|  | // Copyright (c) Facebook, Inc. and its affiliates. | 
|  | // All rights reserved. | 
|  | // | 
|  | // This source code is licensed under the BSD-style license found in the | 
|  | // LICENSE file in the root directory of this source tree. | 
|  |  | 
|  | #include "minpybind.h" | 
|  | #include <frameobject.h> | 
|  | #include <opcode.h> | 
|  | #include <utility> | 
|  | #include <new> | 
|  | #include <iostream> | 
|  | #include <vector> | 
|  | //#include <torch/csrc/autograd/python_variable.h> | 
|  | #include <torch/csrc/utils/python_compat.h> | 
|  | #include <torch/csrc/Export.h> | 
|  | #include <ATen/functorch/BatchedTensorImpl.h> | 
|  | #include <ATen/functorch/DynamicLayer.h> | 
|  | #include <ATen/ATen.h> | 
|  | #include <memory> | 
|  | #include "arena.h" | 
|  | #include "python_variable_simple.h" | 
|  |  | 
|  | #if IS_PYTHON_3_11_PLUS | 
|  | #define Py_BUILD_CORE | 
|  | #include "internal/pycore_opcode.h" | 
|  | #undef Py_BUILD_CORE | 
|  | #endif | 
|  |  | 
|  | // C++ API functions for objects to | 
|  | // * construct the object, returning a ref-counted handle | 
|  | // * The actual API, with methods that take/return C-typed values | 
|  |  | 
|  | // extend minpybind.h to include | 
|  | // * typed handles so that -> can get to their raw API | 
|  | // * object/handle distinction for the typed handles | 
|  |  | 
|  | // class Dim: --------------- | 
|  | mpy::handle torch_Tensor___mul__; | 
|  | mpy::handle _Tensor; | 
|  | mpy::handle _Tensor_sum; | 
|  | mpy::handle NamedTuple; | 
|  | mpy::dict_view pointwise; | 
|  | mpy::handle torch_Tensor_expand; | 
|  | binaryfunc THPVariable_getitem; | 
|  | objobjargproc THPVariable_setitem; | 
|  | mpy::handle no_slice; | 
|  | PyTypeObject* torch_Tensor; | 
|  | mpy::handle torch_Tensor_copy_; | 
|  | mpy::handle torch_Tensor_split; | 
|  | bool pointwise_optimize = true; | 
|  | PyTypeObject* DimType = nullptr; | 
|  |  | 
|  | static void maybeInitializeGlobals() { | 
|  | // globals that depend on the python dim library, | 
|  | // which we can't lookup until we finish initializing the _C module | 
|  | if (_Tensor.ptr()) { | 
|  | return; | 
|  | } | 
|  | auto dim = mpy::import("functorch.dim"); | 
|  | _Tensor = dim.attr("_Tensor"); | 
|  | pointwise = dim.attr("pointwise"); | 
|  | _Tensor_sum = _Tensor.attr("sum"); | 
|  | DimType = (PyTypeObject*) mpy::import("functorch.dim").attr("Dim").ptr(); | 
|  | } | 
|  |  | 
|  | PyObject* Tensor_getitem(PyObject* self, PyObject* index); | 
|  | int Tensor_setitem(PyObject* self, PyObject* index, PyObject* value); | 
|  |  | 
|  | void replaceMappingIfMatches(mpy::handle tp) { | 
|  | auto T = (PyTypeObject*) tp.ptr(); | 
|  | bool recurse = false; | 
|  | if (T->tp_as_mapping->mp_subscript == THPVariable_getitem) { | 
|  | T->tp_as_mapping->mp_subscript = Tensor_getitem; | 
|  | recurse = true; | 
|  | } | 
|  | if (T->tp_as_mapping->mp_ass_subscript == THPVariable_setitem) { | 
|  | T->tp_as_mapping->mp_ass_subscript = Tensor_setitem; | 
|  | recurse = true; | 
|  | } | 
|  | if (recurse) { | 
|  | auto result = tp.attr("__subclasses__").call(); | 
|  | mpy::list_view lv(result); | 
|  | for (auto i : lv.enumerate()) { | 
|  | replaceMappingIfMatches(lv[i]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void initializeGlobals(Arena & A) { | 
|  | auto torch = mpy::import("torch"); | 
|  | torch_Tensor = (PyTypeObject*) torch.attr("Tensor").ptr(); | 
|  | torch_Tensor___mul__ = torch.attr("Tensor").attr("__mul__"); | 
|  |  | 
|  | torch_Tensor_expand = torch.attr("_C").attr("_TensorBase").attr("expand"); | 
|  | torch_Tensor_split = torch.attr("_C").attr("_TensorBase").attr("split"); | 
|  | torch_Tensor_copy_ = torch.attr("Tensor").attr("copy_"); | 
|  | auto py_TensorBase = torch.attr("_C").attr("_TensorBase"); | 
|  | auto TensorBase = (PyTypeObject*) py_TensorBase.ptr(); | 
|  | THPVariable_getitem = TensorBase->tp_as_mapping->mp_subscript; | 
|  | THPVariable_setitem = TensorBase->tp_as_mapping->mp_ass_subscript; | 
|  | NamedTuple = mpy::import("typing").attr("NamedTuple"); | 
|  | no_slice = PySlice_New(NULL, NULL, NULL); | 
|  |  | 
|  | } | 
|  |  | 
|  | mpy::handle DimensionBindError_; | 
|  | static mpy::handle DimensionBindError() { | 
|  | if(!DimensionBindError_.ptr()) { | 
|  | DimensionBindError_ = mpy::import("functorch.dim").attr("DimensionBindError"); | 
|  | } | 
|  | return DimensionBindError_; | 
|  | } | 
|  |  | 
|  | static int64_t n_dims_created = 65; | 
|  |  | 
|  | struct Dim : public mpy::base<Dim> { | 
|  | int64_t level_; // for stable comparisons in prototype | 
|  | mpy::object name_; | 
|  | Dim() | 
|  | : level_(n_dims_created++) {} | 
|  | void init(mpy::object name, int64_t s = -1) { | 
|  | name_ = std::move(name); | 
|  | size_ = s; | 
|  | } | 
|  |  | 
|  | static bool check_exact(mpy::handle v) { | 
|  | return Py_TYPE(v.ptr()) == DimType; | 
|  | } | 
|  |  | 
|  | int64_t size() const { | 
|  | if (size_ == -1) { | 
|  | mpy::raise_error(PyExc_ValueError, "dimension %S is unbound", name_.ptr()); | 
|  | } | 
|  | return size_; | 
|  | } | 
|  | void set_size(int64_t v) { | 
|  | if (size_ == -1) { | 
|  | size_ = v; | 
|  | } else if(size_ != v) { | 
|  | mpy::raise_error(DimensionBindError(), "Dim '%R' previously bound to a dimension of size %lld cannot bind to a dimension of size %lld", this, this->size_, v); | 
|  | } | 
|  | } | 
|  | bool is_bound() const { | 
|  | return size_ != -1; | 
|  | } | 
|  | static mpy::obj<Dim> create(mpy::object name, int64_t s = -1) { | 
|  | if (!DimType) { | 
|  | maybeInitializeGlobals(); | 
|  | } | 
|  | auto r = Dim::alloc(DimType); | 
|  | r->init(std::move(name), s); | 
|  | return r; | 
|  | } | 
|  | static PyTypeObject Type; | 
|  | const at::Tensor& range() { | 
|  | if (!range_.defined()) { | 
|  | range_ = at::arange(size()); | 
|  | } | 
|  | return range_; | 
|  | } | 
|  | const at::Tensor& batchtensor() { | 
|  | if (!batchtensor_.defined()) { | 
|  | batchtensor_ = at::functorch::addBatchDim(range(), 0, level_); | 
|  | } | 
|  | return batchtensor_; | 
|  | } | 
|  | private: | 
|  | int64_t size_{-1}; | 
|  | at::Tensor range_; | 
|  | at::Tensor batchtensor_; | 
|  | }; | 
|  |  | 
|  | struct DimEntry { | 
|  | // union of either a negative number indicating which dimension this is from the rhs, | 
|  | // or a pointer to a first-class dimension. | 
|  | // pointers do not have their highest bit set, so checking the number is negative tells us | 
|  | // that it is not a dim. | 
|  | bool is_positional() const { | 
|  | return data_ < 0; | 
|  | } | 
|  | bool is_none() const { | 
|  | return data_ == 0; | 
|  | } | 
|  | int64_t position() const { | 
|  | return data_; | 
|  | } | 
|  | mpy::hdl<Dim> dim() const { | 
|  | Dim* result; | 
|  | std::memcpy(&result, &data_, sizeof(Dim*)); | 
|  | return mpy::hdl<Dim>(result); | 
|  | } | 
|  |  | 
|  | DimEntry() | 
|  | : data_(0) {} | 
|  |  | 
|  | DimEntry(int64_t pos) | 
|  | : data_(pos) { | 
|  | AT_ASSERT(pos < 0); | 
|  | } | 
|  | DimEntry(mpy::hdl<Dim> d) { | 
|  | std::memcpy(&data_, &d, sizeof(int64_t)); | 
|  | } | 
|  | bool operator==(const DimEntry& rhs) const { | 
|  | return data_ == rhs.data_; | 
|  | } | 
|  | private: | 
|  | int64_t data_; | 
|  | }; | 
|  |  | 
|  | std::ostream& operator<<(std::ostream& ss, DimEntry entry) { | 
|  | if (entry.is_none()) { | 
|  | ss << "None"; | 
|  | } else if (entry.is_positional()) { | 
|  | ss << entry.position(); | 
|  | } else { | 
|  | ss << entry.dim(); | 
|  | } | 
|  | return ss; | 
|  | } | 
|  |  | 
|  | // Dim wrapper methods | 
|  |  | 
|  | static int Dim_init(mpy::hdl<Dim> self, PyObject *args, PyObject *kwds) { | 
|  | PY_BEGIN | 
|  | static constexpr const char* kwlist[] = {"name", "size", nullptr}; | 
|  | mpy::handle name; | 
|  | mpy::handle size = nullptr; | 
|  | if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O", const_cast<char **>(kwlist), &name, &size)) { | 
|  | return -1; | 
|  | } | 
|  | self->init(mpy::object::borrow(name), (size.ptr() && !mpy::is_none(size)) ? mpy::to_int(size) : -1); | 
|  | return 0; | 
|  | PY_END(-1) | 
|  | } | 
|  |  | 
|  | static PyObject* Dim_repr(Dim* self) { | 
|  | PY_BEGIN | 
|  | mpy::object name = (self->name_.ptr()) ? self->name_ : mpy::unicode_from_string("<uninitialized dim>"); | 
|  | return name.release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  |  | 
|  | static PyObject* Dim_getsize(Dim* self, void*) { | 
|  | PY_BEGIN | 
|  | return mpy::from_int(self->size()).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | int Dim_setsize(Dim* self, PyObject* size, void*) { | 
|  | PY_BEGIN | 
|  | self->set_size(mpy::to_int(size)); | 
|  | return 0; | 
|  | PY_END(-1) | 
|  | } | 
|  |  | 
|  | static PyObject* Dim_getis_bound(Dim* self, void*) { | 
|  | return PyBool_FromLong(self->is_bound()); | 
|  | } | 
|  |  | 
|  | static PyObject* Dim_getlevel(Dim* self, void*) { | 
|  | return PyLong_FromLong(self->level_); | 
|  | } | 
|  |  | 
|  | static PyObject* Dim_get_levels(Dim* self, void*) { | 
|  | mpy::tuple t(1); | 
|  | t.set(0, mpy::object::borrow(self->ptr())); | 
|  | return t.release(); | 
|  | } | 
|  |  | 
|  | static PyObject* Dim_get_has_device(Dim* self, void*) { | 
|  | Py_RETURN_FALSE; | 
|  | } | 
|  |  | 
|  | static PyObject* Dim_get_tensor(Dim* self, void*) { | 
|  | return THPVariable_Wrap(self->range()); | 
|  | } | 
|  |  | 
|  | static PyObject* Dim_get_batchtensor(Dim* self, void*) { | 
|  | return THPVariable_Wrap(self->batchtensor()); | 
|  | } | 
|  |  | 
|  |  | 
|  | static PyGetSetDef Dim_getsetters[] = { | 
|  | {"size", (getter) Dim_getsize, (setter) Dim_setsize, | 
|  | "Dimension size", NULL}, | 
|  | {"is_bound", (getter) Dim_getis_bound, NULL, "is_bound", NULL}, | 
|  | {"_level", (getter) Dim_getlevel, NULL, "_level", NULL}, | 
|  | {"_levels", (getter) Dim_get_levels, NULL, "_levels", NULL}, | 
|  | {"_has_device", (getter) Dim_get_has_device, NULL, "_has_device", NULL}, | 
|  | {"_tensor", (getter) Dim_get_tensor, NULL, "_tensor", NULL}, | 
|  | {"_batchtensor", (getter) Dim_get_batchtensor, NULL, "_batchtensor", NULL}, | 
|  | {"ndim", (getter) [](PyObject* self, void*) -> PyObject* { return mpy::from_int(1).release(); }, NULL, "ndim", NULL}, | 
|  | {NULL}  /* Sentinel */ | 
|  | }; | 
|  |  | 
|  | PyTypeObject Dim::Type = { | 
|  | PyVarObject_HEAD_INIT(NULL, 0) | 
|  | "_C.Dim",               /* tp_name */ | 
