfRocmVersionLessThan((4, 3)) | 
|  | def test_grouped_conv_cudnn_nhwc_support(self): | 
|  | # in order to catch the hols in grouped convolution in nhwc support for earlier cudnn version | 
|  | input = torch.randn((16, 16, 8, 8), dtype=torch.float16, device="cuda").to(memory_format=torch.channels_last) | 
|  | weight = torch.randn((8, 4, 3, 3), dtype=torch.float16, device="cuda").to(memory_format=torch.channels_last) | 
|  | out = torch.convolution(input, weight, None, (1, 1), (1, 1), (1, 1), False, (0, 0), 4) | 
|  | input = torch.randn((16, 8, 8, 8), dtype=torch.float16, device="cuda").to(memory_format=torch.channels_last) | 
|  | out_transpose = torch.convolution(input, weight, None, (1, 1), (1, 1), (1, 1), True, (0, 0), 4) | 
|  |  | 
|  | @unittest.expectedFailure | 
|  | @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") | 
|  | @unittest.skipIf(not TEST_CUDNN, "needs cudnn") | 
|  | def test_conv_cudnn_memory_layout_dominance(self): | 
|  | # desired behavior here is to have the memory_layout of conv.weight to | 
|  | # dominante the layout of output. | 
|  | # which is not the same as current behavior, we'll fix this in | 
|  | # following up PRs and remove the `expectedFailure` tag | 
|  | input = torch.randint(1, 10, (2, 8, 4, 4), dtype=torch.float32, device="cuda", requires_grad=True) | 
|  | conv = nn.Conv2d(8, 4, 3).cuda().float() | 
|  |  | 
|  | out = conv(input) | 
|  | self.assertTrue(out.is_contiguous()) | 
|  |  | 
|  | input = input.contiguous(memory_format=torch.channels_last) | 
|  | out = conv(input) | 
|  | self.assertTrue(out.is_contiguous()) | 
|  |  | 
|  | conv.weight.data = conv.weight.contiguous(memory_format=torch.channels_last) | 
|  | out = conv(input) | 
|  | self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) | 
|  |  | 
|  | input = input.contiguous() | 
|  | out = conv(input) | 
|  | self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) | 
|  |  | 
|  |  | 
|  | @unittest.skipIf(not TEST_CUDA, "CUDA unavailable") | 
|  | def test_cudnn_noncontiguous_weight(self): | 
|  | # Noncontiguous weights must be contiguous() before being | 
|  | # passed to cuDNN | 
|  | input = torch.tensor([1, 1, 1], dtype=torch.double, device="cuda").view(1, 1, 3) | 
|  | weights1 = torch.tensor([1], dtype=torch.double, device="cuda").expand(1, 1, 2) | 
|  | weights2 = torch.tensor([1], dtype=torch.double, device="cuda").expand(1, 1, 2).contiguous() | 
|  | self.assertEqual(F.conv1d(input, weights1, bias=None, stride=2, dilation=2), | 
|  | F.conv1d(input, weights2, bias=None, stride=2, dilation=2)) | 
|  |  | 
|  |  | 
|  | def run_grad_conv_test(self, func_forward, func_backward, dim=1, gradient='input'): | 
|  | for kern, inp_size in [(3, 6), (3, 7), (4, 9)]: | 
|  | for batch, stride, padding, chan_in, chan_out, dilation in \ | 
|  | product([1, 2], [1, 2], [0, 1, 2], [2], [3], [1]): | 
|  |  | 
|  | for has_bias in [True, False]: | 
|  | input_shape = [batch, chan_in] | 
|  | weight_shape = [chan_out, chan_in] | 
|  | for _ in range(dim): | 
|  | input_shape.append(inp_size) | 
|  | weight_shape.append(kern) | 
|  |  | 
|  | input = torch.randn(input_shape, requires_grad=True) | 
|  | weight = torch.randn(weight_shape, requires_grad=True) | 
|  | if has_bias: | 
|  | bias = torch.randn([chan_out], requires_grad=True) | 
|  | output = func_forward(input, weight, stride=stride, padding=padding, dilation=dilation, bias=bias) | 
|  |  | 
|  | gradient_o = torch.randn(output.shape) | 
|  | gradient_w = torch.autograd.grad(output, input if (gradient == 'input') else weight, gradient_o) | 
|  |  | 
|  | self.assertEqual(gradient_w[0], | 
|  | func_backward( | 
|  | input_shape if (gradient == 'input') else input, | 
|  | weight_shape if (gradient == 'weight') else weight, | 
|  | gradient_o, | 
|  | stride=stride, | 
|  | padding=padding, | 
|  | dilation=dilation)) | 
|  |  | 
|  | def test_grad_conv1d_input(self): | 
|  | self.run_grad_conv_test(F.conv1d, F.grad.conv1d_input, 1, 'input') | 
|  |  | 
|  | def test_grad_conv1d_weight(self): | 
|  | self.run_grad_conv_test(F.conv1d, F.grad.conv1d_weight, 1, 'weight') | 
|  |  | 
|  | def test_grad_conv2d_input(self): | 
|  | self.run_grad_conv_test(F.conv2d, F.grad.conv2d_input, 2, 'input') | 
|  |  | 
|  | def test_grad_conv2d_weight(self): | 
|  | self.run_grad_conv_test(F.conv2d, F.grad.conv2d_weight, 2, 'weight') | 
|  |  | 
|  | def test_grad_conv3d_input(self): | 
|  | self.run_grad_conv_test(F.conv3d, F.grad.conv3d_input, 3, 'input') | 
|  |  | 
|  | def test_grad_conv3d_weight(self): | 
|  | self.run_grad_conv_test(F.conv3d, F.grad.conv3d_weight, 3, 'weight') | 
|  |  | 
|  | @unittest.skipIf(not torch._nnpack_available(), "NNPACK unavailable") | 
|  | def test_nnpack_conv(self): | 
|  | for kern, inp_size in [(3, 6), (3, 7), (4, 9)]: | 
|  | for batch, stride, padding, chan_in, chan_out in \ | 
|  | product([1, 2, 3, 4], [1, 2], [0, 1, 2], [2], [3]): | 
|  |  | 
|  | for has_bias in [True, False]: | 
|  | input_shape = [batch, chan_in] | 
|  | weight_shape = [chan_out, chan_in] | 
|  | for _ in range(2): | 
|  | input_shape.append(inp_size) | 
|  | weight_shape.append(kern) | 
|  |  | 
|  | input = torch.randn(input_shape, requires_grad=True, dtype=torch.float) | 
|  | weight = torch.randn(weight_shape, requires_grad=True, dtype=torch.float) | 
|  | if has_bias: | 
|  | bias = torch.randn([chan_out], requires_grad=True, dtype=torch.float) | 
|  | output = torch._nnpack_spatial_convolution(input, weight, stride=stride, padding=padding, bias=bias) | 
|  | output_expected = torch.nn.functional.conv2d(input, weight, stride=stride, padding=padding, bias=bias) | 
|  | self.assertEqual(output, output_expected, atol=3e-4, rtol=0) | 
|  |  | 
|  | gradient_o = torch.randn(output.shape, dtype=torch.float) | 
|  |  | 
|  | grads = torch.autograd.grad(output, [input, weight], gradient_o) | 
|  | grads_expected = torch.autograd.grad(output_expected, [input, weight], gradient_o) | 
|  | for gr, gr_expected in zip(grads, grads_expected): | 
|  | self.assertEqual(gr, gr_expected, atol=3e-4, rtol=0) | 
|  |  | 
|  | def test_conv_padding_mode(self): | 
|  | with self.assertRaisesRegex(ValueError, "padding_mode must be one of"): | 
|  | nn.Conv2d(3, 3, 3, padding_mode="xyz") | 
|  |  | 
|  | with self.assertRaisesRegex(ValueError, "padding_mode must be one of"): | 
|  | nn.Conv2d(3, 3, 3, padding_mode=3) | 
|  |  | 
|  | with self.assertRaisesRegex(ValueError, "Only \"zeros\" "): | 
|  | nn.ConvTranspose2d(3, 3, 3, padding_mode="reflect") | 
|  |  | 
|  |  | 
|  | def test_functional_grad_conv(self): | 
|  | # Conv 1D | 
|  | input = torch.randn(1, 1, 5, requires_grad=True) | 
|  | weight = torch.randn(1, 1, 3, requires_grad=True) | 
|  | output = F.conv1d(input, weight, dilation=2) | 
|  | grad_output = torch.randn(output.shape) | 
|  |  | 
|  | grad_input_autograd, grad_weight_autograd = torch.autograd.grad(output, (input, weight), grad_output) | 
|  |  | 
|  | grad_input_functional = torch.nn.grad.conv1d_input(input.shape, weight, grad_output, dilation=2) | 
|  | self.assertEqual(grad_input_functional, grad_input_autograd) | 
|  |  | 
|  | grad_weight_functional = torch.nn.grad.conv1d_weight(input, weight.shape, grad_output, dilation=2) | 
|  | self.assertEqual(grad_weight_functional, grad_weight_autograd) | 
|  |  | 
|  | # Conv 2D | 
|  | input = torch.randn(1, 1, 5, 5, requires_grad=True) | 
|  | weight = torch.randn(1, 1, 3, 3, requires_grad=True) | 
|  | output = F.conv2d(input, weight, dilation=2) | 
|  | grad_output = torch.randn(output.shape) | 
|  |  | 
|  | (grad_input_autograd, grad_weight_autograd) = torch.autograd.grad(output, (input, weight), grad_output) | 
|  |  | 
|  | grad_input_functional = torch.nn.grad.conv2d_input(input.shape, weight, grad_output, dilation=2) | 
|  | self.assertEqual(grad_input_functional, grad_input_autograd) | 
|  |  | 
|  | grad_weight_functional = torch.nn.grad.conv2d_weight(input, weight.shape, grad_output, dilation=2) | 
|  | self.assertEqual(grad_weight_functional, grad_weight_autograd) | 
|  |  | 
|  | # Conv 3D | 
|  | input = torch.randn(1, 1, 5, 5, 5, requires_grad=True) | 
|  | weight = torch.randn(1, 1, 3, 3, 3, requires_grad=True) | 
|  | output = F.conv3d(input, weight, dilation=2) | 
|  | grad_output = torch.randn(output.shape) | 
|  |  | 
|  | (grad_input_autograd, grad_weight_autograd) = torch.autograd.grad(output, (input, weight), grad_output) | 
|  |  | 
|  | grad_input_functional = torch.nn.grad.conv3d_input(input.shape, weight, grad_output, dilation=2) | 
|  | self.assertEqual(grad_input_functional, grad_input_autograd) | 
|  |  | 
|  | grad_weight_functional = torch.nn.grad.conv3d_weight(input, weight.shape, grad_output, dilation=2) | 
|  | self.assertEqual(grad_weight_functional, grad_weight_autograd) | 
|  |  | 
|  | def test_functional_grad_conv2d(self): | 
|  | BATCH_SIZE = 4 | 
|  | IN_CH = 8 | 
|  | OUT_CH = 16 | 
|  | SPATIAL = 32 | 
|  |  | 
|  | def _test_conv2d(stride, kernel_size, groups, dilation): | 
|  | padding = kernel_size // 2 | 
|  |  | 
|  | input = torch.empty(BATCH_SIZE, IN_CH, SPATIAL, SPATIAL).uniform_(-8.0, 8.0).requires_grad_(True) | 
|  |  | 
|  | weight = torch.empty(OUT_CH, IN_CH // groups, kernel_size, kernel_size).uniform_(-4.0, 4.0).requires_grad_(True) | 
|  |  | 
|  | output = F.conv2d(input, weight, | 
|  | stride=stride, padding=padding, dilation=dilation, groups=groups) | 
|  |  | 
|  | grad_output = torch.randn(output.shape) | 
|  |  | 
|  | (grad_input_autograd, grad_weight_autograd) = torch.autograd.grad(output, (input, weight), grad_output) | 
|  |  | 
|  | grad_input_functional = torch.nn.grad.conv2d_input(input.shape, weight, grad_output, | 
|  | stride=stride, padding=padding, dilation=dilation, groups=groups) | 
|  | self.assertEqual(grad_input_functional, grad_input_autograd) | 
|  |  | 
|  | grad_weight_functional = torch.nn.grad.conv2d_weight(input, weight.shape, grad_output, | 
|  | stride=stride, padding=padding, dilation=dilation, groups=groups) | 
|  | self.assertEqual(grad_weight_functional, grad_weight_autograd) | 
|  |  | 
|  | strides = [1, 2] | 
|  | kernel_sizes = [1, 3, 5] | 
|  | groups = [1, 2, 4] | 
|  | dilates = [1, 2] | 
|  |  | 
|  | for s, k, g, d in product(strides, kernel_sizes, groups, dilates): | 
|  | _test_conv2d(s, k, g, d) | 
|  |  | 
|  |  | 
|  | class TestConvolutionNNDeviceType(NNTestCase): | 
|  | def run_conv_double_back_test(self, kern, stride, padding, chan_in, chan_out, batch_size, | 
|  | inp_size, dilation, no_weight, groups=1, use_cuda=False, | 
|  | use_bias=True, dtype=torch.double): | 
|  | if use_cuda: | 
|  | device = torch.device("cuda") | 
|  | else: | 
|  | device = torch.device("cpu") | 
|  |  | 
|  | x = torch.randn(batch_size, chan_in, inp_size, inp_size, device=device, | 
|  | dtype=dtype, requires_grad=True) | 
|  | weight = torch.randn(chan_out, chan_in // groups, kern, kern, device=device, | 
|  | dtype=dtype, requires_grad=not no_weight) | 
|  | if use_bias: | 
|  | bias = torch.randn(chan_out, device=device, dtype=dtype, requires_grad=True) | 
|  | else: | 
|  | bias = None | 
|  |  | 
|  | def func(*inputs): | 
|  | if use_bias: | 
|  | lx, lweight, lbias = inputs | 