|  | sizeof(Dim),               /* tp_basicsize */ | 
|  | 0,                              /* tp_itemsize */ | 
|  | Dim::dealloc_stub,      /* tp_dealloc */ | 
|  | 0,                              /* tp_vectorcall_offset */ | 
|  | 0,                              /* tp_getattr */ | 
|  | 0,                              /* tp_setattr */ | 
|  | 0,                              /* tp_as_async */ | 
|  | (reprfunc)Dim_repr,           /* tp_repr */ | 
|  | 0,                 /* tp_as_number */ | 
|  | 0,                              /* tp_as_sequence */ | 
|  | 0,                              /* tp_as_mapping */ | 
|  | 0,      /* tp_hash */ | 
|  | 0,                              /* tp_call */ | 
|  | 0,                              /* tp_str */ | 
|  | 0,                              /* tp_getattro */ | 
|  | 0,                              /* tp_setattro */ | 
|  | 0,                              /* tp_as_buffer */ | 
|  | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE,  /* tp_flags */ | 
|  | "Dim Object",                   /* tp_doc */ | 
|  | 0,                              /* tp_traverse */ | 
|  | 0,                              /* tp_clear */ | 
|  | 0,  /* tp_richcompare */ | 
|  | 0,                              /* tp_weaklistoffset */ | 
|  | 0,                              /* tp_iter */ | 
|  | 0,                              /* tp_iternext */ | 
|  | 0,                              /* tp_methods */ | 
|  | 0,                              /* tp_members */ | 
|  | Dim_getsetters,                 /* tp_getset */ | 
|  | 0,                              /* tp_base */ | 
|  | 0,                              /* tp_dict */ | 
|  | 0,                              /* tp_descr_get */ | 
|  | 0,                              /* tp_descr_set */ | 
|  | 0,                              /* tp_dictoffset */ | 
|  | (initproc)(void*) Dim_init,     /* tp_init */ | 
|  | 0,                              /* tp_alloc */ | 
|  | Dim::new_stub,                      /* tp_new */ | 
|  | }; | 
|  |  | 
|  | // class DimList ------------ | 
|  |  | 
|  | struct DimList : public mpy::base<DimList> { | 
|  | mpy::object name_; | 
|  | std::vector<mpy::obj<Dim>> dims_; | 
|  | static PyTypeObject Type; | 
|  | void init(mpy::object name) { | 
|  | name_ = std::move(name); | 
|  | } | 
|  | void set_dims(std::vector<mpy::obj<Dim>> dims) { | 
|  | bound_ = true; | 
|  | dims_ = std::move(dims); | 
|  | } | 
|  | bool is_bound() { | 
|  | return bound_; | 
|  | } | 
|  | void bind_len(int64_t size) { | 
|  | if (bound_) { | 
|  | int64_t b_size = dims_.size(); | 
|  | if (b_size != size) { | 
|  | mpy::raise_error(DimensionBindError(), "Dimlist has size %lld but it is being bound to size %d", b_size, size); | 
|  | } | 
|  | } else { | 
|  | bound_ = true; | 
|  | dims_.resize(size); | 
|  | for (Py_ssize_t i = 0; i < size; ++i) { | 
|  | dims_[i] = Dim::create(mpy::unicode_from_format("%S%i", name_.ptr(), (int)i)); | 
|  | } | 
|  | } | 
|  | } | 
|  | int64_t size() const { | 
|  | if (!bound_) { | 
|  | mpy::raise_error(DimensionBindError(), "DimList not bound"); | 
|  | } | 
|  | return dims_.size(); | 
|  | } | 
|  | void set_bound(bool b) { | 
|  | bound_ = b; | 
|  | } | 
|  | private: | 
|  | bool bound_ = false; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int DimList_init(DimList *self, PyObject *args, PyObject *kwds); | 
|  |  | 
|  | static PyObject* DimList_repr(DimList* self) { | 
|  | PY_BEGIN | 
|  | if (self->is_bound()) { | 
|  | size_t size = self->dims_.size(); | 
|  | mpy::tuple t(size); | 
|  | for(size_t i = 0; i < size; ++i) { | 
|  | t.set(i, self->dims_[i]); | 
|  | } | 
|  | return mpy::repr(t).release(); | 
|  | } else if(!mpy::is_none(self->name_)) { | 
|  | return mpy::unicode_from_format("*%S", self->name_.ptr()).release(); | 
|  | } else { | 
|  | return mpy::unicode_from_string("<unbound_dimlist>").release(); | 
|  | } | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* DimList_bind(DimList *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | mpy::handle sizes; | 
|  | static const char * const _keywords[] = {"sizes", nullptr}; | 
|  | static _PyArg_Parser parser = {"O", _keywords, 0}; | 
|  | if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &parser, &sizes)) { | 
|  | return nullptr; | 
|  | } | 
|  | if (!mpy::is_sequence(sizes)) { | 
|  | mpy::raise_error(PyExc_ValueError, "expected a sequence"); | 
|  | } | 
|  | mpy::sequence_view seq = sizes; | 
|  | auto size = seq.size(); | 
|  | self->bind_len(size); | 
|  | for (Py_ssize_t i = 0; i < size; ++i) { | 
|  | self->dims_[i]->set_size(mpy::to_int(seq[i])); | 
|  | } | 
|  | Py_RETURN_NONE; | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* DimList_bind_len(DimList *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | int size; | 
|  | static const char * const _keywords[] = {"N", nullptr}; | 
|  | static _PyArg_Parser parser = {"i", _keywords, 0}; | 
|  | if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &parser, &size)) { | 
|  | return nullptr; | 
|  | } | 
|  | self->bind_len(size); | 
|  | Py_RETURN_NONE; | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyMethodDef DimList_methods[] = { | 
|  | {"bind", (PyCFunction)(void*) DimList_bind, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"bind_len", (PyCFunction)(void*) DimList_bind_len, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {NULL, NULL, 0, NULL}        /* Sentinel */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | static Py_ssize_t DimList_len(DimList* self) { | 
|  | PY_BEGIN | 
|  | return self->size(); | 
|  | PY_END(-1) | 
|  | } | 
|  |  | 
|  | PyObject * DimList_item(DimList* self, Py_ssize_t idx) { | 
|  | PY_BEGIN | 
|  | if (!self->is_bound()) { | 
|  | mpy::raise_error(DimensionBindError(), "DimList not bound"); | 
|  | } | 
|  | if (idx < 0 || (size_t) idx >= self->dims_.size()) { | 
|  | mpy::raise_error(PyExc_IndexError, "index out of bounds"); | 
|  | } | 
|  | mpy::object r = self->dims_[idx]; | 
|  | return r.release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | PySequenceMethods DimList_seq { | 
|  | (lenfunc) DimList_len, //lenfunc sq_length; | 
|  | 0, //binaryfunc sq_concat; | 
|  | 0, //ssizeargfunc sq_repeat; | 
|  | (ssizeargfunc) DimList_item, //ssizeargfunc sq_item; | 
|  | 0, //void *was_sq_slice; | 
|  | 0, //ssizeobjargproc sq_ass_item; | 
|  | 0, //void *was_sq_ass_slice; | 
|  | 0, //objobjproc sq_contains; | 
|  |  | 
|  | 0, //binaryfunc sq_inplace_concat; | 
|  | 0, //ssizeargfunc sq_inplace_repeat; | 
|  | }; | 
|  |  | 
|  | static PyObject* DimList_getis_bound(DimList* self, void*) { | 
|  | return PyBool_FromLong(self->is_bound()); | 
|  | } | 
|  |  | 
|  | static PyGetSetDef DimList_getsetters[] = { | 
|  | {"is_bound", (getter) DimList_getis_bound, NULL, "is_bound", NULL}, | 
|  | {NULL}  /* Sentinel */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | static PyObject* DimList_subscript(DimList* self, mpy::handle idx) { | 
|  | PY_BEGIN | 
|  | if (mpy::is_int(idx)) { | 
|  | return DimList_item(self, mpy::to_int(idx)); | 
|  | } else if (mpy::is_slice(idx)) { | 
|  | if (!self->is_bound()) { | 
|  | mpy::raise_error(DimensionBindError(), "DimList not bound"); | 
|  | } | 
|  | mpy::slice_view s(idx, self->dims_.size()); | 
|  | mpy::tuple r(s.slicelength); | 
|  | for (Py_ssize_t i = s.start, j = 0; i < s.stop; i += s.step) { | 
|  | r.set(j++,  self->dims_[i]); | 
|  | } | 
|  | return r.release(); | 
|  | } else { | 
|  | mpy::raise_error(PyExc_ValueError, "expected an int or a slice"); | 
|  | return nullptr; | 
|  | } | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | PyMappingMethods DimList_mapping = { | 
|  | 0, //lenfunc mp_length; | 
|  | (binaryfunc)(void*) DimList_subscript, //binaryfunc mp_subscript; | 
|  | 0, //objobjargproc mp_ass_subscript; | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | PyTypeObject DimList::Type = { | 
|  | PyVarObject_HEAD_INIT(NULL, 0) | 
|  | "_C.DimList",               /* tp_name */ | 
|  | sizeof(DimList),               /* tp_basicsize */ | 
|  | 0,                              /* tp_itemsize */ | 
|  | DimList::dealloc_stub,      /* tp_dealloc */ | 
|  | 0,                              /* tp_vectorcall_offset */ | 
|  | 0,                              /* tp_getattr */ | 
|  | 0,                              /* tp_setattr */ | 
|  | 0,                              /* tp_as_async */ | 
|  | (reprfunc)DimList_repr,           /* tp_repr */ | 
|  | 0,                 /* tp_as_number */ | 
|  | &DimList_seq,                 /* tp_as_sequence */ | 
|  | &DimList_mapping,             /* tp_as_mapping */ | 
|  | 0,      /* tp_hash */ | 
|  | 0,                              /* tp_call */ | 
|  | 0,                              /* tp_str */ | 
|  | 0,                              /* tp_getattro */ | 
|  | 0,                              /* tp_setattro */ | 
|  | 0,                              /* tp_as_buffer */ | 
|  | 0,                              /* tp_flags */ | 
|  | "DimList Object",                   /* tp_doc */ | 
|  | 0,                              /* tp_traverse */ | 
|  | 0,                              /* tp_clear */ | 
|  | 0,                              /* tp_richcompare */ | 
|  | 0,                              /* tp_weaklistoffset */ | 
|  | 0,                              /* tp_iter */ | 
|  | 0,                              /* tp_iternext */ | 
|  | DimList_methods,                /* tp_methods */ | 
|  | 0,                              /* tp_members */ | 
|  | DimList_getsetters,             /* tp_getset */ | 
|  | 0,                              /* tp_base */ | 
|  | 0,                              /* tp_dict */ | 
|  | 0,                              /* tp_descr_get */ | 
|  | 0,                              /* tp_descr_set */ | 
|  | 0,                              /* tp_dictoffset */ | 
|  | (initproc) DimList_init,            /* tp_init */ | 
|  | 0,                              /* tp_alloc */ | 
|  | DimList::new_stub,                      /* tp_new */ | 
|  | }; | 
|  |  | 
|  | static int DimList_init(DimList *self, PyObject *args, PyObject *kwds) { | 
|  | PY_BEGIN | 
|  | static constexpr const char* kwlist[] = {"len_or_dims", "name", nullptr}; | 
|  | mpy::handle len_or_dims = nullptr; | 
|  | PyObject* name = nullptr; | 
|  | if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO", const_cast<char**>(kwlist), &len_or_dims, &name)) { | 
|  | return -1; | 
|  | } | 
|  | self->init(mpy::object::borrow(name ? name : Py_None)); | 
|  | if (len_or_dims.ptr()) { | 
|  | if(mpy::is_int(len_or_dims)) { | 
|  | self->bind_len(mpy::to_int(len_or_dims)); | 
|  | } else if (mpy::is_sequence(len_or_dims)) { | 
|  | mpy::sequence_view s(len_or_dims); | 
|  | std::vector<mpy::obj<Dim>> dims; | 
|  | size_t size = s.size(); | 
|  | dims.reserve(size); | 
|  | for (size_t i = 0; i < size; ++i) { | 
|  | auto r = s[i]; | 
|  | if (mpy::is_int(r)) { | 
|  | dims.emplace_back(Dim::create(mpy::unicode_from_format("%S%i", self->name_.ptr(), (int)i),  mpy::to_int(r))); | 
|  | } else { | 
|  | dims.emplace_back(Dim::wrap(r)); | 
|  | } | 
|  | } | 
|  | self->set_dims(std::move(dims)); | 
|  | } else { | 
|  | PyErr_Format(PyExc_ValueError, "expected a length or a sequence of dimensions"); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | return 0; | 
|  | PY_END(-1); | 
|  | } | 
|  |  | 
|  | // Tensor ----------------------------- | 
|  |  | 
|  | PyTypeObject* TensorType = nullptr; // the python wrapper type. | 
|  | at::Tensor _add_batch_dims(Arena& A, at::Tensor t, Slice<DimEntry> levels_); | 
|  | static mpy::object run_torch_function(Arena &A, mpy::handle orig, mpy::vector_args args, bool is_pointwise); | 
|  | void free_levels_dims(Slice<DimEntry> levels); | 
|  |  | 
|  | struct Tensor; | 
|  |  | 
|  | struct DelayedOperator { | 
|  | DelayedOperator(mpy::object o, mpy::vector_args a) | 
|  | : orig(std::move(o)), args(a) { | 
|  | auto all = a.size(); | 
|  | // this will outlive the call so | 
|  | // take ownership of temporaries | 
|  | // in vector args | 
|  | auto buf = new mpy::handle[all]; | 
|  | memcpy(buf, args.args, sizeof(mpy::handle)*all); | 
|  | args.args = buf; | 
|  | for (auto i : args.enumerate_all()) { | 
|  | Py_INCREF(args.args[i].ptr()); | 
|  | } | 
|  | Py_XINCREF(args.kwnames.ptr()); | 
|  | } | 
|  | ~DelayedOperator() { | 
|  | for (auto i : args.enumerate_all()) { | 
|  | Py_DECREF(args[i].ptr()); | 
|  | } | 
|  | if (args.has_keywords()) { | 
|  | Py_XDECREF(args.kwnames.ptr()); | 
|  | } | 
|  | delete [] args.args; | 
|  | } | 
|  | mpy::object orig; | 
|  | mpy::vector_args args; | 
|  | }; | 
|  |  | 
|  | struct Tensor : public mpy::base<Tensor> { | 
|  | private: | 
|  | at::Tensor tensor_; | 
|  | at::Tensor batchtensor_; | 
|  | OwnedSlice<DimEntry> levels_; | 
|  | bool has_device_; | 
|  | std::unique_ptr<DelayedOperator> delayed_; | 
|  | public: | 
|  |  | 
|  | at::Tensor& tensor(Arena& A) { | 
|  | if (C10_UNLIKELY(!tensor_.defined())) { | 
|  | AT_ASSERT(delayed_); | 
|  | auto t = Tensor::wrap(run_torch_function(A, delayed_->orig, delayed_->args, true)); | 
|  | tensor_ = t->tensor(A); | 
|  | delayed_.reset(); | 
|  | // don't force creation of batch tensor if it wasn't alreay provided. | 
|  | batchtensor_ = t->batchtensor_; | 
|  | AT_ASSERT(levels() == t->levels()); | 
|  | } | 
|  | return tensor_; | 
|  | } | 
|  | at::Tensor& batchtensor(Arena& A) { | 
|  | if (C10_UNLIKELY(!batchtensor_.defined())) { | 
|  | batchtensor_ = _add_batch_dims(A, tensor(A), levels_.slice()); | 
|  | } | 
|  | return batchtensor_; | 
|  | } | 
|  | Slice<DimEntry> levels() { | 
|  | return levels_.slice(); | 
|  | } | 
|  | bool has_device() { | 
|  | return has_device_; | 
|  | } | 
|  | DelayedOperator* delayed() { | 
|  | return delayed_.get(); | 
|  | } | 
|  | static PyTypeObject Type; | 
|  |  | 
|  | static bool check_exact(mpy::handle v) { | 
|  | return Py_TYPE(v.ptr()) == TensorType; | 
|  | } | 
|  |  | 
|  |  | 
|  | static mpy::obj<Tensor> create() { | 
|  | if (!TensorType) { | 
|  | TensorType = (PyTypeObject*) mpy::import("functorch.dim").attr("Tensor").ptr(); | 
|  | } | 
|  | return Tensor::alloc(TensorType); | 
|  | } | 
|  | void capture_levels(Slice<DimEntry> levels) { | 
|  | // grab ownership of the dims inside levels | 
|  | for (auto l : levels) { | 
|  | if (!l.is_positional()) { | 
|  | mpy::object::borrow(l.dim()).release(); | 
|  | } | 
|  | } | 
|  | levels_.set(levels, free_levels_dims); | 
|  | } | 
|  | static mpy::object from_positional(Arena & A, at::Tensor tensor, Slice<DimEntry> levels, bool has_device); | 
|  | static mpy::obj<Tensor> create_delayed(mpy::object op, mpy::vector_args args, Slice<DimEntry> levels, bool has_device); | 
|  | friend struct EnableAllLayers; | 
|  | }; | 
|  |  | 
|  | at::Tensor _add_batch_dims(Arena& A, at::Tensor t, Slice<DimEntry> levels_) { | 
|  | auto levels = Slice<DimEntry>(); | 
|  | levels.extend(A, levels_); | 
|  | while (true) { | 
|  | int64_t min_real_index = -1; | 
|  | int64_t min_index = -1; | 
|  | int64_t min_value = INT_MAX; | 
|  | int64_t i = 0; | 
|  | int64_t r = 0; | 
|  | for (auto l : levels) { | 
|  | if (!l.is_none()) { | 
|  | if (!l.is_positional() && l.dim()->level_ < min_value) { | 
|  | min_value = l.dim()->level_; | 
|  | min_index = i; | 
|  | min_real_index = r; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  | ++r; | 
|  | } | 
|  | if (min_index == -1) { | 
|  | return t; | 
|  | } | 
|  | auto t2 = at::functorch::addBatchDim(std::move(t), min_index, min_value); | 
|  | t = std::move(t2); | 
|  | levels[min_real_index] = DimEntry(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void free_levels_dims(Slice<DimEntry> levels) { | 
|  | for(auto e : levels) { | 
|  | if (!e.is_positional()) { | 
|  | mpy::object::steal(e.dim()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // version in header does a unnecessary refcount +/- | 
|  | inline at::functorch::BatchedTensorImpl* maybeGetBatchedImpl(const at::Tensor& tensor) { | 
|  | if (at::functorch::isBatchedTensor(tensor)) { | 
|  | return static_cast<at::functorch::BatchedTensorImpl*>(tensor.unsafeGetTensorImpl()); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | inline TensorRef unchecked_tensor_from(mpy::handle p) { | 
|  | auto v = (THPVariable*) p.ptr(); | 
|  | return TensorRef(*v->cdata); | 
|  | } | 
|  |  | 
|  | int64_t ndim_of_levels(Slice<DimEntry> levels) { | 
|  | int64_t r = 0; | 
|  | for (auto l : levels) { | 
|  | if (l.is_positional()) { | 
|  | ++r; | 
|  | } | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | struct TensorInfo { | 
|  | TensorRef tensor; | 
|  | Slice<DimEntry> levels; | 
|  | bool has_device; | 
|  | TensorRef batchedtensor; | 
|  | int64_t ndim() const { | 
|  | return ndim_of_levels(levels); | 
|  | } | 
|  | operator bool() const { | 
|  | return tensor; | 
|  | } | 
|  |  | 
|  | static TensorInfo create(Arena& A, mpy::handle h, bool ensure_batched=true, bool ensure_present=true) { | 
|  | if (Tensor::check_exact(h)) { | 
|  | auto t = Tensor::unchecked_wrap(h); | 
|  | return TensorInfo {t->tensor(A), t->levels(), t->has_device(), ensure_batched ? t->batchtensor(A) : TensorRef()}; | 
|  | } else if (Dim::check_exact(h)) { | 
|  | auto d = Dim::unchecked_wrap(h); | 
|  | return TensorInfo {d->range(), Slice<DimEntry>(A, DimEntry(d)), false, ensure_batched ? d->batchtensor() : TensorRef()}; | 
|  | } else if (THPVariable_Check(h.ptr())) { | 
|  | TensorRef t = unchecked_tensor_from(h); | 
|  | Slice<DimEntry> levels; | 
|  | for (auto i : irange(-t->dim(), 0)) { | 
|  | levels.append(A, i); | 
|  | } | 
|  | return TensorInfo {t, levels, true, t}; | 
|  | } else { | 
|  | if (ensure_present) { | 
|  | mpy::raise_error(PyExc_ValueError, "expected a tensor object"); | 
|  | } | 
|  | return TensorInfo {}; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | }; | 
|  |  | 
|  | mpy::object Tensor::from_positional(Arena & A, at::Tensor tensor, Slice<DimEntry> levels, bool has_device) { | 
|  | size_t seen_dims = 0; | 
|  | int last = 0; | 
|  | //auto sz = tensor.sizes(); | 
|  | for (auto i : levels.enumerate()) { | 
|  | auto l = levels[i]; | 
|  | if (l.is_positional()) { | 
|  | AT_ASSERT(last == 0 || last + 1 == l.position()); | 
|  | last = l.position(); | 
|  | } else { | 
|  | mpy::object::borrow(l.dim()).release(); | 
|  | //AT_ASSERT(sz[i] == l.dim()->size()); | 
|  | ++seen_dims; | 
|  | } | 
|  | } | 
|  | AT_ASSERT(last == 0 || last == -1); | 
|  | if (!seen_dims) { | 
|  | return mpy::object::steal(THPVariable_Wrap(std::move(tensor))); | 
|  | } | 
|  |  | 
|  | mpy::obj<Tensor> self = Tensor::create(); | 
|  | self->tensor_ = std::move(tensor); | 
|  | AT_ASSERT(self->tensor_.dim() == levels.size()); | 
|  | self->levels_.set(levels, free_levels_dims); | 
|  | self->has_device_ = has_device; | 
|  | mpy::object r = std::move(self); | 
|  | return r; | 
|  | } | 
|  |  | 
|  |  | 
|  | static PyObject* py_Tensor_from_positional(PyObject *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | #define ARGS(_) _(mpy::handle, tensor) _(mpy::handle, py_levels) _(int, has_device) | 
|  | MPY_PARSE_ARGS_KWNAMES("OOp", ARGS) | 
|  | #undef ARGS | 
|  |  | 
|  | if (!THPVariable_Check(tensor.ptr())) { | 
|  | mpy::raise_error(PyExc_ValueError, "_tensor is not a Tensor?"); | 
|  | } | 
|  |  | 
|  | Slice<DimEntry> levels; | 
|  | mpy::sequence_view sq(py_levels); | 
|  | for (auto i : sq.enumerate()) { | 
|  | mpy::object v = sq[i]; | 
|  | if (mpy::is_int(v)) { | 
|  | auto vi = mpy::to_int(v); | 
|  | levels.append(A, vi); | 
|  | } else { | 
|  | auto dim = Dim::wrap(std::move(v)); | 
|  | mpy::hdl<Dim> hdim = dim; | 
|  | levels.append(A, hdim); | 
|  | } | 
|  | } | 
|  | return Tensor::from_positional(A, THPVariable_Unpack(tensor.ptr()), levels, has_device != 0).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | mpy::obj<Tensor> Tensor::create_delayed(mpy::object op, mpy::vector_args args, Slice<DimEntry> levels, bool has_device) { | 
|  | mpy::obj<Tensor> self = Tensor::create(); | 
|  | self->capture_levels(levels); | 
|  | self->has_device_ = has_device; | 
|  | self->delayed_ = std::make_unique<DelayedOperator>(op, args); | 
|  | return self; | 
|  | } | 
|  |  | 
|  | mpy::list slice_to_list(Slice<mpy::handle> h) { | 
|  | mpy::list lst(h.size()); | 
|  | for (auto i : h.enumerate()) { | 
|  | lst.set(i, mpy::object::borrow(h[i])); | 
|  | } | 
|  | return lst; | 
|  | } | 
|  |  | 
|  | mpy::tuple slice_to_tuple(Slice<mpy::handle> h) { | 
|  | mpy::tuple lst(h.size()); | 
|  | for (auto i : h.enumerate()) { | 
|  | lst.set(i, mpy::object::borrow(h[i])); | 
|  | } | 
|  | return lst; | 
|  | } | 
|  |  | 
|  | enum UType { | 
|  | U_ELEM, | 
|  | U_TUPLE_LIKE, | 
|  | U_DICT, | 
|  | }; | 
|  |  | 
|  | struct Unflatten { | 