|  | else: | 
|  | lx, lweight = inputs | 
|  | lbias = None | 
|  | # We disable cudnn during forward to avoid finite difference imprecision issues | 
|  | with cudnn.flags(enabled=False): | 
|  | out = F.conv2d(lx, lweight, lbias, stride, padding, dilation, groups) | 
|  | return out | 
|  |  | 
|  | if use_bias: | 
|  | inputs = x, weight, bias | 
|  | else: | 
|  | inputs = x, weight | 
|  |  | 
|  | dummy_out = func(*inputs) | 
|  | grad_y = torch.randn_like(dummy_out, device=device, dtype=dtype, requires_grad=True) | 
|  |  | 
|  | # Issue #15353: test mkldnn double backward, don't run gradgradcheck due | 
|  | # to imprecision issues | 
|  | if dtype == torch.float: | 
|  | g, = torch.autograd.grad(dummy_out.sum(), x, create_graph=True) | 
|  | return g.requires_grad | 
|  |  | 
|  | return gradgradcheck(func, inputs, (grad_y,)) | 
|  |  | 
|  | @onlyCUDA | 
|  | @skipCUDAIfNoCudnn | 
|  | @dtypes(*floating_and_complex_types_and(torch.half, *[torch.bfloat16] if AMPERE_OR_ROCM else [])) | 
|  | def test_Conv2d_deterministic_cudnn(self, device, dtype): | 
|  | inputs = torch.randn(2, 3, 5, 5, device=device, dtype=dtype, requires_grad=True) | 
|  | with cudnn.flags(enabled=True, benchmark=True, deterministic=True): | 
|  | conv1 = torch.nn.Conv2d(3, 3, 3).to(device, dtype) | 
|  | conv2 = torch.nn.Conv2d(3, 3, 3).to(device, dtype) | 
|  | conv2.bias.data.copy_(conv1.bias.data) | 
|  | conv2.weight.data.copy_(conv1.weight.data) | 
|  | out1 = conv1(inputs) | 
|  | out2 = conv2(inputs) | 
|  | self.assertEqual(out1, out2, atol=0.0, rtol=0) | 
|  | y = torch.randn(out1.size(), device=device, dtype=dtype) | 
|  | out1.backward(y) | 
|  | out2.backward(y) | 
|  | self.assertEqual(conv1.bias.grad.data, conv2.bias.grad.data, atol=0.0, rtol=0) | 
|  | self.assertEqual(conv1.weight.grad.data, conv2.weight.grad.data, atol=0.0, rtol=0) | 
|  |  | 
|  |  | 
|  | @onlyCUDA | 
|  | @dtypes(*floating_types_and(torch.half, *[torch.bfloat16] if AMPERE_OR_ROCM else [])) | 
|  | def test_Conv2d_large_workspace(self, device, dtype): | 
|  | # These sizes require huge cuDNN workspaces. Make sure we choose a | 
|  | # reasonable algorithm that does not run out of memory | 
|  | sizes = [ | 
|  | (1, 256, 109, 175), | 
|  | (1, 256, 80, 128), | 
|  | (1, 256, 120, 192), | 
|  | ] | 
|  |  | 
|  | def run_test(benchmark): | 
|  | with torch.backends.cudnn.flags(enabled=True, benchmark=benchmark): | 
|  | conv = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1).to(device, dtype) | 
|  | for size in sizes: | 
|  | x = torch.randn(size, device=device, dtype=dtype) | 
|  | out = conv(x.detach().clone().requires_grad_()) | 
|  | out.backward(torch.ones_like(out)) | 
|  |  | 
|  | run_test(benchmark=False) | 
|  | run_test(benchmark=True) | 
|  |  | 
|  |  | 
|  | @onlyCUDA | 
|  | @dtypes(torch.half, torch.float) | 
|  | def test_ConvTranspose2d_large_output_padding(self, device, dtype): | 
|  | net1 = torch.nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1)\ | 
|  | .to(device=device, dtype=dtype) | 
|  | net2 = torch.nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=1, output_padding=1)\ | 
|  | .to(device=device, dtype=dtype) | 
|  | net3 = torch.nn.ConvTranspose2d(32, 3, kernel_size=3, stride=2, padding=1, output_padding=1)\ | 
|  | .to(device=device, dtype=dtype) | 
|  | x = torch.rand(1, 128, 6, 6, device=device, dtype=dtype, requires_grad=True) | 
|  | x = net1(x) | 
|  | x = net2(x) | 
|  | x = net3(x) | 
|  | x.backward(torch.randn_like(x)) | 
|  | torch.cuda.synchronize() | 
|  |  | 
|  |  | 
|  | @onlyCUDA | 
|  | @dtypes(torch.float, torch.double, torch.half) | 
|  | # Very similar to test_Conv2d_naive_groups but with special care to handle | 
|  | # the number of groups == number of input channels | 
|  | @torch.backends.cudnn.flags(enabled=True, benchmark=False) | 
|  | @tf32_on_and_off(0.01) | 
|  | def test_Conv2d_depthwise_naive_groups(self, device, dtype): | 
|  | for depth_multiplier in [1, 2]: | 
|  | m = nn.Conv2d(2, 2 * depth_multiplier, kernel_size=3, groups=2).to(device, dtype) | 
|  | i = torch.randn(2, 2, 6, 6, device="cuda", dtype=dtype).div_(2).requires_grad_() | 
|  | output = m(i) | 
|  | grad_output = torch.randn(2, 2 * depth_multiplier, 4, 4, device=device, dtype=dtype) / 2 | 
|  | output.backward(grad_output) | 
|  |  | 
|  | offset = 1 * depth_multiplier | 
|  |  | 
|  | m1 = nn.Conv2d(1, 1 * depth_multiplier, kernel_size=3).to(device, dtype) | 
|  | m1.weight.data = m.weight.data[:offset].clone() | 
|  | m1.bias.data = m.bias.data[:offset].clone() | 
|  | i1 = i.detach()[:, :1].clone().requires_grad_() | 
|  | output1 = m1(i1) | 
|  | output1.backward(grad_output[:, :offset].contiguous()) | 
|  |  | 
|  | m2 = nn.Conv2d(1, 1 * depth_multiplier, kernel_size=3).to(device, dtype) | 
|  | m2.weight.data.copy_(m.weight.data[offset:]) | 
|  | m2.bias.data.copy_(m.bias.data[offset:]) | 
|  | i2 = i.detach()[:, 1:].clone().requires_grad_() | 
|  | output2 = m2(i2) | 
|  | output2.backward(grad_output[:, offset:].contiguous()) | 
|  |  | 
|  | self.assertEqual(output, torch.cat([output1, output2], 1), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(i.grad.data, | 
|  | torch.cat([i1.grad.data, i2.grad.data], 1), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(m.bias.grad.data, | 
|  | torch.cat([m1.bias.grad.data, | 
|  | m2.bias.grad.data], 0), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(m.weight.grad.data, | 
|  | torch.cat([m1.weight.grad.data, | 
|  | m2.weight.grad.data], 0), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  |  | 
|  | @onlyCUDA | 
|  | @dtypes(torch.float, torch.double, torch.half) | 
|  | @torch.backends.cudnn.flags(enabled=True, benchmark=False) | 
|  | @tf32_on_and_off(0.005) | 
|  | def test_Conv3d_depthwise_naive_groups(self, device, dtype): | 
|  | for depth_multiplier in [1, 2]: | 
|  | m = nn.Conv3d(2, 2 * depth_multiplier, kernel_size=3, groups=2).to(device, dtype) | 
|  | i = torch.randn(2, 2, 6, 6, 6, device="cuda", dtype=dtype).div_(2).requires_grad_() | 
|  | output = m(i) | 
|  | grad_output = torch.randn(2, 2 * depth_multiplier, 4, 4, 4, device=device, dtype=dtype) / 2 | 
|  | output.backward(grad_output) | 
|  |  | 
|  | offset = 1 * depth_multiplier | 
|  |  | 
|  | m1 = nn.Conv3d(1, 1 * depth_multiplier, kernel_size=3).to(device, dtype) | 
|  | m1.weight.data = m.weight.data[:offset].clone() | 
|  | m1.bias.data = m.bias.data[:offset].clone() | 
|  | i1 = i.detach()[:, :1].clone().requires_grad_() | 
|  | output1 = m1(i1) | 
|  | output1.backward(grad_output[:, :offset].contiguous()) | 
|  |  | 
|  | m2 = nn.Conv3d(1, 1 * depth_multiplier, kernel_size=3).to(device, dtype) | 
|  | m2.weight.data.copy_(m.weight.data[offset:]) | 
|  | m2.bias.data.copy_(m.bias.data[offset:]) | 
|  | i2 = i.detach()[:, 1:].clone().requires_grad_() | 
|  | output2 = m2(i2) | 
|  | output2.backward(grad_output[:, offset:].contiguous()) | 
|  | is_cuda_sm86 = device.startswith("cuda") and torch.cuda.get_device_capability(0) == (8, 6) | 
|  | atol, rtol = (3e-4, 3e-2) if dtype == torch.float32 and is_cuda_sm86 else (dtype2prec_DONTUSE[dtype], 0) | 
|  |  | 
|  | self.assertEqual(output, torch.cat([output1, output2], 1), | 
|  | atol=atol, rtol=rtol) | 
|  | self.assertEqual(i.grad.data, | 
|  | torch.cat([i1.grad.data, i2.grad.data], 1), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(m.bias.grad.data, | 
|  | torch.cat([m1.bias.grad.data, | 
|  | m2.bias.grad.data], 0), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(m.weight.grad.data, | 
|  | torch.cat([m1.weight.grad.data, | 
|  | m2.weight.grad.data], 0), | 
|  | atol=atol, rtol=rtol) | 
|  |  | 
|  |  | 
|  | @onlyCUDA | 
|  | @dtypes(*floating_types_and(torch.half, *[torch.bfloat16] if AMPERE_OR_ROCM else [])) | 
|  | def test_noncontig_conv_grad(self, device, dtype): | 
|  | # FIXME: remove after adding non-contiguous grad tests for all modules | 
|  | module = nn.Conv2d(3, 5, kernel_size=3, padding=1).to(device, dtype) | 
|  | input = torch.randn(2, 3, 10, 10, dtype=dtype, device=device, requires_grad=True) | 
|  | output = module(input) | 
|  |  | 
|  | grad = torch.randn(2, 2, 5, 10, 10, dtype=dtype, device=device)[:, 1] | 
|  | assert not grad.is_contiguous() | 
|  | output.backward(grad, retain_graph=True) | 
|  | self.assertIsNotNone(input.grad) | 
|  | result = input.grad.data.clone() | 
|  | input.grad.data.zero_() | 
|  |  | 
|  | output.backward(grad.contiguous()) | 
|  | self.assertEqual(result, input.grad.data, atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  |  | 
|  | @onlyCUDA | 
|  | @dtypes(torch.double) | 
|  | def test_conv_double_backward(self, device, dtype): | 
|  | with torch.backends.cudnn.flags(enabled=True, deterministic=True): | 
|  | # Double backward only runs with DoubleTensor due to precision reason | 
|  | batch_size = 1 | 
|  | for kern, inp_size, dilations in [(3, 5, [1, 2]), (4, 9, [1])]: | 
|  | for stride, padding, chan_in, chan_out, dilation in product([1], [2], [2], [3], dilations): | 
|  | no_weight = stride == 2 | 
|  | result = self.run_conv_double_back_test(kern, stride, | 
|  | padding, chan_in, chan_out, | 
|  | batch_size, inp_size, dilation, | 
|  | no_weight, use_cuda=True, dtype=dtype) | 
|  | self.assertTrue(result, | 
|  | "Conv double backward test failed with parameters:" + | 
|  | "\nkern: " + str(kern) + | 
|  | "\nstride: " + str(stride) + | 
|  | "\npadding: " + str(padding) + | 
|  | "\nchan_in: " + str(chan_in) + | 
|  | "\nchan_out: " + str(chan_out) + | 
|  | "\nbatch_size: " + str(batch_size) + | 
|  | "\ninp_size: " + str(inp_size) + | 
|  | "\ndilation: " + str(dilation)) | 
|  |  | 
|  |  | 
|  | def test_conv_double_backward_no_bias(self): | 
|  | kern = 3 | 
|  | stride = 2 | 
|  | chan_in, chan_out = 2, 4 | 
|  | batch_size = 2 | 
|  | inp_size = 5 | 
|  | padding = 1 | 
|  | dilation = 1 | 
|  | no_weight = False | 
|  | use_bias = True | 
|  | result = self.run_conv_double_back_test(kern, stride, | 
|  | padding, chan_in, chan_out, | 
|  | batch_size, inp_size, dilation, | 
|  | no_weight, use_bias=use_bias) | 
|  | self.assertTrue(result, | 
|  | "Conv double backward test failed with parameters:" + | 
|  | "\nkern: " + str(kern) + | 
|  | "\nstride: " + str(stride) + | 
|  | "\npadding: " + str(padding) + | 
|  | "\nchan_in: " + str(chan_in) + | 
|  | "\nchan_out: " + str(chan_out) + | 
|  | "\nbatch_size: " + str(batch_size) + | 
|  | "\ninp_size: " + str(inp_size) + | 
|  | "\ndilation: " + str(dilation)) | 
|  |  | 
|  |  | 
|  | def test_conv_double_backward_groups(self): | 
|  | kern = 3 | 
|  | stride = 1 | 
|  | padding = 2 | 
|  | chan_in, chan_out = 2, 4 | 
|  | batch_size = 2 | 
|  | inp_size = 6 | 
|  | dilation = 1 | 
|  | no_weight = False | 
|  | groups = 2 | 
|  | result = self.run_conv_double_back_test(kern, stride, | 
|  | padding, chan_in * groups, chan_out * groups, | 
|  | batch_size, inp_size, dilation, | 
|  | no_weight, groups=groups) | 
|  | self.assertTrue(result, | 
|  | "Conv double backward test failed with parameters:" + | 
|  | "\nkern: " + str(kern) + | 
|  | "\nstride: " + str(stride) + | 
|  | "\npadding: " + str(padding) + | 
|  | "\nchan_in: " + str(chan_in) + | 