|  | mpy::object operator()(Slice<mpy::handle>& elements) { | 
|  | mpy::object r; | 
|  | switch (type) { | 
|  | case U_ELEM: { | 
|  | r = mpy::object::borrow(elements[0]); | 
|  | elements = elements.slice(1); | 
|  | } break; | 
|  | case U_TUPLE_LIKE: { | 
|  | mpy::tuple tup(children.size()); | 
|  | for (auto i : children.enumerate()) { | 
|  | tup.set(i, children[i](elements)); | 
|  | } | 
|  | r = obj.call(tup); | 
|  | } break; | 
|  | case U_DICT: { | 
|  | r = mpy::object::checked_steal(PyDict_New()); | 
|  | mpy::dict_view rv(r); | 
|  | mpy::dict_view d(obj); | 
|  | Py_ssize_t pos = 0; | 
|  | mpy::handle k, v; | 
|  | for (int i = 0; d.next(&pos, &k, &v); ++i) { | 
|  | rv.set(k, children[i](elements)); | 
|  | } | 
|  | } break; | 
|  | } | 
|  | return r; | 
|  | } | 
|  | UType type; | 
|  | mpy::handle obj; | 
|  | Slice<Unflatten> children; | 
|  | }; | 
|  |  | 
|  | Unflatten tree_flatten(Arena& A, mpy::handle agg, Slice<mpy::handle>& flat_elements) { | 
|  | Slice<Unflatten> c; | 
|  | UType utype; | 
|  | mpy::handle obj; | 
|  | if (mpy::list_view::check(agg)) { | 
|  | obj = agg.type(); | 
|  | utype = U_TUPLE_LIKE; | 
|  | mpy::list_view l(agg); | 
|  | for (auto i : l.enumerate()) { | 
|  | c.append(A, tree_flatten(A, l[i], flat_elements)); | 
|  | } | 
|  | } else if (mpy::tuple_view::check(agg)) { | 
|  | obj = agg.type(); | 
|  | utype = U_TUPLE_LIKE; | 
|  | // includes named tuples | 
|  | mpy::tuple_view l(agg); | 
|  | for (auto i : l.enumerate()) { | 
|  | c.append(A, tree_flatten(A, l[i], flat_elements)); | 
|  | } | 
|  | } else if (mpy::dict_view::check(agg)) { | 
|  | utype = U_DICT; | 
|  | mpy::dict_view d(agg); | 
|  | obj = agg; | 
|  | Py_ssize_t pos = 0; | 
|  | mpy::handle k, v; | 
|  | while (d.next(&pos, &k, &v)) { | 
|  | c.append(A, tree_flatten(A, v, flat_elements)); | 
|  | } | 
|  | } else { | 
|  | utype = U_ELEM; | 
|  | flat_elements.append(A, agg); | 
|  | } | 
|  | return Unflatten {utype, obj, c}; | 
|  | } | 
|  |  | 
|  | struct UnflattenVectorArgs { | 
|  | mpy::vector_args operator()(Arena& A, Slice<mpy::handle>& elements) { | 
|  | if (!had_nested) { | 
|  | auto args = elements.begin(); | 
|  | elements = Slice<mpy::handle>(); | 
|  | return mpy::vector_args(args, nargs, kwnames); | 
|  | } | 
|  | Slice<mpy::handle> args; | 
|  | for (auto u : children) { | 
|  | args.append(A, A.autorelease(u(elements))); | 
|  | } | 
|  | return mpy::vector_args(args.begin(), nargs, kwnames); | 
|  | } | 
|  | Slice<Unflatten> children; | 
|  | Py_ssize_t nargs; | 
|  | mpy::handle kwnames; | 
|  | bool had_nested; | 
|  | }; | 
|  |  | 
|  | UnflattenVectorArgs tree_flatten(Arena& A, mpy::vector_args args, Slice<mpy::handle>& flat_elements) { | 
|  | UnflattenVectorArgs r; | 
|  | r.kwnames = args.kwnames; | 
|  | r.nargs = args.nargs; | 
|  | r.had_nested = false; | 
|  | auto N = args.size(); | 
|  | for(auto i : irange(N)) { | 
|  | auto typ = Py_TYPE(args[i].ptr()); | 
|  | // fast checks that this thing isn't something that is nested. | 
|  | bool is_element = !typ->tp_as_sequence ||  typ == torch_Tensor || typ == TensorType || typ == DimType; | 
|  | if (!is_element) { | 
|  | flat_elements.extend(A, args.args, args.args + i); | 
|  | for (auto j : irange(i)) { | 
|  | (void)j; | 
|  | r.children.append(A, Unflatten {U_ELEM}); | 
|  | } | 
|  | for (auto j : irange(i, N)) { | 
|  | r.children.append(A, tree_flatten(A, args[j], flat_elements)); | 
|  | if (r.children.back().type != U_ELEM) { | 
|  | r.had_nested = true; | 
|  | } | 
|  | } | 
|  | return r; | 
|  | } | 
|  | } | 
|  | flat_elements.extend(A, args.args, args.args + N); | 
|  | return r; | 
|  | } | 
|  |  | 
|  |  | 
|  | struct UnflattenArena { | 
|  | Arena A; | 
|  | Unflatten unflatten; | 
|  | }; | 
|  |  | 
|  | static PyObject* py_unflatten(PyObject *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | #define ARGS(_) _(mpy::handle, ns) | 
|  | MPY_PARSE_ARGS_KWNAMES("O", ARGS) | 
|  | #undef ARGS | 
|  | mpy::sequence_view sv(ns); | 
|  | // because we do not have a autorelase pool yet... | 
|  | Arena A; | 
|  | Slice<mpy::handle> slice; | 
|  | mpy::handle Tuple = (PyObject*) &PyTuple_Type; | 
|  | auto inputs = Tuple.call(ns); | 
|  | mpy::tuple_view tv(inputs); | 
|  | for (auto i : tv.enumerate()) { | 
|  | slice.append(A, tv[i]); | 
|  | } | 
|  | auto AA = (UnflattenArena*) PyCapsule_GetPointer(self, "arena"); | 
|  | auto r = AA->unflatten(slice).release(); | 
|  | AT_ASSERT(r != nullptr); | 
|  | return r; | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | PyMethodDef py_unflatten_def = {"unflatten", (PyCFunction)(void*) py_unflatten, METH_FASTCALL | METH_KEYWORDS}; | 
|  |  | 
|  | void free_unflatten_arena(PyObject * pc) { | 
|  | delete (UnflattenArena*) PyCapsule_GetPointer(pc, "arena"); | 
|  | } | 
|  |  | 
|  | static PyObject* py_tree_flatten(PyObject *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | #define ARGS(_) _(mpy::handle, tree) | 
|  | MPY_PARSE_ARGS_KWNAMES("O", ARGS) | 
|  | #undef ARGS | 
|  | auto A = new UnflattenArena; | 
|  | Slice<mpy::handle> elements; | 
|  | A->unflatten = tree_flatten(A->A, tree, elements); | 
|  | auto cap = mpy::object::checked_steal(PyCapsule_New(A, "arena", free_unflatten_arena)); | 
|  | auto unflatten = mpy::object::checked_steal(PyCFunction_New(&py_unflatten_def, cap.release())); | 
|  | mpy::tuple r(2); | 
|  | r.set(0, slice_to_list(elements)); | 
|  | r.set(1, std::move(unflatten)); | 
|  | return r.release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | mpy::object tree_map(Arena& A, std::function<mpy::handle(mpy::handle)> fn, mpy::handle agg) { | 
|  | Slice<mpy::handle> elements; | 
|  | auto unflatten = tree_flatten(A, agg, elements); | 
|  | for (auto i : elements.enumerate()) { | 
|  | elements[i] = fn(elements[i]); | 
|  | } | 
|  | return unflatten(elements); | 
|  | } | 
|  |  | 
|  | // prereq: isinstance(h, _Tensor) | 
|  | inline int64_t _Tensor_ndim(mpy::handle h) { | 
|  | if (Tensor::check(h)) { | 
|  | int64_t r = 0; | 
|  | for (auto l : Tensor::unchecked_wrap(h)->levels()) { | 
|  | if (l.is_positional()) { | 
|  | ++r; | 
|  | } | 
|  | } | 
|  | return r; | 
|  | } | 
|  | // Dim or DelayedMulTensor | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inline mpy::handle handle_from_tensor(Arena& A, TensorRef t) { | 
|  | // fast case: tensor is live in python | 
|  | c10::optional<PyObject*> mb_obj = | 
|  | t->unsafeGetTensorImpl()->pyobj_slot()->check_pyobj(getPyInterpreter()); | 
|  | if (mb_obj.has_value() && !t->unsafeGetTensorImpl()->pyobj_slot()->owns_pyobj()) { | 
|  | return *mb_obj; | 
|  | } | 
|  | return A.autorelease(mpy::object::checked_steal(THPVariable_Wrap(*t))); | 
|  | } | 
|  |  | 
|  | struct EnableAllLayers { | 
|  | EnableAllLayers(Arena& A, Slice<DimEntry> levels) { | 
|  | std::vector<std::pair<int64_t, int64_t>> layers; | 
|  | layers.reserve(levels.size()); | 
|  | for (auto l : levels) { | 
|  | if (!l.is_positional()) { | 
|  | auto d = l.dim(); | 
|  | levels_to_dim_.append(A, d); | 
|  | } | 
|  | } | 
|  | std::sort(levels_to_dim_.begin(), levels_to_dim_.end(), [](mpy::hdl<Dim> lhs, mpy::hdl<Dim> rhs) { return lhs->level_ < rhs->level_;}); | 
|  |  | 
|  | for (auto i : levels_to_dim_.enumerate()) { | 
|  | auto batch_size = levels_to_dim_[i]->size(); | 
|  | auto level = at::functorch::initAndPushDynamicLayer(at::functorch::TransformType::Vmap, batch_size, at::functorch::RandomnessType::Different); | 
|  | if (i == 0) { | 
|  | levels_start_ = level; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ~EnableAllLayers() { | 
|  | auto to_remove = levels_start_ + levels_to_dim_.size() - 1; | 
|  | for (auto i : levels_to_dim_.enumerate()) { | 
|  | AT_ASSERT(at::functorch::popDynamicLayerAndDeleteMetadata().layerId() == to_remove - i); | 
|  | } | 
|  | } | 
|  |  | 
|  | mpy::obj<Tensor> from_batched(Arena& A, at::Tensor batchedtensor, bool has_device) { | 
|  | Slice<DimEntry> levels; | 
|  | for (auto i : irange(-batchedtensor.dim(), 0)) { | 
|  | levels.append(A, i); | 
|  | } | 
|  | TensorRef tensor; | 
|  | at::functorch::BatchedTensorImpl * impl = maybeGetBatchedImpl(batchedtensor); | 
|  | while(true) { | 
|  | auto level = impl->level(); | 
|  | AT_ASSERT(level >= levels_start_ && level < levels_start_ + levels_to_dim_.size()); | 
|  | mpy::hdl<Dim> dim = levels_to_dim_[level - levels_start_].ptr(); | 
|  | levels.insert(A, impl->bdim(), dim); | 
|  | at::functorch::BatchedTensorImpl * nimpl = maybeGetBatchedImpl(impl->value()); | 
|  | if (!nimpl) { | 
|  | tensor = impl->value(); | 
|  | break; | 
|  | } | 
|  | impl = nimpl; | 
|  | } | 
|  |  | 
|  | mpy::obj<Tensor> self = Tensor::create(); | 
|  | // grab ownership of the tensors | 
|  | self->tensor_ = *tensor; | 
|  | self->batchtensor_ = std::move(batchedtensor); | 
|  | self->has_device_ = has_device; | 
|  | self->capture_levels(levels); | 
|  | return self; | 
|  | } | 
|  | void inplace_update_layers(TensorRef batchtensor, Slice<DimEntry> levels) { | 
|  | // XXX - requires a patch to functorch to att set_level | 
|  | auto impl = maybeGetBatchedImpl(*batchtensor); | 
|  | for (auto i : levels_to_dim_.reversed_enumerate()) { | 
|  | if (!impl) { | 
|  | break; | 
|  | } | 
|  | if (levels.contains(levels_to_dim_[i])) { | 
|  | impl->_unsafe_set_level(levels_start_ + i); | 
|  | impl = maybeGetBatchedImpl(impl->value()); | 
|  |  | 
|  | } | 
|  | } | 
|  | } | 
|  | private: | 
|  | int64_t levels_start_{}; | 
|  | Slice<mpy::hdl<Dim>> levels_to_dim_; | 
|  | }; | 
|  |  | 
|  | TensorRef _match_levels(Arena& A, TensorRef v, Slice<DimEntry> from_levels, Slice<DimEntry> to_levels, bool drop_levels=false) { | 
|  | if (from_levels == to_levels) { | 
|  | return v; | 
|  | } | 
|  | // drop_levels -> if a dim appears in from_levels but not to_levels, it is assumed it has stride 0. | 
|  | at::IntArrayRef sz = v->sizes(); | 
|  | at::IntArrayRef sd = v->strides(); | 
|  | AT_ASSERT(drop_levels || from_levels.size() <= to_levels.size()); | 
|  | Slice<int64_t> nsz; | 
|  | Slice<int64_t> nsd; | 
|  | for (auto l : to_levels) { | 
|  | auto oidx = from_levels.index(l); | 
|  | if (!oidx) { | 
|  | nsz.append(A, l.is_positional() ? 1 : l.dim()->size()); | 
|  | nsd.append(A, 0); | 
|  | } else { | 
|  | auto idx = *oidx; | 
|  | nsz.append(A, sz[idx]); | 
|  | nsd.append(A, sd[idx]); | 
|  | } | 
|  | } | 