|  | "\nchan_out: " + str(chan_out) + | 
|  | "\nbatch_size: " + str(batch_size) + | 
|  | "\ninp_size: " + str(inp_size) + | 
|  | "\ndilation: " + str(dilation) + | 
|  | "\ngroups: " + str(groups)) | 
|  |  | 
|  |  | 
|  | def test_conv_double_backward_stride(self): | 
|  | batch_size = 2 | 
|  |  | 
|  | # Cannot provide ggW when stride is > 1 | 
|  | for kern, inp_size, dilations in [(3, 5, [1, 2]), (3, 7, [1])]: | 
|  | for stride, padding, chan_in, chan_out, dilation in product([2], [0, 1], [1], [2], dilations): | 
|  | no_weight = False | 
|  | self.run_conv_double_back_test(kern, stride, | 
|  | padding, chan_in, chan_out, | 
|  | batch_size, inp_size, dilation, | 
|  | no_weight) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | @torch.backends.cudnn.flags(enabled=True, benchmark=False) | 
|  | def test_conv1d_same_padding(self, device, dtype): | 
|  | # Test padding='same' outputs the correct shape | 
|  | test_args = [ | 
|  | # in_size | 
|  | range(50, 55), | 
|  | # kernel_size | 
|  | [1, 2, 3, 8], | 
|  | # dilation | 
|  | range(1, 4), | 
|  | # stride | 
|  | [1], | 
|  | ] | 
|  | for in_size, k_size, dilation, stride in itertools.product(*test_args): | 
|  | x = torch.rand(1, 1, in_size, device=device, dtype=dtype) | 
|  | y = torch.rand(1, 1, k_size, device=device, dtype=dtype) | 
|  | z = F.conv1d(x, y, padding='same', dilation=dilation, stride=stride) | 
|  | self.assertEqual(z.size(2), int(math.ceil(in_size / stride))) | 
|  |  | 
|  | # Compare F.conv1d padding='same' output against manual padding | 
|  | # Without strides/dilation | 
|  | x = torch.rand(1, 1, 12, device=device, dtype=dtype) | 
|  | y = torch.rand(1, 1, 3, device=device, dtype=dtype) | 
|  | expect = F.conv1d(x, y, padding=1) | 
|  | actual = F.conv1d(x, y, padding='same') | 
|  | self.assertEqual(expect, actual) | 
|  |  | 
|  | # With dilation | 
|  | x = torch.rand(1, 1, 12, device=device, dtype=dtype) | 
|  | y = torch.rand(1, 1, 4, device=device, dtype=dtype) | 
|  | expect = F.conv1d(x, y, padding=3, dilation=2) | 
|  | actual = F.conv1d(x, y, padding='same', dilation=2) | 
|  | self.assertEqual(expect, actual) | 
|  |  | 
|  | # Dilation with asymmetric padding | 
|  | expect = F.conv1d(x, y, padding=5, dilation=3)[..., 1:] | 
|  | actual = F.conv1d(x, y, padding='same', dilation=3) | 
|  | self.assertEqual(expect, actual) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv2d_same_padding(self, device, dtype): | 
|  | if dtype is torch.cfloat: | 
|  | rtol, atol = 2e-6, 2e-6 | 
|  | else: | 
|  | rtol, atol = None, None | 
|  | # Compare F.conv2d padding='same' output against manual padding | 
|  | # Without strides/dilation | 
|  | x = torch.rand(1, 1, 10, 11, device=device, dtype=dtype) | 
|  | y = torch.rand(1, 1, 4, 5, device=device, dtype=dtype) | 
|  | expect = F.conv2d(x, y, padding=(2, 2))[..., 1:, :] | 
|  | actual = F.conv2d(x, y, padding='same') | 
|  | self.assertEqual(expect, actual, rtol=rtol, atol=atol) | 
|  |  | 
|  | # With dilation | 
|  | y = torch.rand(1, 1, 3, 4, device=device, dtype=dtype) | 
|  | expect = F.conv2d(x, y, padding=(2, 3), dilation=2) | 
|  | actual = F.conv2d(x, y, padding='same', dilation=2) | 
|  | self.assertEqual(expect, actual, rtol=rtol, atol=atol) | 
|  |  | 
|  | # Dilation with asymmetric padding | 
|  | y = torch.rand(1, 1, 4, 4, device=device, dtype=dtype) | 
|  | expect = F.conv2d(x, y, padding=5, dilation=3)[..., 1:, 1:] | 
|  | actual = F.conv2d(x, y, padding='same', dilation=3) | 
|  | self.assertEqual(expect, actual, rtol=rtol, atol=atol) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv3d_same_padding(self, device, dtype): | 
|  | if dtype is torch.cfloat: | 
|  | rtol, atol = 2e-6, 2e-6 | 
|  | else: | 
|  | rtol, atol = None, None | 
|  | # Compare F.conv3d padding='same' output against manual padding | 
|  | # Without strides/dilation | 
|  | x = torch.rand(1, 1, 10, 11, 12, device=device, dtype=dtype) | 
|  | y = torch.rand(1, 1, 1, 2, 5, device=device, dtype=dtype) | 
|  | expect = F.conv3d(x, y, padding=(0, 1, 2))[..., :, 1:, :] | 
|  | actual = F.conv3d(x, y, padding='same') | 
|  | self.assertEqual(expect, actual, rtol=rtol, atol=atol) | 
|  |  | 
|  | # With dilation | 
|  | expect = F.conv3d(x, y, padding=(0, 1, 4), dilation=2) | 
|  | actual = F.conv3d(x, y, padding='same', dilation=2) | 
|  | self.assertEqual(expect, actual, rtol=rtol, atol=atol) | 
|  |  | 
|  | # Dilation with asymmetric padding | 
|  | y = torch.rand(1, 1, 4, 4, 4, device=device, dtype=dtype) | 
|  | expect = F.conv3d(x, y, padding=5, dilation=3)[..., 1:, 1:, 1:] | 
|  | actual = F.conv3d(x, y, padding='same', dilation=3) | 
|  | self.assertEqual(expect, actual, rtol=rtol, atol=atol) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv1d_valid_padding(self, device, dtype): | 
|  | # Test F.conv1d padding='valid' is the same as no padding | 
|  | x = torch.rand(1, 1, 10, device=device, dtype=dtype) | 
|  | y = torch.rand(1, 1, 4, device=device, dtype=dtype) | 
|  | expect = F.conv1d(x, y) | 
|  | actual = F.conv1d(x, y, padding='valid') | 
|  | self.assertEqual(expect, actual) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv2d_valid_padding(self, device, dtype): | 
|  | # Test F.conv2d padding='valid' is the same as no padding | 
|  | x = torch.rand(1, 1, 1, 10, device=device, dtype=dtype) | 
|  | y = torch.rand(1, 1, 1, 4, device=device, dtype=dtype) | 
|  | expect = F.conv2d(x, y) | 
|  | actual = F.conv2d(x, y, padding='valid') | 
|  | self.assertEqual(expect, actual) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv3d_valid_padding(self, device, dtype): | 
|  | # Test F.conv3d padding='valid' is the same as no padding | 
|  | x = torch.rand(1, 1, 1, 1, 10, dtype=dtype, device=device) | 
|  | y = torch.rand(1, 1, 1, 1, 4, dtype=dtype, device=device) | 
|  | expect = F.conv3d(x, y) | 
|  | actual = F.conv3d(x, y, padding='valid') | 
|  | self.assertEqual(expect, actual) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv1d_same_padding_backward(self, device, dtype): | 
|  | # Test F.conv1d gradients work with padding='same' | 
|  | x = torch.rand(1, 1, 12, dtype=dtype, device=device, requires_grad=True) | 
|  | y = torch.rand(1, 1, 4, dtype=dtype, device=device, requires_grad=True) | 
|  |  | 
|  | # Symmetric padding | 
|  | z = F.conv1d(x, y, padding=3, dilation=2) | 
|  | z.sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | z = F.conv1d(x, y, padding='same', dilation=2) | 
|  | z.sum().abs().backward() | 
|  | self.assertEqual(gx_expect, x.grad) | 
|  | self.assertEqual(gy_expect, y.grad) | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | # Asymmetric padding | 
|  | z = F.conv1d(x, y, padding=2)[..., 1:] | 
|  | z.sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | z = F.conv1d(x, y, padding='same') | 
|  | z.sum().abs().backward() | 
|  | self.assertEqual(gx_expect, x.grad) | 
|  | self.assertEqual(gy_expect, y.grad) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv2d_same_padding_backward(self, device, dtype): | 
|  | # Test F.conv2d gradients work with padding='same' | 
|  | x = torch.rand(1, 1, 10, 11, device=device, dtype=dtype, requires_grad=True) | 
|  | y = torch.rand(1, 1, 4, 5, device=device, dtype=dtype, requires_grad=True) | 
|  |  | 
|  | # Symmetric padding | 
|  | z = F.conv2d(x, y, padding=(3, 4), dilation=2) | 
|  | z.sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | z = F.conv2d(x, y, padding='same', dilation=2) | 
|  | z.sum().abs().backward() | 
|  | self.assertEqual(gx_expect, x.grad) | 
|  | self.assertEqual(gy_expect, y.grad) | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | # Asymmetric padding | 
|  | y = torch.rand(1, 1, 4, 4, device=device, dtype=dtype, requires_grad=True) | 
|  | z = F.conv2d(x, y, padding=2)[..., 1:, 1:] | 
|  | z.sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | z = F.conv2d(x, y, padding='same') | 
|  | z.sum().abs().backward() | 
|  | self.assertEqual(gx_expect, x.grad) | 
|  | self.assertEqual(gy_expect, y.grad) | 
|  |  | 
|  | @dtypes(torch.double, torch.cdouble) | 
|  | def test_conv3d_same_padding_backward(self, device, dtype): | 
|  | check_forward_ad = torch.device(device).type != 'xla' | 
|  |  | 
|  | # Test F.conv3d gradients work with padding='same' | 
|  | x = torch.rand(1, 1, 1, 11, 12, dtype=dtype, device=device, requires_grad=True) | 
|  | y = torch.rand(1, 1, 1, 2, 5, dtype=dtype, device=device, requires_grad=True) | 
|  |  | 
|  | # Symmetric padding | 
|  | z = F.conv3d(x, y, padding=(0, 1, 4), dilation=2) | 
|  | z.sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | z = F.conv3d(x, y, padding='same', dilation=2) | 
|  | z.sum().abs().backward() | 
|  | self.assertEqual(gx_expect, x.grad) | 
|  | self.assertEqual(gy_expect, y.grad) | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | gradcheck(lambda x, y: F.conv3d(x, y, padding='same', dilation=2), (x, y), | 
|  | check_forward_ad=check_forward_ad, nondet_tol=1e-5) | 
|  | if torch.device(device).type != 'cuda': | 
|  | # https://github.com/pytorch/pytorch/issues/70702 | 
|  | gradgradcheck(lambda x, y: F.conv3d(x, y, padding='same', dilation=2), (x, y), | 
|  | check_fwd_over_rev=True) | 
|  |  | 
|  | # Asymmetric padding | 
|  | y = torch.rand(1, 1, 1, 4, 4, dtype=dtype, device=device, requires_grad=True) | 
|  | z = F.conv3d(x, y, padding=2)[..., 1:, 1:] | 
|  | z.sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | z = F.conv3d(x, y, padding='same') | 
|  | z.sum().abs().backward() | 
|  | self.assertEqual(gx_expect, x.grad) | 
|  | self.assertEqual(gy_expect, y.grad) | 
|  |  | 
|  | gradcheck(lambda x, y: F.conv3d(x, y, padding='same'), (x, y), | 
|  | check_forward_ad=check_forward_ad, nondet_tol=1e-5) | 
|  | if torch.device(device).type != 'cuda': | 
|  | # https://github.com/pytorch/pytorch/issues/70702 | 
|  | gradgradcheck(lambda x, y: F.conv3d(x, y, padding='same'), (x, y), | 
|  | check_fwd_over_rev=True) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv1d_valid_padding_backward(self, device, dtype): | 
|  | # Test F.conv1d gradients work with padding='valid' | 
|  | x = torch.rand(1, 1, 10, dtype=dtype, device=device, requires_grad=True) | 
|  | y = torch.rand(1, 1, 4, dtype=dtype, device=device, requires_grad=True) | 
|  | F.conv1d(x, y, padding=0).sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | F.conv1d(x, y, padding='valid').sum().abs().backward() | 
|  | gx_actual, gy_actual = x.grad, y.grad | 
|  | self.assertEqual(gx_expect, gx_actual) | 
|  | self.assertEqual(gy_expect, gy_actual) | 
|  |  | 
|  | @unittest.skipIf(not TEST_SCIPY, "Scipy required for the test.") | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | @parametrize_test("mode", ('valid', 'same')) | 
|  | def test_conv1d_vs_scipy(self, device, dtype, mode): | 
|  | t = make_tensor((1, 10), device=device, dtype=dtype) | 
|  | feat_dim = t.shape[1] | 
|  | weight_even = make_tensor((1, 1, 4), device=device, dtype=dtype) | 
|  | weight_odd = make_tensor((1, 1, 5), device=device, dtype=dtype) | 
|  |  | 
|  | def _test(t, weight, mode): | 
|  | # SciPy expects two 1-D inputs. | 
|  | t_a = t.view(-1).cpu().numpy() | 
|  | w_a = weight.view(-1).cpu().numpy() | 
|  | expected = scipy.signal.convolve(t_a, w_a, mode=mode) | 
|  |  | 
|  | kwargs = {'padding': mode} | 
|  | if mode == 'same': | 
|  | # `same` padding in PyTorch conv1d is different | 
|  | # from SciPy | 
|  | p = weight.shape[2] // 2 | 
|  | t = torch.nn.functional.pad(t, (p, p)) | 
|  | # We have already taken care of padding | 
|  | kwargs.pop("padding") | 
|  |  | 
|  | # second input is flipped in SciPy's convolve | 
|  | weight_flipped = torch.flip(weight, (2,)) | 
|  | actual = torch.nn.functional.conv1d(t, weight_flipped, **kwargs).squeeze(0) | 
|  | if mode == 'same': | 
|  | actual = actual[:feat_dim] | 
|  |  | 
|  | self.assertEqual(actual, expected, atol=2e-5, rtol=2e-5) | 
|  |  | 
|  | # Global dtype for this test suite is torch.double | 
|  | # This leads to change in type-promotion | 
|  | # and conv1d outputs `complex128` for `complex64` input. | 
|  | with set_default_dtype(torch.float): | 
|  | _test(t, weight_even, mode) | 
|  | _test(t, weight_odd, mode) | 
|  |  | 
|  | @unittest.skipIf(not TEST_SCIPY, "Scipy required for the test.") | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | @parametrize_test("mode", ('valid', 'same')) | 
|  | def test_conv2d_vs_scipy(self, device, dtype, mode): | 
|  | t = make_tensor((1, 5, 10), device=device, dtype=dtype) | 
|  | weight_even = make_tensor((1, 1, 2, 4), device=device, dtype=dtype) | 
|  | weight_odd = make_tensor((1, 1, 3, 5), device=device, dtype=dtype) | 
|  |  | 
|  | def _test(t, weight, mode): | 
|  | # SciPy expects two 2-D inputs. | 
|  | t_a = t.squeeze(0).cpu().numpy() | 
|  | w_a = weight.squeeze(0).squeeze(0).cpu().numpy() | 
|  | expected = scipy.signal.convolve2d(t_a, w_a, mode=mode) | 
|  |  | 
|  | kwargs = {'padding': mode} | 
|  | if mode == 'same': | 
|  | # `same` padding in PyTorch conv2d is different | 
|  | # from SciPy | 
|  | left_right_pad = weight.shape[3] // 2 | 
|  | top_bottom_pad = weight.shape[2] // 2 | 
|  | p = (left_right_pad, left_right_pad, top_bottom_pad, top_bottom_pad) | 
|  | t = torch.nn.functional.pad(t, p) | 
|  | # We have already taken care of padding | 
|  | kwargs.pop("padding") | 
|  |  | 
|  | # second input is flipped in SciPy's convolve2d | 
|  | weight_flipped = torch.flip(weight, (2, 3)) | 
|  | actual = torch.nn.functional.conv2d(t, weight_flipped, **kwargs).squeeze(0) | 
|  | if mode == 'same': | 
|  | actual = actual[:5, :10] | 
|  |  | 
|  | self.assertEqual(actual, expected, rtol=2e-5, atol=5e-6) | 
|  |  | 
|  | # Global dtype for this test suite is torch.double | 
|  | # This leads to change in type-promotion | 
|  | # and conv1d outputs `complex128` for `complex64` input. | 
|  | with set_default_dtype(torch.float): | 
|  | _test(t, weight_even, mode) | 
|  | _test(t, weight_odd, mode) | 
|  |  | 
|  | @unittest.skipIf(not TEST_SCIPY, "Scipy required for the test.") | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | @parametrize_test("mode", ('valid', 'same')) | 
|  | def test_conv3d_vs_scipy(self, device, dtype, mode): | 
|  | t = make_tensor((1, 5, 5, 10), device=device, dtype=dtype) | 
|  | weight_even = make_tensor((1, 1, 2, 2, 4), device=device, dtype=dtype) | 
|  | weight_odd = make_tensor((1, 1, 2, 3, 5), device=device, dtype=dtype) | 
|  |  | 
|  | def _test(t, weight, mode): | 
|  | # SciPy expects two 3-D inputs. | 
|  | t_a = t.squeeze(0).cpu().numpy() | 
|  | w_a = weight.squeeze(0).squeeze(0).cpu().numpy() | 
|  | expected = scipy.signal.convolve(t_a, w_a, mode=mode) | 
|  |  | 
|  | kwargs = {'padding': mode} | 
|  | if mode == 'same': | 
|  | # `same` padding in PyTorch conv3d is different | 
|  | # from SciPy | 
|  | left_right_pad = weight.shape[4] // 2 | 
|  | top_bottom_pad = weight.shape[3] // 2 | 
|  | front_back_pad = weight.shape[2] // 2 | 
|  | p = (left_right_pad, left_right_pad, top_bottom_pad, top_bottom_pad, | 
|  | front_back_pad, front_back_pad) | 
|  | t = torch.nn.functional.pad(t, p) | 
|  | # We have already taken care of padding | 
|  | kwargs.pop("padding") | 
|  |  | 
|  | # second input is flipped in SciPy's convolve | 
|  | weight_flipped = torch.flip(weight, (2, 3, 4)) | 
|  | actual = torch.nn.functional.conv3d(t, weight_flipped, **kwargs).squeeze(0) | 
|  | if mode == 'same': | 
|  | actual = actual[:5, :5, :10] | 
|  |  | 
|  | if tf32_is_not_fp32() and (dtype == torch.float or dtype == torch.complex64): | 
|  | self.assertEqual(actual, expected, atol=0.05, rtol=0.05) | 
|  | else: | 
|  | self.assertEqual(actual, expected, rtol=2e-5, atol=5e-6) | 
|  |  | 
|  | # Global dtype for this test suite is torch.double | 
|  | # This leads to change in type-promotion | 
|  | # and conv1d outputs `complex128` for `complex64` input. | 
|  | with set_default_dtype(torch.float): | 
|  | _test(t, weight_even, mode) | 
|  | _test(t, weight_odd, mode) | 
|  |  | 
|  | @dtypes(torch.float, torch.complex64) | 
|  | def test_conv2d_valid_padding_backward(self, device, dtype): | 
|  | # Test F.conv2d gradients work with padding='valid' | 
|  | x = torch.rand(1, 1, 1, 10, device=device, dtype=dtype, requires_grad=True) | 
|  | y = torch.rand(1, 1, 1, 4, device=device, dtype=dtype, requires_grad=True) | 
|  | F.conv2d(x, y, padding=0).sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | F.conv2d(x, y, padding='valid').sum().abs().backward() | 
|  | gx_actual, gy_actual = x.grad, y.grad | 
|  | self.assertEqual(gx_expect, gx_actual) | 
|  | self.assertEqual(gy_expect, gy_actual) | 
|  |  | 
|  | @dtypes(torch.double, torch.cdouble) | 
|  | def test_conv3d_valid_padding_backward(self, device, dtype): | 
|  | check_forward_ad = torch.device(device).type != 'xla' | 
|  |  | 
|  | # Test F.conv3d gradients work with padding='valid' | 
|  | x = torch.rand(1, 1, 1, 1, 10, dtype=dtype, device=device, requires_grad=True) | 
|  | y = torch.rand(1, 1, 1, 1, 4, dtype=dtype, device=device, requires_grad=True) | 
|  | F.conv3d(x, y, padding=0).sum().abs().backward() | 
|  | gx_expect, gy_expect = x.grad, y.grad | 
|  | x.grad, y.grad = None, None | 
|  |  | 
|  | F.conv3d(x, y, padding='valid').sum().abs().backward() | 
|  | gx_actual, gy_actual = x.grad, y.grad | 
|  | self.assertEqual(gx_expect, gx_actual) | 
|  | self.assertEqual(gy_expect, gy_actual) | 
|  |  | 
|  | gradcheck(lambda x, y: F.conv3d(x, y, padding='valid'), (x, y), check_forward_ad=check_forward_ad) | 
|  | gradgradcheck(lambda x, y: F.conv3d(x, y, padding='valid'), (x, y), check_fwd_over_rev=check_forward_ad) | 
|  |  | 
|  | @parametrize_test("N", range(2, 4), name_fn=lambda N: 'ConvTranspose{}d'.format(N)) | 
|  | def test_conv_transpose_with_output_size_and_no_batch_dim(self, device, N): | 
|  | # For inputs with no batch dim, verify output is the correct shape when output_size is set. | 
|  | # See https://github.com/pytorch/pytorch/issues/75889 | 
|  | inp = torch.randn((1, 15, 13) if N == 2 else (1, 15, 13, 13), device=device) | 
|  | output_size = (1, 240, 200) if N == 2 else (1, 240, 200, 200) | 
|  | ConvTransposeNd = getattr(nn, 'ConvTranspose{}d'.format(N)) | 
|  | m = ConvTransposeNd(1, 1, kernel_size=16, stride=16, padding=7, bias=False, device=device) | 
|  | output = m(inp, output_size=output_size) | 
|  | self.assertEqual(output.shape, output_size) | 
|  |  | 
|  | @skipMeta | 
|  | @parametrize_test("input_shape,transposed,dilated,groups,layout,backend_expected", [ | 
|  | # === slow === | 
|  | subtest(((2, 6, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Slow2d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow1d'), | 
|  | subtest(((2, 6, 7), True, False, 3, torch.strided, torch._C._ConvBackend.SlowTranspose2d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow1d_transposed'), | 
|  | subtest(((2, 6, 7), False, True, 3, torch.strided, torch._C._ConvBackend.SlowDilated2d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow1d_dilated'), | 
|  | subtest(((2, 6, 7), True, True, 3, torch.strided, torch._C._ConvBackend.SlowTranspose2d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow1d_dilated_transposed'), | 
|  | subtest(((2, 6, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Slow2d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow2d'), | 
|  | subtest(((2, 6, 7, 8), True, False, 3, torch.strided, torch._C._ConvBackend.SlowTranspose2d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow2d_transposed'), | 
|  | subtest(((2, 6, 7, 8), False, True, 3, torch.strided, torch._C._ConvBackend.SlowDilated2d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow2d_dilated'), | 
|  | subtest(((2, 6, 7, 8), True, True, 3, torch.strided, torch._C._ConvBackend.SlowTranspose2d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow2d_dilated_transposed'), | 
|  | subtest(((2, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Slow3d), | 
|  | decorators=[onlyCPU, disableMkldnn], name='slow3d_cpu'), | 
|  | # CUDA doesn't have a slow 3D implementation, so it goes to the dilated 3D implementation instead | 
|  | subtest(((2, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.SlowDilated3d), | 
|  | decorators=[onlyCUDA, disablecuDNN], name='slow3d_cuda'), | 
|  | # FIXME: RuntimeError: CUDA out of memory. | 
|  | # subtest(((2, 6, 7, 8, 9), True, False, 3, torch.strided, torch._C._ConvBackend.SlowTranspose3d), | 
|  | #         decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow3d_transposed'), | 
|  | subtest(((2, 6, 7, 8, 9), False, True, 3, torch.strided, torch._C._ConvBackend.SlowDilated3d), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow3d_dilated'), | 
|  | # FIXME: RuntimeError: CUDA out of memory. | 
|  | # subtest(((2, 6, 7, 8, 9), True, True, 3, torch.strided, torch._C._ConvBackend.SlowTranspose3d), | 
|  | #         decorators=[onlyNativeDeviceTypes, disableMkldnn, disablecuDNN], name='slow3d_dilated_transposed'), | 
|  | subtest(((0, 6, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch1d'), | 
|  | subtest(((2, 0, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_channel1d'), | 
|  | subtest(((0, 0, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch_channel1d'), | 
|  | subtest(((0, 6, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch2d'), | 
|  | subtest(((2, 0, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_channel2d'), | 
|  | subtest(((0, 0, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch_channel2d'), | 
|  | subtest(((0, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch3d'), | 
|  | subtest(((2, 0, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_channel3d'), | 
|  | subtest(((0, 0, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Empty), | 
|  | decorators=[onlyNativeDeviceTypes, disableMkldnn], name='empty_batch_channel3d'), | 
|  | # === cuda === | 
|  | # Note that disablecuDNN disables miopen as well. | 
|  | subtest(((2, 6, 7), False, False, 6, torch.strided, torch._C._ConvBackend.CudaDepthwise2d), | 
|  | decorators=[onlyCUDA, disablecuDNN], name='cuda_depthwise1d'), | 
|  | subtest(((2, 6, 7, 8), False, False, 6, torch.strided, torch._C._ConvBackend.CudaDepthwise2d), | 
|  | decorators=[onlyCUDA, disablecuDNN], name='cuda_depthwise2d'), | 
|  | subtest(((2, 6, 7, 8, 9), False, False, 6, torch.strided, torch._C._ConvBackend.CudaDepthwise3d), | 
|  | decorators=[onlyCUDA, disablecuDNN], name='cuda_depthwise3d'), | 