|  | return A.autorelease(v->as_strided(at::IntArrayRef(nsz.begin(), nsz.end()), at::IntArrayRef(nsd.begin(), nsd.end()), v->storage_offset())); | 
|  | } | 
|  |  | 
|  | static mpy::object run_torch_function(Arena &A, mpy::handle orig, mpy::vector_args args, bool is_pointwise) { | 
|  | if (!pointwise_optimize) { | 
|  | is_pointwise = false; | 
|  | } | 
|  | // std::cout << "__torch_function__ " << ((is_pointwise) ? "pointwise" : "functorch") << " " << orig << "\n"; | 
|  |  | 
|  | Slice<mpy::hdl<Dim>> all_dims; | 
|  | Slice<mpy::handle> flat_args; | 
|  | auto unflatten_args = tree_flatten(A, args, flat_args); | 
|  | TensorRef device_holding_tensor; | 
|  |  | 
|  | Slice<TensorInfo> infos; | 
|  | Slice<DimEntry> result_levels; | 
|  | for (auto f : flat_args) { | 
|  | infos.append(A, TensorInfo::create(A, f, !is_pointwise, false)); | 
|  | if (infos.back()) { | 
|  | TensorInfo& info = infos.back(); | 
|  | AT_ASSERT(is_pointwise || info.batchedtensor); | 
|  | if (!device_holding_tensor && info.has_device) { | 
|  | device_holding_tensor = infos.back().tensor; | 
|  | } | 
|  | for (auto l : info.levels) { | 
|  | if (!result_levels.contains(l)) { | 
|  | result_levels.append(A, l); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (is_pointwise) { | 
|  | for (auto i : flat_args.enumerate()) { | 
|  | if (infos[i]) { | 
|  | TensorRef tensor = infos[i].tensor; | 
|  | if (device_holding_tensor && !infos[i].has_device) { | 
|  | tensor = A.autorelease(tensor->to(device_holding_tensor->device())); | 
|  | } | 
|  | auto ml = _match_levels(A, tensor, infos[i].levels, result_levels); | 
|  | flat_args[i] = handle_from_tensor(A, std::move(ml)); | 
|  | } | 
|  | } | 
|  |  | 
|  | Slice<mpy::handle> flat_it = flat_args; | 
|  | mpy::vector_args uargs = unflatten_args(A, flat_it); | 
|  |  | 
|  | mpy::object result = orig.call_vector(uargs); | 
|  |  | 
|  | // fast wrap for normal case where operator just returns a tensor. | 
|  | if (THPVariable_Check(result.ptr())) { | 
|  | return Tensor::from_positional(A, THPVariable_Unpack(result.ptr()), result_levels, device_holding_tensor); | 
|  | } | 
|  | auto wrap = [&](mpy::handle h) { | 
|  | if (THPVariable_Check(h.ptr())){ | 
|  | return A.autorelease(Tensor::from_positional(A, THPVariable_Unpack(h.ptr()), result_levels, device_holding_tensor)); | 
|  | } | 
|  | return h; | 
|  | }; | 
|  | return tree_map(A, wrap, result); | 
|  | } else { | 
|  | // std::cout << orig << " calling functorch...\n"; | 
|  | // std::cout << "rl: " << result_levels << "\n"; | 
|  | EnableAllLayers guard(A, result_levels); | 
|  | for (auto i : flat_args.enumerate()) { | 
|  | if (infos[i]) { | 
|  | TensorRef batched = infos[i].batchedtensor; | 
|  | if (device_holding_tensor && !infos[i].has_device) { | 
|  | batched = A.autorelease(batched->to(device_holding_tensor->device())); | 
|  | } | 
|  | guard.inplace_update_layers(batched, infos[i].levels); | 
|  | flat_args[i] = handle_from_tensor(A, batched); | 
|  | } | 
|  | } | 
|  | Slice<mpy::handle> flat_it = flat_args; | 
|  | mpy::vector_args uargs = unflatten_args(A, flat_it); | 
|  | AT_ASSERT(flat_it.size() == 0); | 
|  | mpy::object result = orig.call_vector(uargs); | 
|  | auto wrap = [&](mpy::handle h) { | 
|  | if (THPVariable_Check(h.ptr())) { | 
|  | return A.autorelease(guard.from_batched(A, THPVariable_Unpack(h.ptr()), device_holding_tensor)); | 
|  | } | 
|  | return h; | 
|  | }; | 
|  | if (THPVariable_Check(result.ptr())) { | 
|  | return guard.from_batched(A, THPVariable_Unpack(result.ptr()), device_holding_tensor); | 
|  | } | 
|  | return tree_map(A, wrap, result); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static mpy::object __torch_function__(Arena &A, mpy::handle orig, mpy::vector_args args, bool is_pointwise) { | 
|  | if (orig == torch_Tensor___mul__) { | 
|  | AT_ASSERT(args.nargs == 2 && !args.has_keywords()); | 
|  | auto lhs = args[0]; | 
|  | auto rhs = args[1]; | 
|  | if (mpy::isinstance(lhs, _Tensor) && mpy::isinstance(rhs, _Tensor) && _Tensor_ndim(lhs) == 0 && _Tensor_ndim(rhs) == 0) { | 
|  | bool has_device = false; | 
|  | Slice<DimEntry> levels; | 
|  | for (auto i : args.enumerate_positional()) { | 
|  | auto t = TensorInfo::create(A, args[i], false); | 
|  | // something like a mask * rhs, which matrix multiplies don't correctly promote | 
|  | if (!t.tensor->is_floating_point()) { | 
|  | return run_torch_function(A, orig, args, is_pointwise); | 
|  | } | 
|  | has_device = has_device || t.has_device; | 
|  | for (auto l : t.levels) { | 
|  | if (!levels.contains(l)) { | 
|  | levels.append(A, l); | 
|  | } | 
|  | } | 
|  | } | 
|  | // std::cout << "__torch_function__ " << "delay" << " " << orig << "\n"; | 
|  | return Tensor::create_delayed(mpy::object::borrow(orig), args, levels, has_device); | 
|  | } | 
|  | } | 
|  | return run_torch_function(A, orig, args, is_pointwise); | 
|  | } | 
|  |  | 
|  | mpy::vector_args as_vector_args(Arena& A, mpy::handle args, mpy::handle kwargs) { | 
|  | auto pos_args = (mpy::handle*) &PyTuple_GET_ITEM(args.ptr(), 0); | 
|  | auto pos_n = PyTuple_GET_SIZE(args.ptr()); | 
|  | if (!kwargs.ptr()) { | 
|  | return mpy::vector_args(pos_args, pos_n, nullptr); | 
|  | } | 
|  | Slice<mpy::handle> all_args; | 
|  | Slice<mpy::handle> kwnames; | 
|  | all_args.extend(A, pos_args, pos_args + pos_n); | 
|  | mpy::dict_view dv(kwargs); | 
|  | Py_ssize_t pos = 0; | 
|  | mpy::handle key, value; | 
|  | while (dv.next(&pos, &key, &value)) { | 
|  | all_args.append(A, value); | 
|  | kwnames.append(A, key); | 
|  | } | 
|  | return mpy::vector_args(all_args.begin(), pos_n, A.autorelease(slice_to_tuple(kwnames))); | 
|  | } | 
|  |  | 
|  | static PyObject* py___torch_function__(PyObject *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | maybeInitializeGlobals(); | 
|  | AT_ASSERT(nargs == 4 || nargs == 5); | 
|  | auto va = as_vector_args(A, args[3], nargs == 5 ? args[4] : nullptr); | 
|  | bool is_pointwise = pointwise.contains(args[1]); | 
|  | return __torch_function__(A, args[1], std::move(va), is_pointwise).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | mpy::object levels_to_tuple(Slice<DimEntry> slice) { | 
|  | mpy::tuple t(slice.size()); | 
|  | for (auto i : slice.enumerate()) { | 
|  | t.set(i, slice[i].is_positional() ?  mpy::from_int(slice[i].position()) : mpy::object::borrow(slice[i].dim())); | 
|  | } | 
|  | mpy::object r = std::move(t); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | PyObject* Tensor_ndim(Tensor* self, void*) { | 
|  | Py_ssize_t i = 0; | 
|  | for (auto l : self->levels()) { | 
|  | if (l.is_positional()) { | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | return mpy::from_int(i).release(); | 
|  | } | 
|  |  | 
|  | static PyGetSetDef Tensor_getsetters[] = { | 
|  | {"_has_device", (getter) [](PyObject* self, void*) -> PyObject* { return mpy::from_bool(((Tensor*)self)->has_device()).release(); }, NULL}, | 
|  | {"_tensor", (getter) [](PyObject* self, void*) -> PyObject* { | 
|  | Arena A; | 
|  | return THPVariable_Wrap(((Tensor*)self)->tensor(A)); }, NULL}, | 
|  | {"_batchtensor", (getter) [](PyObject* self, void*) -> PyObject* { | 
|  | Arena A; | 
|  | return THPVariable_Wrap(((Tensor*)self)->batchtensor(A)); }, NULL}, | 
|  | {"_levels", (getter) [](PyObject* self, void*) -> PyObject* { | 
|  | PY_BEGIN | 
|  | return levels_to_tuple(((Tensor*)self)->levels()).release(); | 
|  | PY_END(nullptr) | 
|  | }}, | 
|  | {"ndim", (getter) Tensor_ndim, NULL, "ndim", NULL}, | 
|  | {NULL}  /* Sentinel */ | 
|  | }; | 
|  |  | 
|  | static PyMethodDef Tensor_methods[] = { | 
|  | {NULL, NULL, 0, NULL}        /* Sentinel */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | PyTypeObject Tensor::Type = { | 
|  | PyVarObject_HEAD_INIT(NULL, 0) | 
|  | "_C.Tensor",               /* tp_name */ | 
|  | sizeof(Tensor),               /* tp_basicsize */ | 
|  | 0,                              /* tp_itemsize */ | 
|  | Tensor::dealloc_stub,      /* tp_dealloc */ | 
|  | 0,                              /* tp_vectorcall_offset */ | 
|  | 0,                              /* tp_getattr */ | 
|  | 0,                              /* tp_setattr */ | 
|  | 0,                              /* tp_as_async */ | 
|  | 0,           /* tp_repr */ | 
|  | 0,                 /* tp_as_number */ | 
|  | 0,                 /* tp_as_sequence */ | 
|  | 0,             /* tp_as_mapping */ | 
|  | 0,      /* tp_hash */ | 
|  | 0,                              /* tp_call */ | 
|  | 0,                              /* tp_str */ | 
|  | 0,                              /* tp_getattro */ | 
|  | 0,                              /* tp_setattro */ | 
|  | 0,                              /* tp_as_buffer */ | 
|  | Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE , /* tp_flags */ | 
|  | "Tensor Object",                   /* tp_doc */ | 
|  | 0,                              /* tp_traverse */ | 
|  | 0,                              /* tp_clear */ | 
|  | 0,  /* tp_richcompare */ | 
|  | 0,                              /* tp_weaklistoffset */ | 
|  | 0,                              /* tp_iter */ | 
|  | 0,                              /* tp_iternext */ | 
|  | Tensor_methods,                /* tp_methods */ | 
|  | 0,                              /* tp_members */ | 
|  | Tensor_getsetters,             /* tp_getset */ | 
|  | 0,                              /* tp_base */ | 
|  | 0,                              /* tp_dict */ | 
|  | 0,                              /* tp_descr_get */ | 
|  | 0,                              /* tp_descr_set */ | 
|  | 0,                              /* tp_dictoffset */ | 
|  | 0,            /* tp_init */ | 
|  | 0,                              /* tp_alloc */ | 
|  | Tensor::new_stub,                      /* tp_new */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | // dim() -------------------- | 
|  |  | 
|  | bool relevant_op(_Py_CODEUNIT c) { | 
|  | switch(c) { | 
|  | case STORE_NAME: | 
|  | case STORE_GLOBAL: | 
|  | case STORE_FAST: | 
|  | case STORE_DEREF: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | mpy::object create_dim(mpy::object name, mpy::handle size) { | 
|  | auto d = Dim::create(std::move(name)); | 
|  | if (!mpy::is_none(size)) { | 
|  | d->set_size(mpy::to_int(size)); | 
|  | } | 
|  | return std::move(d); | 
|  | } | 
|  |  | 
|  | mpy::object create_dimlist(mpy::object name, mpy::handle size) { | 
|  | auto d = DimList::create(std::move(name)); | 