|  | # === cudnn === | 
|  | subtest(((2, 6, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Cudnn), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn1d'), | 
|  | subtest(((2, 6, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Cudnn), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn2d'), | 
|  | subtest(((2, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Cudnn), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn3d'), | 
|  | subtest(((2, 6, 7), True, False, 3, torch.strided, torch._C._ConvBackend.CudnnTranspose), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn1d_transposed'), | 
|  | subtest(((2, 6, 7, 8), True, False, 3, torch.strided, torch._C._ConvBackend.CudnnTranspose), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn2d_transposed'), | 
|  | # FIXME: RuntimeError: CUDA out of memory. | 
|  | # subtest(((2, 6, 7, 8, 9), True, False, 3, torch.strided, torch._C._ConvBackend.CudnnTranspose), | 
|  | #         decorators=[onlyCUDA, skipCUDAIfNoCudnn, skipCUDAIfMiopen], name='cudnn3d_transposed'), | 
|  | # === miopen === | 
|  | subtest(((2, 6, 7), False, False, 3, torch.strided, torch._C._ConvBackend.Miopen), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen1d'), | 
|  | subtest(((2, 6, 7, 8), False, False, 3, torch.strided, torch._C._ConvBackend.Miopen), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen2d'), | 
|  | subtest(((2, 6, 7, 8, 9), False, False, 3, torch.strided, torch._C._ConvBackend.Miopen), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen3d'), | 
|  | subtest(((2, 6, 7), True, False, 3, torch.strided, torch._C._ConvBackend.MiopenTranspose), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen1d_transposed'), | 
|  | subtest(((2, 6, 7, 8), True, False, 3, torch.strided, torch._C._ConvBackend.MiopenTranspose), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen2d_transposed'), | 
|  | subtest(((2, 6, 7, 8, 9), True, False, 3, torch.strided, torch._C._ConvBackend.MiopenTranspose), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen3d_transposed'), | 
|  | subtest(((2, 6, 7), False, False, 6, torch.strided, torch._C._ConvBackend.MiopenDepthwise), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen_depthwise1d'), | 
|  | subtest(((2, 6, 7, 8), False, False, 6, torch.strided, torch._C._ConvBackend.MiopenDepthwise), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen_depthwise2d'), | 
|  | subtest(((2, 6, 7, 8, 9), False, False, 6, torch.strided, torch._C._ConvBackend.MiopenDepthwise), | 
|  | decorators=[onlyCUDA, skipCUDAIfNoMiopen], name='miopen_depthwise3d'), | 
|  | # === mkldnn === | 
|  | subtest(((2, 6, 7), False, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn1d'), | 
|  | subtest(((2, 6, 7, 8), False, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn2d'), | 
|  | subtest(((2, 6, 7, 8, 9), False, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn3d'), | 
|  | # Transposed convolution is broken for mkldnn. See https://github.com/pytorch/pytorch/issues/68775. | 
|  | subtest(((2, 6, 7), True, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn, unittest.expectedFailure], name='mkldnn1d_transposed'), | 
|  | subtest(((2, 6, 7, 8), True, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn, unittest.expectedFailure], name='mkldnn2d_transposed'), | 
|  | subtest(((2, 6, 7, 8, 9), True, False, 3, torch._mkldnn, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn, unittest.expectedFailure], name='mkldnn3d_transposed'), | 
|  | subtest(((2, 6, 7), False, True, 3, torch.strided, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn1d_cpu_input'), | 
|  | subtest(((2, 6, 7, 8), False, True, 3, torch.strided, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn2d_cpu_input'), | 
|  | subtest(((2, 6, 7, 8, 9), False, True, 3, torch.strided, torch._C._ConvBackend.Mkldnn), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn3d_cpu_input'), | 
|  | subtest(((0, 6, 7), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch1d'), | 
|  | subtest(((2, 0, 7), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_channel1d'), | 
|  | subtest(((0, 0, 7), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch_channel1d'), | 
|  | subtest(((0, 6, 7, 8), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch2d'), | 
|  | subtest(((2, 0, 7, 8), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_channel2d'), | 
|  | subtest(((0, 0, 7, 8), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch_channel2d'), | 
|  | subtest(((0, 6, 7, 8, 9), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch3d'), | 
|  | subtest(((2, 0, 7, 8, 9), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_channel3d'), | 
|  | subtest(((0, 0, 7, 8, 9), False, False, 3, torch._mkldnn, torch._C._ConvBackend.MkldnnEmpty), | 
|  | decorators=[onlyCPU, skipCPUIfNoMkldnn], name='mkldnn_empty_batch_channel3d'), | 
|  | # Note: Tests for mobile backends are not currently supported. This comprises | 
|  | # NnpackSpatial, Winograd3x3Depthwise, and Xnnpack2d backends. Testing these | 
|  | # requires the ability to gate tests by whether PyTorch is built with USE_MOBILE=1. | 
|  | ]) | 
|  | # Test with both bias and no bias. | 
|  | @parametrize_test("has_bias", [False, True]) | 
|  | # Test with both stride=1 and stride>1 cases. | 
|  | @parametrize_test("strided", [False, True]) | 
|  | # Test with both contiguous and non-contiguous inputs. | 
|  | @parametrize_test("contiguous", [False, True]) | 
|  | def test_conv_backend( | 
|  | self, device, input_shape, has_bias, strided, contiguous, transposed, dilated, groups, | 
|  | layout, backend_expected): | 
|  | # Build up inputs. | 
|  | dtype = torch.float32 | 
|  | C_in, C_out, dim, kernel_size = input_shape[1], 12, len(input_shape) - 2, 3 | 
|  | x = torch.randn(*input_shape, device=device, dtype=dtype, requires_grad=True) | 
|  | weight = torch.randn(C_in if transposed else C_out, | 
|  | C_out // groups if transposed else C_in // groups, | 
|  | *[kernel_size for _ in range(dim)], | 
|  | device=device, dtype=dtype, requires_grad=True) | 
|  | bias = torch.randn(C_out, device=device, dtype=dtype, requires_grad=True) if has_bias else None | 
|  |  | 
|  | def _make_noncontiguous(inp): | 
|  | if inp is None: | 
|  | return None | 
|  | old_requires_grad = inp.requires_grad | 
|  | inp = torch.repeat_interleave(inp, 2, dim=-1) | 
|  | inp = inp[..., ::2].detach().requires_grad_(old_requires_grad) | 
|  | return inp | 
|  |  | 
|  | if not contiguous: | 
|  | x = _make_noncontiguous(x) | 
|  | weight = _make_noncontiguous(weight) | 
|  | bias = _make_noncontiguous(bias) | 
|  |  | 
|  | if layout is torch._mkldnn: | 
|  | x = x.to_mkldnn() | 
|  | # Note that weight and bias are not supported as mkldnn tensors during training. | 
|  |  | 
|  | stride = (2,) * dim if strided else (1,) * dim | 
|  | padding = (0,) * dim | 
|  | dilation = (2,) * dim if dilated else (1,) * dim | 
|  | output_padding = (0,) * dim | 
|  | inputs = [x, weight, bias, stride, padding, dilation, transposed, output_padding, groups] | 
|  |  | 
|  | # Ensure correct backend is selected. | 
|  | backend_actual = torch._C._select_conv_backend(*inputs) | 
|  | self.assertEqual(backend_actual, backend_expected) | 
|  |  | 
|  | # Ensure backward call succeeds. | 
|  | convolution = torch.ops.aten.convolution | 
|  | output = convolution(*inputs) | 
|  | grad_output = torch.randn(output.shape, device=device, dtype=dtype) | 
|  | if not contiguous: | 
|  | grad_output = _make_noncontiguous(grad_output) | 
|  | if layout is torch._mkldnn: | 
|  | grad_output = grad_output.to_mkldnn() | 
|  | output.backward(grad_output) | 
|  |  | 
|  | # mkldnn doesn't support gradcheck :( | 
|  | if layout is torch._mkldnn: | 
|  | return | 
|  |  | 
|  | if backend_actual != torch._C._ConvBackend.Empty:  # FIXME: forward AD fails | 
|  | # Forward AD and forward-over-reverse AD smoke test in float32 | 
|  | # TODO: remove this if we introduce per-op gradient tests for float32 | 
|  | with fwAD.dual_level(): | 
|  | dual_inputs = [(fwAD.make_dual(i, torch.rand_like(i)) if isinstance(i, torch.Tensor) else i) for i in inputs] | 
|  | # Forward AD | 
|  | output = convolution(*dual_inputs) | 
|  | # Forward over reverse AD | 
|  | grad_output_d = fwAD.make_dual(torch.rand_like(output), torch.rand_like(output)) | 
|  | if has_bias: | 
|  | torch.autograd.grad(output, [x, weight, bias], grad_output_d) | 
|  | else: | 
|  | torch.autograd.grad(output, [x, weight], grad_output_d) | 
|  |  | 
|  | # Convert to float64 for gradcheck. | 
|  | x = x.to(torch.float64).detach().requires_grad_(True) | 
|  | weight = weight.to(torch.float64).detach().requires_grad_(True) | 
|  | if bias is not None: | 
|  | bias = bias.to(torch.float64).detach().requires_grad_(True) | 
|  | inputs = [x, weight, bias, stride, padding, dilation, transposed, output_padding, groups] | 
|  |  | 
|  | # Set some backend-specific validation settings. | 
|  | gradcheck_nondet_tol = 0.0 | 
|  | if torch.backends.cudnn.is_available(): | 
|  | # cuDNN introduces non-determinism | 
|  | gradcheck_nondet_tol = GRADCHECK_NONDET_TOL | 
|  |  | 
|  | self.assertTrue(gradcheck(convolution, inputs, nondet_tol=gradcheck_nondet_tol)) | 
|  |  | 
|  | # double backward doesn't support bias gradients | 
|  | if bias is not None: | 
|  | bias.requires_grad_(False) | 
|  | self.assertTrue(gradgradcheck(convolution, inputs, nondet_tol=gradcheck_nondet_tol)) | 
|  |  | 
|  |  | 
|  | @onlyCPU | 
|  | def test_conv_contiguous_for_oneDNN(self): | 
|  | # See https://github.com/pytorch/pytorch/issues/80837. | 
|  | for dtype in [torch.float, torch.bfloat16]: | 
|  | conv = nn.Conv2d( | 
|  | 1, | 
|  | 128, | 
|  | kernel_size=(5, 2), | 
|  | stride=(2, 1), | 
|  | padding=(0, 1), | 
|  | dilation=(1, 1), | 
|  | groups=1, | 
|  | bias=True, | 
|  | padding_mode='zeros').to(dtype=dtype) | 
|  |  | 
|  | x = torch.rand([1, 2, 321, 201, 1]).to(dtype=dtype) | 
|  | x = torch.transpose(x, 1, 4) | 
|  | x2 = x[..., 0] | 
|  | inputs = [x2, conv.weight, conv.bias, (2, 1), (0, 1), (1, 1), False, (0, 1), 1] | 
|  | if torch.backends.mkldnn.is_available(): | 
|  | y = conv(x2) | 
|  | # Disable MKLDNN explicitly | 
|  | with torch.backends.mkldnn.flags(enabled=False): | 
|  | y_ = conv(x2) | 
|  | self.assertEqual(y, y_) | 
|  |  | 
|  | @onlyCPU | 
|  | def test_conv_ic1_channels_last_for_oneDNN(self): | 
|  | # See https://github.com/pytorch/pytorch/issues/82060, N > 1 will call in OneDNN path. | 
|  | for dtype in [torch.float, torch.bfloat16]: | 
|  | conv = torch.nn.Conv2d(1, 64, kernel_size=(3, 3), padding=(1, 1), bias=False) | 
|  | conv = conv.to(memory_format=torch.channels_last).to(dtype=dtype) | 
|  | x = torch.rand(2, 1, 100, 100).to(dtype=dtype) | 
|  | if torch.backends.mkldnn.is_available(): | 
|  | y = conv(x) | 
|  | # Disable MKLDNN explicitly | 
|  | with torch.backends.mkldnn.flags(enabled=False): | 
|  | y_ = conv(x) | 
|  | self.assertEqual(y, y_) | 
|  |  | 
|  | @dtypes(torch.float, torch.cfloat) | 
|  | def test_conv_empty_channel(self, device, dtype): | 
|  | in_channels = 0 | 
|  | mod = torch.nn.Conv1d(in_channels, 8, 2, stride=2, dtype=dtype).to(device) | 