|  | if (!mpy::is_none(size)) { | 
|  | if (mpy::is_int(size)) { | 
|  | d->bind_len(mpy::to_int(size)); | 
|  | } else { | 
|  | mpy::sequence_view s(size); | 
|  | d->bind_len(s.size()); | 
|  | for (auto i : irange(d->size())) { | 
|  | d->dims_[i]->set_size(mpy::to_int(s[i])); | 
|  | } | 
|  | } | 
|  | } | 
|  | return std::move(d); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // Python wrappers that make new reflection primitives available for older runtimes | 
|  | #if !(IS_PYTHON_3_11_PLUS) | 
|  | #define _PyCode_CODE(CO) ((_Py_CODEUNIT*)PyBytes_AS_STRING((CO)->co_code)) | 
|  | #endif | 
|  |  | 
|  | struct PyInstDecoder { | 
|  | PyInstDecoder(PyCodeObject* code_object, int lasti) | 
|  | : code_object_(code_object), code_(_PyCode_CODE(code_object)), offset_(lasti / sizeof(_Py_CODEUNIT))  {} | 
|  | // On Windows, _PyOpcode_Caches and _PyOpcode_Deopt are private symbols | 
|  | // See https://github.com/pytorch/pytorch/issues/93854 | 
|  | void next() { | 
|  | #if IS_PYTHON_3_11_PLUS && !defined(_WIN32) | 
|  | offset_ += _PyOpcode_Caches[opcode()]; | 
|  | #endif | 
|  | offset_ += 1; | 
|  | } | 
|  | int opcode() { | 
|  | auto r = _Py_OPCODE(code_[offset_]); | 
|  | #if IS_PYTHON_3_11_PLUS && !defined(_WIN32) | 
|  | r = _PyOpcode_Deopt[r]; | 
|  | #endif | 
|  | return r; | 
|  | } | 
|  | int oparg() { | 
|  | return _Py_OPARG(code_[offset_]); | 
|  | } | 
|  |  | 
|  | mpy::object name() { | 
|  | mpy::object names; | 
|  | switch(opcode()) { | 
|  | case STORE_NAME: | 
|  | case STORE_GLOBAL: | 
|  | names = mpy::object::borrow(code_object_->co_names); | 
|  | break; | 
|  | case STORE_FAST: | 
|  | names = mpy::object::steal(PyCode_GetVarnames(code_object_)); | 
|  | break; | 
|  | case STORE_DEREF: | 
|  | names = mpy::object::steal(PyCode_GetCellvars(code_object_)); | 
|  | break; | 
|  | default: | 
|  | return mpy::object(); | 
|  | } | 
|  | return mpy::object::steal(PySequence_GetItem(names.ptr(), oparg())); | 
|  | } | 
|  | private: | 
|  | PyCodeObject* code_object_; | 
|  | _Py_CODEUNIT* code_; | 
|  | int offset_; | 
|  | }; | 
|  |  | 
|  | template<mpy::object (*create_object)(mpy::object, mpy::handle)> | 
|  | static PyObject* _dims(PyObject *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | Py_ssize_t specified_ndims = -1; | 
|  | Py_ssize_t found_ndims = 0; | 
|  | Py_ssize_t sizes = -1; | 
|  | mpy::handle n = Py_None; | 
|  | mpy::handle py_sizes = Py_None; | 
|  |  | 
|  | if (nargs || kwnames) { | 
|  | mpy::vector_args va(args, nargs, kwnames); | 
|  | va.parse("dims", {"n", "sizes"}, {&n, &py_sizes}, 0); | 
|  | if (!mpy::is_none(py_sizes)) { | 
|  | sizes = mpy::sequence_view(py_sizes).size(); | 
|  | specified_ndims = sizes; | 
|  | } | 
|  | if (!mpy::is_none(n)) { | 
|  | specified_ndims = mpy::to_int(n); | 
|  | } | 
|  | } | 
|  |  | 
|  | PyThreadState* state = PyThreadState_GET(); | 
|  | auto f = mpy::obj<PyFrameObject>::steal(PyThreadState_GetFrame(state)); | 
|  | auto c = mpy::obj<PyCodeObject>::steal(PyFrame_GetCode(f.ptr())); | 
|  | auto lasti = PyFrame_GetLasti(f.ptr()); | 
|  | auto decoder = PyInstDecoder(c.ptr(), lasti); | 
|  | #if IS_PYTHON_3_11_PLUS | 
|  | // When py3.11 adapts bytecode lasti points to the precall | 
|  | // rather than the call instruction after it | 
|  | if (decoder.opcode() == PRECALL) { | 
|  | decoder.next(); | 
|  | } | 
|  | #endif | 
|  | decoder.next(); | 
|  |  | 
|  | if (relevant_op(decoder.opcode())) { | 
|  | found_ndims = 1; | 
|  | } else if (decoder.opcode() == UNPACK_SEQUENCE) { | 
|  | found_ndims = decoder.oparg(); | 
|  | decoder.next(); | 
|  | } | 
|  |  | 
|  | if (specified_ndims == -1) { | 
|  | if (found_ndims == 0) { | 
|  | mpy::raise_error(PyExc_SyntaxError, "dims() must be assigned to a sequence of variable names or have argument n specified"); | 
|  | } | 
|  | specified_ndims = found_ndims; | 
|  | } | 
|  | if (found_ndims != specified_ndims) { | 
|  | found_ndims = 0; // avoid taking the wrong names for dimensions | 
|  | } | 
|  |  | 
|  | auto genobject = [&](int i) -> mpy::object { | 
|  | mpy::object name; | 
|  | if (i < found_ndims) { | 
|  | name = decoder.name(); | 
|  | } | 
|  | if (!name.ptr()) { | 
|  | name = mpy::unicode_from_format("d%d", i); | 
|  | found_ndims = 0; // once we fail at finding a name, we can find any more | 
|  | } else { | 
|  | decoder.next(); | 
|  | } | 
|  | return create_object(std::move(name), sizes != -1 ? mpy::sequence_view(py_sizes)[i] : mpy::handle(Py_None)); | 
|  | }; | 
|  | if (sizes != -1 && sizes != specified_ndims) { | 
|  | mpy::raise_error(PyExc_ValueError, "expected %d sizes but found %d", int(specified_ndims), int(sizes)); | 
|  | } | 
|  | if (specified_ndims == 1) { | 
|  | return genobject(0).release(); | 
|  | } | 
|  | mpy::tuple result(specified_ndims); | 
|  | for (int i = 0; i < specified_ndims; ++i) { | 
|  | result.set(i, genobject(i)); | 
|  | } | 
|  | return result.release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | int64_t dim_index(const std::vector<mpy::obj<Dim>>& dims, mpy::hdl<Dim> dim) { | 
|  | for (int64_t i = 0, N  = dims.size(); i < N; ++i) { | 
|  | if (dims[i].ptr() == dim.ptr()) { | 
|  | return i; | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | struct DotPart { | 
|  | Slice<DimEntry> dims; | 
|  | size_t total_size = 1; | 
|  | void append(Arena& A, mpy::hdl<Dim> d) { | 
|  | total_size *= d->size(); | 
|  | dims.append(A, d); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename T> | 
|  | static at::ArrayRef<T> as_array_ref(Slice<T> t) { | 
|  | return at::ArrayRef<T>(t.begin(), t.end()); | 
|  | } | 
|  |  | 
|  | TensorRef dot_prepare(Arena& A, std::initializer_list<DotPart> parts, const TensorInfo& t) { | 
|  | Slice<DimEntry> new_levels; | 
|  | bool needs_reshape = false; | 
|  | for (auto p : parts) { | 
|  | if (p.dims.size() != 1) { | 
|  | needs_reshape = true; | 
|  | } | 
|  | new_levels.extend(A, p.dims); | 
|  | } | 
|  | auto r = _match_levels(A, t.tensor, t.levels, new_levels, true); | 
|  | if (!needs_reshape) { | 
|  | return r; | 
|  | } | 
|  | Slice<int64_t> view; | 
|  | for (auto p : parts) { | 
|  | view.append(A, p.total_size); | 
|  | } | 
|  | return A.autorelease(r->reshape(at::IntArrayRef(view.begin(), view.end()))); | 
|  | } | 
|  |  | 
|  | mpy::object dot_finish(Arena& A, std::initializer_list<DotPart> parts, at::Tensor r) { | 
|  | Slice<DimEntry> result_levels; | 
|  | bool needs_reshape = false; | 
|  | for (auto p : parts) { | 
|  | if (p.dims.size() != 1) { | 
|  | needs_reshape = true; | 
|  | } | 
|  | result_levels.extend(A, p.dims); | 
|  | } | 
|  | if (needs_reshape) { | 
|  | Slice<int64_t> new_size; | 
|  | for (auto l : result_levels) { | 
|  | new_size.append(A, l.dim()->size()); | 
|  | } | 
|  | r = r.reshape(at::IntArrayRef(new_size.begin(), new_size.end())); | 
|  | } | 
|  | return Tensor::from_positional(A, std::move(r), result_levels, true); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | mpy::object dot(Arena& A, TensorInfo lhs, TensorInfo rhs, Slice<DimEntry> sum) { | 
|  | auto lhs_strides = lhs.tensor->strides(); | 
|  | auto rhs_strides = rhs.tensor->strides(); | 
|  |  | 
|  | DotPart lro_dims; | 
|  | DotPart lo_dims; | 
|  | DotPart ro_dims; | 
|  | DotPart lr_dims; | 
|  |  | 
|  | auto insert_dim = [&] (mpy::hdl<Dim> d, at::optional<int> lhs_idx, at::optional<int> rhs_idx) { | 
|  | bool reduced = sum.contains(d); | 
|  | int64_t lhs_stride = lhs_idx ? lhs_strides[*lhs_idx] : 0; | 
|  | int64_t rhs_stride = rhs_idx ? rhs_strides[*rhs_idx] : 0; | 
|  | if (reduced) { | 
|  | // lr | 
|  | lr_dims.append(A, d); | 
|  | } else { | 
|  | if ((lhs_stride == 0) == (rhs_stride == 0)) { | 
|  | // lro | 
|  | lro_dims.append(A, d); | 
|  | } else if (lhs_stride != 0) { | 
|  | // lo | 
|  | lo_dims.append(A, d); | 
|  | } else { | 
|  | AT_ASSERT(rhs_stride != 0); | 
|  | ro_dims.append(A, d); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | auto rhs_seen = A.allocate<bool>(rhs.levels.size()); | 
|  | std::fill(rhs_seen, rhs_seen + rhs.levels.size(), false); | 
|  |  | 
|  | for (auto i : lhs.levels.enumerate()) { | 
|  | auto d = lhs.levels[i]; | 
|  | auto rhs_idx = rhs.levels.index(d); | 
|  | if (rhs_idx) { | 
|  | rhs_seen[*rhs_idx] = true; | 
|  | } | 
|  | insert_dim(d.dim(), i, rhs_idx); | 
|  | } | 
|  |  | 
|  | for (auto i : rhs.levels.enumerate()) { | 
|  | if (rhs_seen[i]) { | 
|  | continue; | 
|  | } | 
|  | auto d = rhs.levels[i]; | 
|  | insert_dim(d.dim(), at::nullopt, i); | 
|  | } | 
|  |  | 
|  | if (lr_dims.dims.size() != sum.size()) { | 
|  | for (auto & d : sum) { | 
|  | if (!lhs.levels.contains(d) && !rhs.levels.contains(d)) { | 
|  | mpy::raise_error(DimensionBindError(), "summing over non-existant dimension %S", d.dim().ptr()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // std::cout << lhs.levels << " " << rhs.levels << " " << sum << "\n"; | 
|  | // std::cout << lro_dims.dims << " " << lo_dims.dims << " " << ro_dims.dims << " " << lr_dims.dims << "\n"; | 
|  |  | 
|  | // no batch, just call mm | 
|  | if (lro_dims.dims.size() != 0) { | 
|  | auto lhs_ = dot_prepare(A, {lro_dims, lo_dims, lr_dims}, lhs); | 
|  | auto rhs_ = dot_prepare(A, {lro_dims, lr_dims, ro_dims}, rhs); | 
|  | return dot_finish(A, {lro_dims, lo_dims, ro_dims}, at::bmm(*lhs_, *rhs_)); | 
|  | } else { | 
|  | auto lhs_ = dot_prepare(A, {lo_dims, lr_dims}, lhs); | 
|  | auto rhs_ = dot_prepare(A, {lr_dims, ro_dims}, rhs); | 
|  | return dot_finish(A, {lo_dims, ro_dims}, at::mm(*lhs_, *rhs_)); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static PyObject* test_c(PyObject *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  |  | 
|  | Arena A; | 
|  | Slice<int> s(A, 3, 4, 5); | 
|  | AT_ASSERT(s.size() == 3 && s.capacity() == 8); | 
|  | AT_ASSERT(s[0] == 3 && s[1] == 4 && s[2] == 5); | 
|  | s.append(A, 6); | 
|  | AT_ASSERT(s[3] == 6); | 
|  | for(int i : irange(10)) { | 
|  | s.append(A, i); | 
|  | } | 
|  | AT_ASSERT(s[0] == 3 && s.back() == 9 && s.size() == 14 && s.capacity() == 16); | 
|  |  | 
|  | Slice<int> s2(A, -1, -2, -3); | 
|  | AT_ASSERT(s2[1] == -2 && s[0] == 3); | 
|  |  | 
|  | auto ss = s.slice(1,2); | 
|  | AT_ASSERT(ss.size() == 1); | 
|  | AT_ASSERT(ss[0] == 4); | 
|  | AT_ASSERT(ss.capacity() == 1); | 
|  | ss.append(A, -4); | 
|  | AT_ASSERT(ss.size() == 2 && ss[1] == -4); | 
|  | ss[0] = 3; | 
|  | AT_ASSERT(s[1] == 4); | 
|  |  | 