|  | inp = torch.randn(2, 0, 15, device=device, dtype=dtype) | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  |  | 
|  | with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"): | 
|  | inp = torch.randn(2, 1, 0, device=device, dtype=dtype) | 
|  | mod(inp) | 
|  |  | 
|  | mod = torch.nn.Conv2d(in_channels, 33, 3, stride=2, dtype=dtype).to(device) | 
|  | inp = torch.randn(2, 0, 50, 100, device=device, dtype=dtype) | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  |  | 
|  | with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"): | 
|  | inp = torch.randn(2, 1, 40, 0, device=device, dtype=dtype) | 
|  | mod(inp) | 
|  |  | 
|  | mod = torch.nn.Conv3d(in_channels, 33, 3, stride=2, dtype=dtype).to(device) | 
|  | inp = torch.randn(2, 0, 50, 20, 40, device=device, dtype=dtype) | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  |  | 
|  | with self.assertRaisesRegex(RuntimeError, "Given groups=1, weight"): | 
|  | inp = torch.randn(2, 1, 50, 0, 40, device=device, dtype=dtype) | 
|  | mod(inp) | 
|  |  | 
|  | def test_group_conv_empty(self, device): | 
|  | mod = torch.nn.Conv2d(4, 4, stride=2, kernel_size=3, padding=1, groups=4).to(device) | 
|  | inp = torch.randn(0, 4, 4, 4, device=device) | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  | if self.device_type == 'cuda' and self.has_cudnn(): | 
|  | with torch.backends.cudnn.flags(enabled=False): | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  |  | 
|  | def test_group_convTranspose_empty(self, device): | 
|  | mod = torch.nn.ConvTranspose2d(4, 4, stride=2, kernel_size=3, padding=1, groups=4).to(device) | 
|  | inp = torch.randn(0, 4, 4, 4, device=device) | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  | if self.device_type == 'cuda' and self.has_cudnn(): | 
|  | with torch.backends.cudnn.flags(enabled=False): | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  |  | 
|  | def test_convTranspose_empty(self, device): | 
|  | mod = torch.nn.ConvTranspose2d(4, 4, stride=2, kernel_size=3, padding=1).to(device) | 
|  | inp = torch.randn(0, 4, 4, 4, device=device) | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  | if self.device_type == 'cuda' and self.has_cudnn(): | 
|  | with torch.backends.cudnn.flags(enabled=False): | 
|  | _test_module_empty_input(self, mod, inp, check_size=False) | 
|  |  | 
|  | @onlyCUDA | 
|  | @largeTensorTest('12GB') | 
|  | def test_conv_large_nosplit(self, device): | 
|  | # Here we just test the convolution correctly route to the fallback implementation | 
|  | # that is, it does not crash. The correctness of fallback implementation should be | 
|  | # covered in other tests | 
|  | dtype = torch.half if self.device_type == 'cuda' else torch.float | 
|  | conv1 = nn.Conv2d(2, 2, 8, 8).to(device).to(dtype) | 
|  | input_large = torch.randn(1, 2, 1024, 1024 * 1024, dtype=dtype, device=device) | 
|  | conv1(input_large) | 
|  | conv2 = torch.nn.Conv2d(1, 1024, 1, 1).to(device).to(dtype) | 
|  | input_large = torch.randn(1, 1, 2048, 1024 , dtype=dtype, device=device) | 
|  | conv2(input_large) | 
|  |  | 
|  | def test_conv_noncontig_weights(self, device): | 
|  | for dim in (1, 2, 3): | 
|  | for grouped in (False, True): | 
|  | nc = 3 | 
|  | groups = 3 if grouped else 1 | 
|  | w = torch.randn([3] * dim, device=device) | 
|  | w = w.expand([nc, int(nc / groups)] + list(w.shape)) | 
|  | w = w.detach().requires_grad_() | 
|  | x = torch.randn([1, nc] + ([5] * dim), device=device, requires_grad=True) | 
|  | y = getattr(F, 'conv{}d'.format(dim))(x, w, groups=groups) | 
|  | y.sum().backward() | 
|  | y = getattr(F, 'conv_transpose{}d'.format(dim))(x, w, groups=groups) | 
|  | y.sum().backward() | 
|  |  | 
|  | def test_conv_noncontig_weights_and_bias(self, device): | 
|  | # need floats to exercise https://github.com/pytorch/pytorch/issues/16018 | 
|  | for bias in [True, False]: | 
|  | conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, | 
|  | bias=bias).to(device, torch.float) | 
|  |  | 
|  | input_nc = torch.randn((1, 3, 224, 224, 2), device=device, dtype=torch.float)[:, :, :, :, 1] | 
|  | input_c = input_nc.contiguous() | 
|  |  | 
|  | weight_nc = torch.randn((64, 3, 7, 7, 2), device=device, dtype=torch.float)[:, :, :, :, 1] | 
|  | conv1.weight = nn.Parameter(weight_nc) | 
|  | weight_c = conv1.weight.contiguous() | 
|  |  | 
|  | if bias: | 
|  | bias_nc = torch.randn((64, 2), device=device, dtype=torch.float)[:, 1] | 
|  | conv1.bias = nn.Parameter(bias_nc) | 
|  | bias_c = conv1.bias.contiguous() | 
|  |  | 
|  | out1 = conv1(input_nc) | 
|  | conv1.weight = nn.Parameter(weight_c) | 
|  | if bias: | 
|  | conv1.bias = nn.Parameter(bias_c) | 
|  | out2 = conv1(input_c) | 
|  | self.assertEqual(out1, out2) | 
|  |  | 
|  | @onlyCUDA | 
|  | @largeTensorTest('12GB') | 
|  | def test_conv_transposed_large(self, device): | 
|  | dtype = torch.half if self.device_type == 'cuda' else torch.float | 
|  | conv = nn.ConvTranspose2d(1, 1, 1, 1, bias=False).to(device).to(dtype) | 
|  | input_large = torch.randn(4096, 1, 512, 1024, dtype=dtype, device=device) | 
|  | # forward | 
|  | ret = conv(input_large) | 
|  | maxdiff0 = (ret.narrow(0, 0, 1024) - conv(input_large.narrow(0, 0, 1024))).abs_().max().item() | 
|  | maxdiff1 = (ret.narrow(0, 1024, 1024) - conv(input_large.narrow(0, 1024, 1024))).abs_().max().item() | 
|  | maxdiff2 = (ret.narrow(0, 2048, 1024) - conv(input_large.narrow(0, 2048, 1024))).abs_().max().item() | 
|  | maxdiff3 = (ret.narrow(0, 3072, 1024) - conv(input_large.narrow(0, 3072, 1024))).abs_().max().item() | 
|  | if self.device_type == 'cuda': | 
|  | # cuDNN may use algorithms such as FFT that don't guarantee a diff of 0 | 
|  | self.assertEqual(maxdiff0, 0, atol=2e-3, rtol=1e-5) | 
|  | self.assertEqual(maxdiff1, 0, atol=2e-3, rtol=1e-5) | 
|  | self.assertEqual(maxdiff2, 0, atol=2e-3, rtol=1e-5) | 
|  | self.assertEqual(maxdiff3, 0, atol=2e-3, rtol=1e-5) | 
|  | else: | 
|  | self.assertEqual(maxdiff0, 0) | 
|  | self.assertEqual(maxdiff1, 0) | 
|  | self.assertEqual(maxdiff2, 0) | 
|  | self.assertEqual(maxdiff3, 0) | 
|  |  | 
|  | @onlyCUDA | 
|  | @skipCUDAIfRocm | 
|  | @largeTensorTest('12GB') | 
|  | def test_conv_large(self, device): | 
|  | dtype = torch.half if self.device_type == 'cuda' else torch.float | 
|  | conv = nn.Conv2d(2, 2, 8, 8, bias=False).to(device).to(dtype) | 
|  | input_large = torch.randn(4097, 2, 512, 512, dtype=dtype, device=device) | 
|  | # forward | 
|  | ret = conv(input_large) | 
|  | self.assertEqual(ret[:2048], conv(input_large[:2048])) | 
|  | self.assertEqual(ret[2048:4096], conv(input_large[2048:4096])) | 
|  | self.assertEqual(ret[4096:], conv(input_large[4096:])) | 
|  |  | 
|  | # backward | 
|  | conv.zero_grad() | 
|  | # When computing the backward, we are using the `max(dim=1)`` to create | 
|  | # some sparsity. Without this sparsity, the rounding error would be | 
|  | # too large (as large as 1e-5) to satisfy the creterion (1e-6) of `assertEqual` | 
|  | ret.view(4097, -1).max(dim=1).values.sum().backward() | 
|  | del ret | 
|  | grad1 = conv.weight.grad.detach().clone() | 
|  | conv.zero_grad() | 
|  | conv(input_large[:2048]).view(2048, -1).max(dim=1).values.sum().backward() | 
|  | conv(input_large[2048:4096]).view(2048, -1).max(dim=1).values.sum().backward() | 
|  | conv(input_large[4096:]).view(1, -1).max(dim=1).values.sum().backward() | 
|  | grad2 = conv.weight.grad.detach().clone() | 
|  | # gradients are at the order of hundreds, we need to scale it to | 
|  | # the order of one so that we can compare | 
|  | scale = 1 / grad2.abs().mean() | 
|  | grad1 = grad1 * scale | 
|  | grad2 = grad2 * scale | 
|  | self.assertEqual(grad1, grad2, atol=5e-2, rtol=5e-3) | 
|  |  | 
|  | @onlyCUDA | 
|  | @skipCUDAIfNoCudnn | 
|  | def test_contig_wrong_stride_cudnn(self, device): | 
|  | # x has to have batch_size 1 to test contiguous checks | 
|  | x = torch.randn(1, 16, 5, 5, device=device) | 
|  | stride = list(x.stride()) | 
|  | stride[0] = 20 | 
|  | # change the stride in dimension 0. the tensor is still contiguous because size[0] is 1 | 
|  | x.set_(x.storage(), 0, x.size(), stride) | 
|  | self.assertTrue(x.is_contiguous()) | 
|  | F.conv_transpose2d(x, torch.randn(16, 1, 1, 1, device=device)) | 
|  | F.conv2d(x, torch.randn(1, 16, 1, 1, device=device)) | 
|  |  | 
|  | @onlyCUDA | 
|  | def test_Conv2d_size_1_kernel(self, device): | 
|  | x_cpu = torch.randn(2, 3, 5, 5) | 
|  | conv_cpu = torch.nn.Conv2d(3, 3, kernel_size=1) | 
|  | y_cpu = conv_cpu(x_cpu) | 
|  | y = torch.rand_like(y_cpu) | 
|  | y_cpu.backward(y) | 
|  |  | 
|  | with cudnn.flags(enabled=False): | 
|  | conv_cuda = torch.nn.Conv2d(3, 3, kernel_size=1).to(device) | 
|  | conv_cuda.bias.data.copy_(conv_cpu.bias.data) | 
|  | conv_cuda.weight.data.copy_(conv_cpu.weight.data) | 
|  | y_cuda = conv_cuda(x_cpu.to(device)) | 
|  | y_cuda.backward(y.to(device)) | 
|  |  | 
|  | self.assertEqual(y_cpu, y_cuda, atol=1e-5, rtol=0, exact_device=False) | 
|  | self.assertEqual(conv_cpu.bias.grad.data, conv_cuda.bias.grad.data, atol=1e-5, rtol=0, exact_device=False) | 
|  | self.assertEqual(conv_cpu.weight.grad.data, conv_cuda.weight.grad.data, atol=1e-5, rtol=0, exact_device=False) | 
|  |  | 
|  | @onlyCUDA | 
|  | def test_ConvTranspose2d_size_1_kernel(self, device): | 
|  | x_cpu = torch.randn(2, 3, 5, 5) | 
|  | conv_cpu = torch.nn.ConvTranspose2d(3, 3, kernel_size=1) | 
|  | y_cpu = conv_cpu(x_cpu) | 
|  | y = torch.rand_like(y_cpu) | 
|  | y_cpu.backward(y) | 
|  |  | 
|  | with cudnn.flags(enabled=False): | 
|  | conv_cuda = torch.nn.ConvTranspose2d(3, 3, kernel_size=1).to(device) | 
|  | conv_cuda.bias.data.copy_(conv_cpu.bias.data) | 
|  | conv_cuda.weight.data.copy_(conv_cpu.weight.data) | 
|  | y_cuda = conv_cuda(x_cpu.to(device)) | 
|  | y_cuda.backward(y.to(device)) | 
|  |  | 
|  | self.assertEqual(y_cpu, y_cuda, atol=1e-5, rtol=0, exact_device=False) | 
|  | self.assertEqual(conv_cpu.bias.grad.data, conv_cuda.bias.grad.data, atol=1e-5, rtol=0, exact_device=False) | 
|  | self.assertEqual(conv_cpu.weight.grad.data, conv_cuda.weight.grad.data, atol=1e-5, rtol=0, exact_device=False) | 
|  |  | 
|  | @onlyCUDA | 
|  | def test_ConvTranspose3d_size_1_kernel(self, device): | 
|  | with set_default_dtype(torch.double): | 
|  | x_cpu = torch.randn(2, 3, 3, 5, 5) | 
|  | conv_cpu = torch.nn.ConvTranspose3d(3, 3, kernel_size=1) | 
|  | y_cpu = conv_cpu(x_cpu) | 
|  | y = torch.rand_like(y_cpu) | 
|  | y_cpu.backward(y) | 
|  |  | 
|  | with cudnn.flags(enabled=False): | 
|  | conv_cuda = torch.nn.ConvTranspose3d(3, 3, kernel_size=1).to(device) | 
|  | conv_cuda.bias.data.copy_(conv_cpu.bias.data) | 
|  | conv_cuda.weight.data.copy_(conv_cpu.weight.data) | 
|  | y_cuda = conv_cuda(x_cpu.to(device)) | 
|  | y_cuda.backward(y.to(device)) | 
|  |  | 
|  | self.assertEqual(y_cpu, y_cuda, atol=1e-5, rtol=0, exact_device=False) | 
|  | self.assertEqual(conv_cpu.bias.grad.data, conv_cuda.bias.grad.data, atol=1e-5, rtol=0, exact_device=False) | 
|  | self.assertEqual(conv_cpu.weight.grad.data, conv_cuda.weight.grad.data, atol=1e-5, rtol=0, exact_device=False) | 
|  |  | 
|  | @dtypesIfCUDA(*floating_types_and(torch.half, *[torch.bfloat16] if AMPERE_OR_ROCM else [])) | 
|  | @dtypes(torch.float) | 
|  | @torch.backends.cudnn.flags(enabled=True, benchmark=False) | 
|  | def test_Conv2d_naive_groups(self, device, dtype): | 
|  | # Check that grouped convolutions matches two half convolutions | 
|  | m = nn.Conv2d(4, 4, kernel_size=3, groups=2).to(device, dtype) | 
|  | i = torch.randn(2, 4, 6, 6, device=device, dtype=dtype, requires_grad=True) | 
|  | output = m(i) | 
|  | grad_output = torch.randn(2, 4, 4, 4, device=device, dtype=dtype) | 
|  | output.backward(grad_output) | 
|  |  | 
|  | m1 = nn.Conv2d(2, 2, kernel_size=3).to(device, dtype) | 
|  | m1.weight.data.copy_(m.weight.data[:2]) | 
|  | m1.bias.data.copy_(m.bias.data[:2]) | 
|  | i1 = i.data[:, :2].contiguous().requires_grad_(True) | 
|  | output1 = m1(i1) | 
|  | output1.backward(grad_output[:, :2].contiguous()) | 
|  |  | 
|  | m2 = nn.Conv2d(2, 2, kernel_size=3).to(device, dtype) | 
|  | m2.weight.data.copy_(m.weight.data[2:]) | 
|  | m2.bias.data.copy_(m.bias.data[2:]) | 
|  | i2 = i.data[:, 2:].contiguous().requires_grad_(True) | 
|  | output2 = m2(i2) | 
|  | output2.backward(grad_output[:, 2:].contiguous()) | 
|  |  | 
|  | self.assertEqual(output, torch.cat([output1, output2], 1)) | 
|  | self.assertEqual(i.grad.data, | 
|  | torch.cat([i1.grad.data, i2.grad.data], 1), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(m.bias.grad.data, | 
|  | torch.cat([m1.bias.grad.data, m2.bias.grad.data], 0), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  | self.assertEqual(m.weight.grad.data, | 
|  | torch.cat([m1.weight.grad.data, m2.weight.grad.data], 0), | 
|  | atol=dtype2prec_DONTUSE[dtype], rtol=0) | 
|  |  | 
|  | @dtypes(torch.double, torch.cdouble) | 
|  | def test_Conv2d_backward_depthwise(self, device, dtype): | 
|  | x = torch.randn(2, 2, 4, 20, device=device, dtype=dtype, requires_grad=True) | 
|  | weight = torch.randn(2, 1, 3, 5, device=device, dtype=dtype, requires_grad=True) | 
|  |  | 
|  | def conv2d_depthwise(x, weight): | 
|  | return torch.nn.functional.conv2d( | 
|  | x, weight, bias=None, stride=(1, 10), groups=2) | 
|  |  | 
|  | for cudnn_enabled in [False, True]: | 
|  | with torch.backends.cudnn.flags(enabled=cudnn_enabled): | 
|  | torch.autograd.gradcheck(conv2d_depthwise, (x, weight)) | 
|  |  | 
|  | @onlyCPU | 
|  | @dtypes(torch.float, torch.double) | 
|  | def test_conv_thnn_nhwc(self, device, dtype): | 
|  | def helper(mod, n, c, h, w, out_channels, kernel_size, dilation, groups, input_format, weight_format): | 
|  | input = torch.randint(-3, 3, (n, c, h, w), dtype=dtype, device=device)\ | 
|  | .to(memory_format=input_format) | 
|  | input.requires_grad_() | 
|  | conv = mod(c, out_channels, kernel_size, dilation=dilation, groups=groups)\ | 
|  | .to(device='cpu', dtype=dtype, memory_format=weight_format) | 
|  | for p in conv.parameters(): | 
|  | p.data = torch.randint_like(p, -3, 3) | 
|  |  | 
|  | ref_input = input.detach().clone().contiguous().requires_grad_() | 
|  | ref_conv = mod(c, out_channels, kernel_size, dilation=dilation, groups=groups) | 
|  | # load_state_dict will restore the stride & memory_layout on ref_conv.weight. | 
|  | ref_conv.load_state_dict(conv.state_dict()) | 
|  | ref_conv = ref_conv.to(device='cpu', dtype=dtype, memory_format=torch.contiguous_format) | 
|  |  | 
|  | out = conv(input) | 
|  | ref_out = ref_conv(ref_input) | 
|  |  | 
|  | grad = torch.randint_like(out, -3, 3) | 
|  | ref_grad = grad.detach().clone().contiguous() | 
|  |  | 
|  | out.backward(grad) | 
|  | ref_out.backward(ref_grad) | 
|  |  | 
|  | self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) | 
|  | self.assertTrue(ref_out.is_contiguous()) | 
|  | self.assertEqual(out, ref_out, exact_dtype=False) | 
|  | self.assertEqual(conv.weight.grad, ref_conv.weight.grad, exact_dtype=False) | 
|  | self.assertEqual(conv.bias.grad, ref_conv.bias.grad, exact_dtype=False) | 
|  | self.assertEqual(input.grad, ref_input.grad, exact_dtype=False) | 
|  |  | 
|  | with torch.backends.mkldnn.flags(enabled=False): | 
|  | formats = [[torch.channels_last, torch.channels_last], | 
|  | [torch.channels_last, torch.contiguous_format], | 
|  | [torch.contiguous_format, torch.channels_last]] | 
|  | for input_format, weight_format in formats: | 
|  | # non-dilated conv: thnn_conv2d normal path (with im2col) | 
|  | helper(nn.Conv2d, 2, 8, 4, 4, out_channels=4, kernel_size=3, dilation=1, groups=1, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  | helper(nn.Conv2d, 2, 8, 4, 4, out_channels=8, kernel_size=3, dilation=1, groups=8, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  | # test when input chanels is 1 and not converted to channels last | 
|  | helper(nn.Conv2d, 2, 1, 10, 10, out_channels=8, kernel_size=3, dilation=1, groups=1, | 
|  | input_format=torch.contiguous_format, weight_format=torch.channels_last) | 
|  | # non-dilated conv: thnn_conv2d fast path (skip im2col) | 
|  | helper(nn.Conv2d, 1, 16, 56, 56, out_channels=16, kernel_size=1, dilation=1, groups=1, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  | # ic == oc == 1 here, so need to stick input to CL to activate channels last | 
|  | helper(nn.Conv2d, 1, 16, 56, 56, out_channels=16, kernel_size=1, dilation=1, groups=16, | 
|  | input_format=torch.channels_last, weight_format=weight_format) | 
|  | # dilated conv: slow_conv_dilated2d | 
|  | helper(nn.Conv2d, 2, 8, 11, 13, out_channels=16, kernel_size=3, dilation=2, groups=1, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  | helper(nn.Conv2d, 2, 16, 11, 13, out_channels=32, kernel_size=3, dilation=2, groups=16, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  | # transposed-conv: slow_conv_transpose2d | 
|  | helper(nn.ConvTranspose2d, 2, 8, 4, 4, out_channels=4, kernel_size=3, dilation=1, groups=1, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  | helper(nn.ConvTranspose2d, 2, 8, 4, 4, out_channels=8, kernel_size=3, dilation=1, groups=8, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  | helper(nn.ConvTranspose2d, 1, 16, 56, 56, out_channels=16, kernel_size=1, dilation=1, groups=1, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  | helper(nn.ConvTranspose2d, 1, 16, 56, 56, out_channels=32, kernel_size=1, dilation=1, groups=16, | 
|  | input_format=input_format, weight_format=weight_format) | 
|  |  | 
|  | @onlyCUDA | 
|  | @skipCUDAIfRocmVersionLessThan((4, 3)) | 
|  | @skipCUDAIfCudnnVersionLessThan(7603) | 
|  | # randint and randint_like with dtype=torch.cfloat raises | 
|  | # RuntimeError: check_random_bounds handles only integral, floating-point and boolean types | 
|  | @dtypes(torch.half, torch.float, torch.cfloat) | 
|  | def test_conv_cudnn_nhwc(self, device, dtype): | 
|  | def helper(n, c, h, w, out_channels, kernel_size, groups): | 
|  | input = torch.randint(-3, 3, (n, c, h, w), device=device)\ | 
|  | .to(memory_format=torch.channels_last, dtype=dtype) | 
|  | input.requires_grad_() | 
|  | conv = nn.Conv2d(c, out_channels, kernel_size, groups=groups)\ | 
|  | .to(device='cuda', dtype=dtype, memory_format=torch.channels_last) | 
|  | for p in conv.parameters(): | 
|  | p.data = torch.randint_like(p, -3, 3, dtype=torch.int64).to(dtype=dtype) | 
|  |  | 
|  | # use FP64 channels-first conv as reference | 
|  | ref_input = input.detach().clone().contiguous().double().requires_grad_() | 
|  | ref_conv = nn.Conv2d(c, out_channels, kernel_size, groups=groups) | 
|  | # load_state_dict will restore the stride & memory_layout on ref_conv.weight. | 
|  | ref_conv.load_state_dict(conv.state_dict()) | 
|  | ref_conv = ref_conv.to(device='cuda', dtype=torch.double, memory_format=torch.contiguous_format) | 
|  |  | 
|  | out = conv(input) | 
|  | ref_out = ref_conv(ref_input) | 
|  |  | 
|  | grad = torch.randint_like(out, -3, 3, dtype=torch.int64).to(dtype=dtype) | 
|  | ref_grad = grad.detach().clone().double().contiguous() | 
|  |  | 
|  | out.backward(grad) | 
|  | ref_out.backward(ref_grad) | 
|  |  | 
|  | self.assertTrue(out.is_contiguous(memory_format=torch.channels_last)) | 
|  | self.assertTrue(input.grad.is_contiguous(memory_format=torch.channels_last)) | 
|  | self.assertTrue(conv.weight.grad.is_contiguous(memory_format=torch.channels_last)) | 
|  |  | 
|  | self.assertTrue(ref_out.is_contiguous()) | 
|  | self.assertTrue(ref_input.grad.is_contiguous()) | 
|  | self.assertTrue(ref_conv.weight.grad.is_contiguous()) | 
|  |  | 
|  | self.assertEqual(out, ref_out, exact_dtype=False) | 
|  | self.assertEqual(conv.weight.grad, ref_conv.weight.grad, exact_dtype=False) | 
|  | self.assertEqual(conv.bias.grad, ref_conv.bias.grad, exact_dtype=False) | 
|  | self.assertEqual(input.grad, ref_input.grad, exact_dtype=False) | 
|  |  | 
|  | helper(2, 8, 4, 4, out_channels=4, kernel_size=3, groups=1) | 
|  | helper(2, 8, 4, 4, out_channels=8, kernel_size=3, groups=8) | 
|  | helper(1, 16, 56, 56, out_channels=16, kernel_size=3, groups=1) | 
|  | helper(1, 16, 56, 56, out_channels=16, kernel_size=3, groups=16) | 
|  |  | 
|  | @onlyCUDA | 
|  | @skipCUDAIfRocm | 
|  | @skipCUDAIfCudnnVersionLessThan(8005) | 
|  | @dtypes(torch.half, torch.float) | 
|  | def test_conv_cudnn_ndhwc(self, device, dtype): | 
|  | def helper(n, c, d, h, w, out_channels, kernel_size, groups): | 
|  | input = torch.randint(-2, 2, (n, c, d, h, w), dtype=dtype, device=device)\ | 
|  | .to(memory_format=torch.channels_last_3d) | 
|  | input.requires_grad_() | 
|  | conv = nn.Conv3d(c, out_channels, kernel_size, groups=groups)\ | 
|  | .to(device='cuda', dtype=dtype, memory_format=torch.channels_last_3d) | 
|  | for p in conv.parameters(): | 
|  | p.data = torch.randint_like(p, -2, 2) | 
|  |  | 
|  | # use FP64 channels-first conv as reference | 
|  | ref_input = input.detach().clone().contiguous().double().requires_grad_() | 
|  | ref_conv = nn.Conv3d(c, out_channels, kernel_size, groups=groups) | 
|  | # load_state_dict will restore the stride & memory_layout on ref_conv.weight. | 
|  | ref_conv.load_state_dict(conv.state_dict()) | 
|  | ref_conv = ref_conv.to(device='cuda', dtype=torch.double, memory_format=torch.contiguous_format) | 
|  |  | 
|  | out = conv(input) | 
|  | ref_out = ref_conv(ref_input) | 
|  |  | 
|  | grad = torch.randint_like(out, -2, 2) | 
|  | ref_grad = grad.detach().clone().double().contiguous() | 
|  |  | 
|  | out.backward(grad) | 
|  | ref_out.backward(ref_grad) | 
|  |  | 
|  | self.assertTrue(out.is_contiguous(memory_format=torch.channels_last_3d)) | 
|  | self.assertTrue(input.grad.is_contiguous(memory_format=torch.channels_last_3d)) | 
|  | self.assertTrue(conv.weight.grad.is_contiguous(memory_format=torch.channels_last_3d)) | 
|  |  | 
|  | self.assertTrue(ref_out.is_contiguous()) | 
|  | self.assertTrue(ref_input.grad.is_contiguous()) | 
|  | self.assertTrue(ref_conv.weight.grad.is_contiguous()) | 
|  |  | 
|  | self.assertEqual(out, ref_out, exact_dtype=False) | 
|  | self.assertEqual(conv.weight.grad, ref_conv.weight.grad, exact_dtype=False) | 
|  | self.assertEqual(conv.bias.grad, ref_conv.bias.grad, exact_dtype=False) | 
|  | self.assertEqual(input.grad, ref_input.grad, exact_dtype=False) | 
|  |  | 
|  | helper(2, 8, 4, 4, 4, out_channels=4, kernel_size=3, groups=1) | 