|  | s.insert(A, s.slice(1, 4), ss); | 
|  | AT_ASSERT(s[1] == 3  && s[2] == -4 && s[3] == 0); | 
|  |  | 
|  | auto sz = s.size(); | 
|  | s.insert(A, s.slice(1, 1), 4); | 
|  | AT_ASSERT(s[1] == 4 && sz + 1 == s.size()); | 
|  |  | 
|  |  | 
|  | Slice<int> d(A, 0, 1, 2, 3, 4); | 
|  |  | 
|  | Slice<int> b(A, 0, 1, 2, 3, 4); | 
|  | b.insert(A, b.slice(1,1), d); | 
|  | AT_ASSERT(b.size() == 10); | 
|  | AT_ASSERT(b[1] == 0); | 
|  | AT_ASSERT(b[5] == 4); | 
|  | AT_ASSERT(b.back() == 4); | 
|  |  | 
|  | Py_RETURN_NONE; | 
|  |  | 
|  | PY_END(nullptr); | 
|  | } | 
|  |  | 
|  | static DimEntry _wrap_dim(mpy::handle d, size_t N, bool keepdim); | 
|  |  | 
|  | static PyObject* order(PyObject *_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | if (kwnames) { | 
|  | mpy::raise_error(PyExc_TypeError, "unexpected keyword arguments %S", kwnames); | 
|  | } | 
|  | AT_ASSERT(nargs-- > 0); | 
|  | Slice<DimEntry> orig_levels; | 
|  | Slice<DimEntry> levels; | 
|  | TensorRef data; | 
|  | mpy::handle self = args++[0]; | 
|  | bool has_device; | 
|  | if (Tensor::check_exact(self)) { | 
|  | auto t = Tensor::unchecked_wrap(self); | 
|  | orig_levels = t->levels(); | 
|  | data = t->tensor(A); | 
|  | has_device = t->has_device(); | 
|  | } else { | 
|  | auto d = Dim::unchecked_wrap(self); | 
|  | orig_levels.append(A, d); | 
|  | data = d->range(); | 
|  | has_device = false; | 
|  | } | 
|  |  | 
|  | Slice<DimEntry> flat_positional_dims; | 
|  | Slice<std::pair<int, int>> to_flatten; | 
|  | levels.extend(A, orig_levels); | 
|  |  | 
|  | int orig_ndim = ndim_of_levels(levels); | 
|  | auto append = [&](DimEntry d) { | 
|  | auto midx = levels.index(d); | 
|  | if (!midx) { | 
|  | if (d.is_positional()) { | 
|  | mpy::raise_error(PyExc_ValueError, "tensor has %d positional dimensions, but %d specified, or it was specified twice", int(orig_ndim), int(d.position() + orig_ndim)); | 
|  | } else { | 
|  | mpy::raise_error(PyExc_ValueError, "tensor of dimensions %R does not contain dim %R or it was specified twice", levels_to_tuple(orig_levels).ptr(), d.dim().ptr()); | 
|  | } | 
|  | } | 
|  | levels[*midx] = DimEntry(); | 
|  | flat_positional_dims.append(A, d); | 
|  | }; | 
|  |  | 
|  | int n_new_positional = 0; | 
|  | for (auto i :irange(nargs)) { | 
|  | mpy::handle arg  = args[i]; | 
|  | DimEntry entry = _wrap_dim(arg, orig_ndim, false); | 
|  | if (!entry.is_none()) { | 
|  | append(entry); | 
|  | ++n_new_positional; | 
|  | } else if (DimList::check(arg)) { | 
|  | auto dl = DimList::unchecked_wrap(arg); | 
|  | for (mpy::obj<Dim> & d : dl->dims_) { | 
|  | append(mpy::hdl<Dim>(d)); | 
|  | ++n_new_positional; | 
|  | } | 
|  | } else { | 
|  | ++n_new_positional; | 
|  | if (!mpy::is_sequence(arg)) { | 
|  | mpy::raise_error(PyExc_ValueError, "expected a Dim, List[Dim], or Sequence[Dim]"); | 
|  | } | 
|  | mpy::sequence_view sq(arg); | 
|  | auto N = sq.size(); | 
|  | to_flatten.append(A, std::make_pair(flat_positional_dims.size(), N)); | 
|  | for (auto j : irange(N)) { | 
|  | DimEntry e = _wrap_dim(A.autorelease(sq[j]), orig_ndim, false); | 
|  | if (e.is_none()) { | 
|  | mpy::raise_error(PyExc_ValueError, "expected a Dim, or int"); | 
|  | } | 
|  | append(e); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | int ndim = 0; | 
|  | int insert_point = -1; | 
|  | Slice<DimEntry> new_levels; | 
|  | for (auto l : levels) { | 
|  | if (l.is_none()) { | 
|  | continue; | 
|  | } | 
|  | if (l.is_positional()) { | 
|  | ndim++; | 
|  | if (insert_point == -1) { | 
|  | insert_point = new_levels.size(); | 
|  | new_levels.extend(A, flat_positional_dims); | 
|  | } | 
|  | } | 
|  | new_levels.append(A, l); | 
|  | } | 
|  | if (insert_point == -1) { | 
|  | insert_point = new_levels.size(); | 
|  | new_levels.extend(A, flat_positional_dims); | 
|  | } | 
|  |  | 
|  | at::Tensor ndata = *_match_levels(A, data, orig_levels, new_levels); | 
|  |  | 
|  | if (to_flatten.size()) { | 
|  | Slice<int64_t> view; | 
|  | auto sz = ndata.sizes(); | 
|  | // before the new positional dims | 
|  | for (auto i : irange(0, insert_point)) { | 
|  | view.append(A, sz[i]); | 
|  | } | 
|  | int i = 0; | 
|  | for (auto to_flat : to_flatten) { | 
|  | for (;i < to_flat.first; ++i) { | 
|  | view.append(A, sz[insert_point + i]); | 
|  | } | 
|  | int64_t new_size = 1; | 
|  | int last = i + to_flat.second; | 
|  | for (; i < last; ++i) { | 
|  | new_size *= sz[insert_point + i]; | 
|  | } | 
|  | view.append(A, new_size); | 
|  | } | 
|  | for (; i < flat_positional_dims.size(); ++i) { | 
|  | view.append(A, sz[insert_point + i]); | 
|  | } | 
|  | // after the new positional dims | 
|  | for (auto i : irange(insert_point + flat_positional_dims.size(), levels.size())) { | 
|  | view.append(A, sz[i]); | 
|  | } | 
|  | // we shorted the number of dimension, so remove them from new levels | 
|  | // we will renumber them later | 
|  | auto n_to_remove = flat_positional_dims.size() - n_new_positional; | 
|  | new_levels.insert(A, new_levels.slice(insert_point, insert_point + n_to_remove), Slice<DimEntry>()); | 
|  | ndata = std::move(ndata).reshape(at::IntArrayRef(view.begin(), view.end())); | 
|  | } | 
|  |  | 
|  | // renumber the positional dimension | 
|  | int seen = 0; | 
|  | for (auto i : new_levels.reversed_enumerate()) { | 
|  | if (new_levels[i].is_positional() || (i >= insert_point && i < insert_point + n_new_positional)) { | 
|  | new_levels[i] = --seen; | 
|  | } | 
|  | } | 
|  | return Tensor::from_positional(A, std::move(ndata), new_levels, has_device).release(); | 
|  |  | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* expand(PyObject *_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | AT_ASSERT(nargs-- > 0); | 
|  | auto info = TensorInfo::create(A, args++[0], false); | 
|  | for (auto i : irange(nargs)) { | 
|  | if (!Dim::check(args[i])) { | 
|  | maybeInitializeGlobals(); | 
|  | mpy::vector_args vargs(args - 1, nargs + 1, kwnames); | 
|  | if (THPVariable_Check(args[-1])) { | 
|  | return torch_Tensor_expand.call_vector(vargs).release(); | 
|  | } else { | 
|  | return __torch_function__(A, torch_Tensor_expand, vargs, false).release(); | 
|  | } | 
|  | } | 
|  | } | 
|  | const at::Tensor& data = *info.tensor; | 
|  | auto levels = info.levels; | 
|  | Slice<DimEntry> new_levels; | 
|  | Slice<int64_t> sz; | 
|  | Slice<int64_t> sd; | 
|  | for (auto i : irange(nargs)) { | 
|  | auto d = Dim::unchecked_wrap(args[i]); | 
|  | if (levels.contains(d) || new_levels.contains(d)) { | 
|  | mpy::raise_error(DimensionBindError(), "expanding dimension %R already exists in tensor with dims", d.ptr()); | 
|  | } | 
|  | new_levels.append(A, d); | 
|  | sz.append(A, d->size()); | 
|  | sd.append(A, 0); | 
|  | } | 
|  | new_levels.extend(A, levels); | 
|  | at::IntArrayRef osz = data.sizes(); | 
|  | at::IntArrayRef osd = data.strides(); | 
|  | sz.extend(A, osz.begin(), osz.end()); | 
|  | sd.extend(A, osd.begin(), osd.end()); | 
|  | at::Tensor ndata = data.as_strided(at::IntArrayRef(sz.begin(), sz.end()), at::IntArrayRef(sd.begin(), sd.end()), data.storage_offset()); | 
|  | return Tensor::from_positional(A, std::move(ndata), new_levels, info.has_device).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  |  | 
|  | void _bind_dims_to_size(Arena & A, int64_t sz, int64_t sd, | 
|  | Slice<mpy::hdl<Dim>> dims, Slice<int64_t>& nsz, Slice<int64_t>& nsd) { | 
|  | int64_t rhs_prod = 1; | 
|  | for (auto i : dims.enumerate()) { | 
|  | if (!dims[i]->is_bound()) { | 
|  | for (auto j : irange(i + 1, dims.size())) { | 
|  | if (!dims[j]->is_bound()) { | 
|  | mpy::raise_error(DimensionBindError(), "cannot infer the sizes of two dimensions at once %R and %R", dims[i].ptr(), dims[j].ptr()); | 
|  | } | 
|  | rhs_prod *= dims[j]->size(); | 
|  | } | 
|  | if (sz % rhs_prod != 0) { | 
|  | mpy::tuple tup(dims.size()); | 
|  | for (auto j : dims.enumerate()) { | 
|  | tup.set(j, dims[j]->is_bound() ? mpy::from_int(dims[j]->size()) : mpy::unicode_from_string("?")); | 
|  | } | 
|  | mpy::raise_error(DimensionBindError(), "inferred dimension does not evenly fit into larger dimension: %d vs %R", (int) sz, tup.ptr()); | 
|  | } | 
|  | int64_t inferred_size = sz / rhs_prod; | 
|  | dims[i]->set_size(inferred_size); | 
|  | rhs_prod = sz; | 
|  | break; | 
|  | } | 
|  | rhs_prod *= dims[i]->size(); | 
|  | } | 
|  | if (rhs_prod != sz) { | 
|  | mpy::tuple tup(dims.size()); | 
|  | for (auto j : dims.enumerate()) { | 
|  | tup.set(j, mpy::object::borrow(dims[j])); | 
|  | } | 
|  | mpy::raise_error(DimensionBindError(), "Dimension sizes to do not match (%d != %d) when matching dimension pack %R", (int) sz, (int) rhs_prod, tup.ptr()); | 
|  | } | 
|  | auto new_strides = A.allocate<int64_t>(dims.size()); | 
|  | auto prev_stride = sd; | 
|  | for (auto i : dims.reversed_enumerate()) { | 
|  | new_strides[i] = prev_stride; | 
|  | prev_stride = dims[i]->size()*prev_stride; | 
|  | } | 
|  | for (auto i : dims.enumerate()) { | 
|  | nsd.append(A, new_strides[i]); | 
|  | nsz.append(A, dims[i]->size()); | 
|  | } | 
|  | } | 
|  |  | 
|  | inline bool has_dims(mpy::handle d) { | 
|  | return Dim::check_exact(d) || Tensor::check_exact(d); | 
|  | } | 
|  |  | 
|  | struct IndexingInfo { | 
|  | bool can_call_original; // if true, then it is safe to just call getitem or setitem, these objects do not need special handling | 
|  | bool advanced_indexing; // requires actual lookup | 
|  | TensorRef self; | 
|  | Slice<mpy::handle> flat_inputs; | 
|  | Slice<DimEntry> result_levels; | 
|  | bool has_device; | 
|  | }; | 
|  |  | 
|  | static Slice<mpy::handle> as_slice(mpy::tuple_view tv) { | 
|  | PyObject** begin = &PyTuple_GET_ITEM(tv.ptr(),0); | 
|  | return Slice<mpy::handle>((mpy::handle*)begin, (mpy::handle*) (begin + tv.size())); | 
|  | } | 
|  |  | 
|  | static Slice<mpy::handle> as_slice(mpy::list_view tv) { | 
|  | PyObject** begin = &PyList_GET_ITEM(tv.ptr(),0); | 
|  | return Slice<mpy::handle>((mpy::handle*)begin, (mpy::handle*) (begin + tv.size())); | 
|  | } | 
|  |  | 
|  |  | 
|  | bool maybe_dimpack(Slice<mpy::handle>& elements, mpy::handle s, bool check_first=true) { | 
|  | // can we avoid rechecking? | 
|  | if (mpy::list_view::check(s)) { | 
|  | mpy::list_view tv(s); | 
|  | if (!check_first || (tv.size() && Dim::check_exact(tv[0]))) { | 
|  | elements = as_slice(tv); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | // can we avoid rechecking? | 