|  | helper(2, 8, 4, 4, 4, out_channels=8, kernel_size=3, groups=8) | 
|  | helper(1, 16, 18, 18, 18, out_channels=16, kernel_size=3, groups=1) | 
|  | helper(1, 16, 18, 18, 18, out_channels=16, kernel_size=3, groups=16) | 
|  |  | 
|  | def _run_conv(self, layer, device, inp, grad, ref_conv, ref_input, ref_out, | 
|  | input_format, weight_format, grad_format, output_format): | 
|  | conv = layer(inp.size(1), grad.size(1), | 
|  | ref_conv.weight.size(2)).float().to(device) | 
|  | # load_state_dict will restore the stride & memory_layout on ref_conv.weight. | 
|  | conv.load_state_dict(ref_conv.state_dict()) | 
|  | weight_data = conv.weight.detach().clone().contiguous(memory_format=weight_format) | 
|  | conv.weight.data = weight_data.resize_(weight_data.size(), memory_format=weight_format) | 
|  | input = inp.clone().contiguous(memory_format=input_format) | 
|  | input.resize_(input.size(), memory_format=input_format) | 
|  | input = input.requires_grad_() | 
|  | grad = grad.contiguous(memory_format=grad_format) | 
|  | grad.resize_(grad.size(), memory_format=grad_format) | 
|  | out = conv(input) | 
|  | out.backward(grad) | 
|  | self.assertTrue(out.is_contiguous(memory_format=output_format)) | 
|  | self.assertEqual(out, ref_out) | 
|  | self.assertEqual(conv.weight.grad, ref_conv.weight.grad) | 
|  | self.assertEqual(conv.bias.grad, ref_conv.bias.grad) | 
|  | self.assertEqual(input.grad, ref_input.grad) | 
|  |  | 
|  | def _test_conv_cudnn_nhwc_nchw(self, layer, n, c, h, w, k, filter_size, device): | 
|  | data = torch.randint(1, 10, (n, c, h, w), dtype=torch.float32, device=device) | 
|  | ref_input = data.clone().contiguous().requires_grad_(True) | 
|  | ref_conv = layer(c, k, filter_size).float().to(device) | 
|  | ref_out = ref_conv(ref_input) | 
|  | grad = torch.randint(1, 10, ref_out.size(), dtype=torch.float32, device="cuda") | 
|  | ref_out.backward(grad) | 
|  |  | 
|  | for w_f in [torch.contiguous_format, torch.channels_last]: | 
|  | for g_f in [torch.contiguous_format, torch.channels_last]: | 
|  | for input_format in [torch.contiguous_format, torch.channels_last]: | 
|  | output_format = torch.contiguous_format | 
|  | # Older versions of CudNN have Channels Last support disabled | 
|  | if torch.backends.cudnn.version() >= 7603: | 
|  | if input_format == torch.channels_last: | 
|  | output_format = torch.channels_last | 
|  | # This is because we have N111 weight that cannot handle | 
|  | # the ambiguous memory_format | 
|  | if w_f == torch.channels_last: | 
|  | if layer == nn.Conv2d and filter_size * c != 1: | 
|  | output_format = torch.channels_last | 
|  | if layer == nn.ConvTranspose2d and filter_size * k != 1: | 
|  | output_format = torch.channels_last | 
|  | self._run_conv(layer, device, data, grad, ref_conv, ref_input, | 
|  | ref_out, input_format, w_f, g_f, output_format) | 
|  |  | 
|  | @onlyCUDA | 
|  | @skipCUDAIfRocmVersionLessThan((4, 3)) | 
|  | @skipCUDAIfCudnnVersionLessThan(7603) | 
|  | @tf32_on_and_off(0.05) | 
|  | def test_conv_cudnn_mismatch_memory_format(self, device): | 
|  | configs = [ | 
|  | [4, 2, 8, 8, 4, 2], | 
|  | [4, 1, 8, 8, 4, 2], | 
|  | [1, 1, 8, 8, 4, 2], | 
|  | [4, 2, 2, 8, 4, 1], | 
|  | [4, 2, 1, 8, 4, 1], | 
|  | [4, 2, 8, 8, 4, 1], | 
|  | [4, 1, 8, 8, 4, 1], | 
|  | ] | 
|  | for n, c, h, w, k, filter_size in configs: | 
|  | self._test_conv_cudnn_nhwc_nchw(nn.Conv2d, n, c, h, w, k, filter_size, device) | 
|  | self._test_conv_cudnn_nhwc_nchw(nn.ConvTranspose2d, n, c, h, w, k, filter_size, device) | 
|  |  | 
|  | # torch.half is erroring out on Windows with CUDA 10.1 + cuDNN 7.6.4 | 
|  | # returning CUDNN_STATUS_BAD_PARAM | 
|  | # Disabling that specific test for now [see issue # 33918] | 
|  | @onlyCUDA | 
|  | @skipCUDAIfNoCudnn | 
|  | @dtypes(torch.float, torch.double) | 
|  | def test_conv_cudnn_nhwc_support(self, device, dtype): | 
|  | input = torch.randn((1, 16, 1, 1), dtype=dtype, device="cuda", requires_grad=True) | 
|  | weight = torch.randn((8, 16, 3, 3), dtype=dtype, device="cuda", requires_grad=True) | 
|  | weight = weight.to(memory_format=torch.channels_last) | 
|  | o = torch.conv2d(input, weight, None, (2, 1), (1, 1), (1, 1), 1) | 
|  | self.assertTrue(o.is_contiguous(memory_format=torch.channels_last)) | 
|  | o.sum().backward() | 
|  |  | 
|  | # Test that faster algorithms used for inference produce the same results | 
|  | # Validates depthwise3x3 bug reported in https://github.com/pytorch/pytorch/issues/60176 | 
|  | @onlyCPU | 
|  | @dtypes(torch.float) | 
|  | def test_conv2d_no_grad(self, device, dtype): | 
|  | for batch in [1, 2, 3]: | 
|  | for groups in [1, 2, 4]: | 
|  | input = torch.rand(batch, groups, 8, 8, dtype=dtype, device=device) | 
|  | m = nn.Conv2d(groups, 8, kernel_size=(3, 3), groups=groups, dtype=dtype, device=device) | 
|  | with torch.no_grad(): | 
|  | output_ng = m(input) | 
|  | output = m(input) | 
|  | self.assertEqual(output, output_ng, rtol=1e-2, atol=1e-5) | 
|  |  | 
|  | @skipCUDAIfRocm  # started failing fp16 after enabling channels last | 
|  | @onlyCUDA | 
|  | @skipCUDAIfNoCudnn | 
|  | @dtypes(torch.float, torch.float16) | 
|  | @precisionOverride({torch.half: 0.002, torch.float: 1e-4}) | 
|  | def test_cudnn_convolution_relu(self, device, dtype): | 
|  | for batch, groups, image_size, kernel_size, memory_format in \ | 
|  | product((1, 2, 3), | 
|  | (1, 2, 4), | 
|  | ((1, 1), (8, 8)), | 
|  | ((1, 1), (3, 3)), | 
|  | (torch.channels_last, torch.contiguous_format)): | 
|  | if image_size[0] < kernel_size[0]: | 
|  | continue | 
|  | inp = torch.rand(batch, groups, *image_size, dtype=dtype, device=device) | 
|  | w = torch.randn(8, groups, *kernel_size, dtype=dtype, device=device) | 
|  | conv2d_out = torch.conv2d(inp, w, None, (1, 1), (0, 0), (1, 1), 1) | 
|  | inp = inp.to(memory_format=memory_format) | 
|  | w = w.to(memory_format=memory_format) | 
|  | if torch.version.hip: | 
|  | cudnn_out = torch.miopen_convolution_relu(inp, w, None, (1, 1), (0, 0), (1, 1), 1) | 
|  | else: | 
|  | cudnn_out = torch.cudnn_convolution_relu(inp, w, None, (1, 1), (0, 0), (1, 1), 1) | 
|  | self.assertTrue(cudnn_out.is_contiguous(memory_format=memory_format)) | 
|  | if tf32_is_not_fp32() and dtype == torch.float: | 
|  | self.assertEqual(conv2d_out.relu(), cudnn_out, atol=2e-4, rtol=0.006) | 
|  | else: | 
|  | self.assertEqual(conv2d_out.relu(), cudnn_out) | 
|  |  | 
|  | @skipCUDAIfRocm  # started failing fp16 after enabling channels last | 
|  | @onlyCUDA | 
|  | @skipCUDAIfNoCudnn | 
|  | @dtypes(torch.float, torch.float16) | 
|  | @precisionOverride({torch.half: 0.002, torch.float: 1e-4}) | 
|  | def test_cudnn_convolution_add_relu(self, device, dtype): | 
|  | for batch, groups, image_size, kernel_size, memory_format in \ | 
|  | product((1, 2, 3), | 
|  | (1, 2, 4), | 
|  | ((1, 1), (8, 8)), | 
|  | ((1, 1), (3, 3)), | 
|  | (torch.channels_last, torch.contiguous_format)): | 
|  | if image_size[0] < kernel_size[0]: | 
|  | continue | 
|  | inp = torch.rand(batch, groups, *image_size, dtype=dtype, device=device) | 
|  | w = torch.randn(8, groups, *kernel_size, dtype=dtype, device=device) | 
|  | conv2d_out = torch.conv2d(inp, w, None, (1, 1), (0, 0), (1, 1), 1) | 
|  | alpha = 2.0 | 
|  | z = torch.randn_like(conv2d_out) | 
|  |  | 
|  | inp = inp.to(memory_format=memory_format) | 
|  | w = w.to(memory_format=memory_format) | 
|  | z = z.to(memory_format=memory_format) | 
|  | if torch.version.hip: | 
|  | cudnn_out = torch.miopen_convolution_add_relu(inp, w, z, alpha, None, (1, 1), (0, 0), (1, 1), 1) | 
|  | else: | 
|  | cudnn_out = torch.cudnn_convolution_add_relu(inp, w, z, alpha, None, (1, 1), (0, 0), (1, 1), 1) | 
|  |  | 
|  | self.assertTrue(cudnn_out.is_contiguous(memory_format=memory_format)) | 
|  | if tf32_is_not_fp32() and dtype == torch.float: | 
|  | self.assertEqual(F.relu(conv2d_out + alpha * z), cudnn_out, atol=3e-4, rtol=0.006) | 
|  | else: | 
|  | self.assertEqual(F.relu(conv2d_out + alpha * z), cudnn_out) | 
|  |  | 
|  | @onlyCUDA | 
|  | @skipCUDAIfRocm | 
|  | @skipCUDAIfCudnnVersionLessThan(7603) | 
|  | def test_convert_conv2d_weight_memory_format(self, device): | 
|  | input = torch.randint(1, 10, (2, 8, 4, 4), dtype=torch.float32, device=device) | 
|  | model = nn.Sequential( | 
|  | nn.Conv2d(8, 4, 3), | 
|  | nn.BatchNorm2d(4)).to(device).float() | 
|  | for memory_format in [torch.channels_last, torch.contiguous_format]: | 
|  | model = nn.utils.convert_conv2d_weight_memory_format(model, memory_format) | 
|  | out = model(input) | 
|  | self.assertTrue(out.is_contiguous(memory_format=memory_format)) | 
|  |  | 
|  | model = nn.Sequential( | 
|  | nn.ConvTranspose2d(8, 4, 3), | 
|  | nn.BatchNorm2d(4)).to(device).float() | 
|  | for memory_format in [torch.channels_last, torch.contiguous_format]: | 
|  | model = nn.utils.convert_conv2d_weight_memory_format(model, memory_format) | 
|  | out = model(input) | 
|  | self.assertTrue(out.is_contiguous(memory_format=memory_format)) | 
|  |  | 
|  | def test_conv_double_backward_strided_with_3D_input_and_weight(self, device): | 
|  | # Test that _convolution_double_backward() outputs the correct grad shapes | 
|  | # for 3D input / weight when stride > 1. This is an ad-hoc regression test for a | 
|  | # specific case that was uncovered during the convolution consolidation effort. | 
|  | # The test can be safely deleted if _convolution_double_backward() is removed. | 
|  |  | 
|  | input = torch.randn(2, 3, 6, device=device) | 
|  | weight = torch.randn(3, 3, 3, device=device) | 
|  | bias = torch.randn(3, device=device) | 
|  | stride = (2,) | 
|  | padding = (1,) | 
|  | dilation = (1,) | 
|  | transposed = False | 
|  | output_padding = (0,) | 
|  | groups = 1 | 
|  | output = torch.ops.aten.convolution(input, weight, bias, stride, padding, dilation, transposed, | 
|  | output_padding, groups) | 
|  |  | 
|  | ggI = torch.randn(input.shape, device=device) | 
|  | ggW = torch.randn(weight.shape, device=device) | 
|  | ggB = torch.randn(bias.shape, device=device) | 
|  | gO = torch.randn(output.shape, device=device) | 
|  | output_mask = [True, True, True] | 
|  | grad_grad_output, grad_input, grad_weight = torch.ops.aten._convolution_double_backward( | 
|  | ggI, ggW, ggB, gO, weight, input, stride, padding, dilation, transposed, | 
|  | output_padding, groups, output_mask) | 
|  |  | 
|  | # Make sure the correct shapes are computed. | 
|  | self.assertEqual(grad_grad_output.shape, gO.shape) | 
|  | self.assertEqual(grad_input.shape, input.shape) | 
|  | self.assertEqual(grad_weight.shape, weight.shape) | 
|  |  | 
|  | @onlyCUDA | 
|  | @largeTensorTest('40GB') | 
|  | @largeTensorTest('24GB', 'cpu') | 
|  | def test_conv3d_64bit_indexing(self, device): | 
|  | x = torch.rand(1, 32, 512, 512, 256) | 
|  | m = torch.nn.Conv3d(32, 1, kernel_size=1, padding=0, stride=1, bias=False) | 
|  | yref = m(x) | 
|  | y = m.to(device=device)(x.to(device=device)) | 
|  | self.assertEqual(yref, y) | 
|  |  | 
|  | instantiate_device_type_tests(TestConvolutionNNDeviceType, globals()) | 
|  | instantiate_parametrized_tests(TestConvolutionNN) | 
|  |  | 
|  | if __name__ == '__main__': | 
|  | run_tests() |