|  | if (mpy::tuple_view::check(s)) { | 
|  | mpy::tuple_view tv(s); | 
|  | if (!check_first || (tv.size() && Dim::check_exact(tv[0]))) { | 
|  | elements = as_slice(tv); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | bool is_dimpack(mpy::handle s) { | 
|  | Slice<mpy::handle> e; | 
|  | return maybe_dimpack(e, s); | 
|  | } | 
|  |  | 
|  | IndexingInfo getsetitem_flat(Arena& A, TensorInfo self_info, Slice<mpy::handle> input, Slice<DimEntry> keys, Slice<mpy::handle> values, bool has_dimpacks_or_none); | 
|  | static mpy::object invoke_getitem(Arena& A, const IndexingInfo& iinfo); | 
|  |  | 
|  | static mpy::object index(Arena& A, mpy::handle self, mpy::handle dims, mpy::handle indices) { | 
|  | maybeInitializeGlobals(); | 
|  | Slice<mpy::handle> dims_list; | 
|  | Slice<mpy::handle> indices_list; | 
|  | // we allow for matching single dims to multiple dims, | 
|  | // so we first have to normalize everything into the case where there is a list on lhs and the rhs | 
|  | bool lhs_list = mpy::tuple_view::check(dims) || mpy::list_view::check(dims); | 
|  | bool rhs_list = mpy::tuple_view::check(indices) || mpy::list_view::check(indices); | 
|  | if (lhs_list && rhs_list) { | 
|  | mpy::sequence_view dv(dims); | 
|  | mpy::sequence_view ind(indices); | 
|  | Py_ssize_t N = dv.size(); | 
|  | if (N != ind.size()) { | 
|  | mpy::raise_error(PyExc_TypeError, "dims (%d) and indices (%d) must have the same length", int(N), int(ind.size())); | 
|  | } | 
|  | for (auto i : irange(N)) { | 
|  | dims_list.append(A, A.autorelease(dv[i])); | 
|  | indices_list.append(A, A.autorelease(ind[i])); | 
|  | } | 
|  | } else { | 
|  | dims_list.append(A, dims); | 
|  | indices_list.append(A, indices); | 
|  | } | 
|  |  | 
|  | // dims being indexed can be grouped together into a single index space, and we have to | 
|  | // flatten them int a single dimension before we can index them... | 
|  | auto self_info = TensorInfo::create(A, self, false); | 
|  | auto ndim = self_info.ndim(); | 
|  | Slice<DimEntry> new_levels; | 
|  | Slice<DimEntry> to_flatten; | 
|  | Slice<DimEntry> dims_list_flat; | 
|  | auto parse_dim_entry = [&](mpy::handle s) -> DimEntry { | 
|  | auto d = _wrap_dim(s, ndim, false); | 
|  | if (d.is_none()) { | 
|  | mpy::raise_error(PyExc_TypeError, "expected a dimension specifyer but found %R", s.ptr()); | 
|  | } | 
|  | return d; | 
|  | }; | 
|  | auto dim_not_present = [&](DimEntry d) { | 
|  | if (d.is_positional()) { | 
|  | mpy::raise_error(PyExc_TypeError, "dimension %d not in tensor of %d dimensions", d.position() + ndim , ndim); | 
|  | } else { | 
|  | mpy::raise_error(PyExc_TypeError, "dimension %R not in tensor", d.dim()->ptr()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | for (auto i : dims_list.enumerate()) { | 
|  | Slice<mpy::handle> m; | 
|  | if (maybe_dimpack(m, dims_list[i], /*check_first=*/false)) { | 
|  | if (m.size() == 0) { | 
|  | // plausible semantics work for this to have 0 elements (e.g. the index will always be 0) | 
|  | dims_list_flat.append(A, DimEntry()); // value is just dropped | 
|  | } | 
|  | auto first = parse_dim_entry(m[0]); | 
|  | dims_list_flat.append(A, first); | 
|  | if (m.size() == 1) { | 
|  | continue; | 
|  | } | 
|  | if (to_flatten.size() == 0) { | 
|  | new_levels.extend(A, self_info.levels); | 
|  | } | 
|  | Slice<DimEntry> rest; | 
|  | for (auto i : irange(1, m.size())) { | 
|  | auto d = parse_dim_entry(m[i]); | 
|  | if (!new_levels.remove(A, d)) { | 
|  | dim_not_present(d); | 
|  | } | 
|  | rest.append(A, d); | 
|  | } | 
|  |  | 
|  | auto first_idx = new_levels.index(first); | 
|  | if (!first_idx) { | 
|  | dim_not_present(first); | 
|  | } | 
|  | new_levels.insert(A, new_levels.slice(*first_idx + 1, *first_idx + 1), rest); | 
|  | to_flatten.extend(A, rest); | 
|  | } else { | 
|  | dims_list_flat.append(A, parse_dim_entry(dims_list[i])); | 
|  | } | 
|  | } | 
|  | if (to_flatten.size() > 0) { | 
|  | TensorRef rearranged = _match_levels(A, self_info.tensor, self_info.levels, new_levels); | 
|  | at::IntArrayRef sizes = rearranged->sizes(); | 
|  | Slice<int64_t> new_sizes; | 
|  | Slice<DimEntry> reshape_levels; | 
|  | for (auto i : new_levels.enumerate()) { | 
|  | if (to_flatten.contains(new_levels[i])) { | 
|  | new_sizes.back() *= sizes[i]; | 
|  | } else { | 
|  | new_sizes.append(A, sizes[i]); | 
|  | reshape_levels.append(A, new_levels[i]); | 
|  | } | 
|  | } | 
|  | self_info.tensor = A.autorelease(rearranged->reshape(at::IntArrayRef(new_sizes.begin(), new_sizes.end()))); | 
|  |  | 
|  | self_info.levels = reshape_levels; // note: we are using the first level in a flattened group to represent the group for the rest of the op | 
|  | // we need to be careful not to rely the dimensions size because it doesnt match the size of the whole group | 
|  | } | 
|  | bool has_dimpacks = false; | 
|  | for (auto idx : indices_list) { | 
|  | if (mpy::tuple_view::check(idx) || mpy::list_view::check(idx)) { | 
|  | has_dimpacks = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | IndexingInfo info = getsetitem_flat(A, self_info, Slice<mpy::handle>(), dims_list_flat, indices_list, has_dimpacks); | 
|  | return invoke_getitem(A, info); | 
|  | } | 
|  |  | 
|  | // true -- the indices were flattend out of a tuple, list or sequence... | 
|  |  | 
|  | Slice<mpy::handle> slice_from_sequence(Arena& A, mpy::handle value) { | 
|  | if (mpy::tuple_view::check(value)) { | 
|  | return as_slice(mpy::tuple_view(value)); | 
|  | } else if (mpy::list_view::check(value)) { | 
|  | return as_slice(mpy::list_view(value)); | 
|  | } else { | 
|  | mpy::sequence_view sv(value); | 
|  | Slice<mpy::handle> r; | 
|  | for (auto i : sv.enumerate()) { | 
|  | r.append(A, A.autorelease(sv[i])); | 
|  | } | 
|  | return r; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool extractIndices(Arena& A, mpy::handle index, Slice<mpy::handle>& indices) { | 
|  | if (mpy::tuple_view::check(index)) { | 
|  | indices.extend(A, as_slice(mpy::tuple_view(index))); | 
|  | return true; | 
|  | } else if (THPVariable_Check(index.ptr())) { | 
|  | indices.append(A, index); | 
|  | return false; | 
|  | } else if (!mpy::is_sequence(index)) { | 
|  | indices.append(A, index); | 
|  | return false; | 
|  | } | 
|  | // a copy of treatSequenceAsTuple modified to add Dim and our wrapped tensors.. | 
|  | mpy::sequence_view sv(index); | 
|  | if (sv.size() >= 32) { | 
|  | indices.extend(A, slice_from_sequence(A, index)); | 
|  | return true; | 
|  | } | 
|  | for (auto i : sv.enumerate()) { | 
|  | mpy::handle item; | 
|  | try { | 
|  | item = sv[i]; | 
|  | } catch (mpy::exception_set & e) { | 
|  | PyErr_Clear(); | 
|  | indices.append(A, index); | 
|  | return false; | 
|  | } | 
|  | if (THPVariable_Check(item.ptr()) || mpy::is_sequence(item) || PySlice_Check(item.ptr()) || item.ptr() == Py_Ellipsis || mpy::is_none(item) || has_dims(item)) { | 
|  | indices.extend(A, slice_from_sequence(A, index)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | indices.append(A, index); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static IndexingInfo getsetitem(Arena & A, mpy::handle self, mpy::handle index, bool tensors_have_dims) { | 
|  | bool can_call_original_getitem = !tensors_have_dims; | 
|  |  | 
|  | Slice<mpy::handle> input; | 
|  | if (has_dims(index)) { | 
|  | input.append(A, index); | 
|  | } else { | 
|  | bool is_sequence = extractIndices(A, index, input); | 
|  | // nothing about first class dims here, fallback to getitem | 
|  | if (can_call_original_getitem && !is_sequence) { | 
|  | return { true }; | 
|  | } | 
|  | } | 
|  |  | 
|  | int64_t dims_indexed = 0; | 
|  | int64_t expanding_object = -1; | 
|  | DimList* unbound_dim_list = nullptr; | 
|  | auto check_expanding = [&](int64_t i) { | 
|  | if (expanding_object != -1) { | 
|  | mpy::raise_error(DimensionBindError(), "at most one ... or unbound dimension list can exist in indexing list but found 2 at offsets %d and %d", (int) expanding_object, (int) i); | 
|  | } | 
|  | expanding_object = i; | 
|  | }; | 
|  | Slice<int64_t> dimlists; | 
|  |  | 
|  | // calculate how many dimensioned have been indexed in order to compute the size of ... | 
|  | // or expand a potentially unbound dimension list. | 
|  |  | 
|  | bool has_dimpacks_or_none = false; | 
|  | for (auto i : input.enumerate()) { | 
|  | mpy::handle s = input[i]; | 
|  | if (Dim::check_exact(s) || Tensor::check_exact(s)) { | 
|  | can_call_original_getitem = false; | 
|  | ++dims_indexed; | 
|  | } else if (s.ptr() == Py_Ellipsis) { | 
|  | check_expanding(i); | 
|  | } else if (DimList::check(s)) { | 
|  | can_call_original_getitem = false; | 
|  | auto dl = DimList::unchecked_wrap(s); | 
|  | if (!dl->is_bound()) { | 
|  | check_expanding(i); | 
|  | unbound_dim_list = dl.ptr(); | 
|  | } else { | 
|  | dims_indexed += dl->dims_.size(); | 
|  | } | 
|  | dimlists.append(A, i); | 
|  | } else if (mpy::is_none(s)) { | 
|  | has_dimpacks_or_none = true; | 
|  | } else if (is_dimpack(s)) { | 
|  | can_call_original_getitem = false; | 
|  | has_dimpacks_or_none = true; | 
|  | ++dims_indexed; | 
|  | } else { | 
|  | ++dims_indexed; | 
|  | } | 
|  | } | 
|  |  | 
|  | // at this point if we haven't seen any Dim objects, we also can fallback to the original getitem. | 
|  | if (can_call_original_getitem) { | 
|  | return {true}; | 
|  | } | 
|  |  | 
|  | // std::cout << "__getitem__ " << self << " " << index << "\n"; | 
|  |  | 
|  | TensorInfo self_info = TensorInfo::create(A, self, false, true); | 
|  | auto ndim = self_info.ndim(); | 
|  | if (dims_indexed > ndim) { | 
|  | mpy::raise_error(PyExc_ValueError, "at least %d indices were supplied but the tensor only has %d dimensions", (int) dims_indexed, (int) ndim); | 
|  | } | 
|  | // expand any unbound dimension list, or expand ... into individual : slices. | 
|  | auto expanding_dims = ndim - dims_indexed; | 
|  | if (expanding_object != -1) { | 
|  | if (unbound_dim_list) { | 
|  | unbound_dim_list->bind_len(expanding_dims); | 
|  | } else { | 
|  | // ... | 
|  | Slice<mpy::handle> no_slices; | 
|  | for (auto i : irange(expanding_dims)) { | 
|  | (void) i; | 
|  | no_slices.append(A, no_slice); | 
|  | } | 
|  | input.insert(A, input.slice(expanding_object, expanding_object + 1), no_slices); | 
|  | } | 
|  | } | 
|  |  | 
|  | // flatten out any dimensions stored in dimlist elements directly into the inputs | 
|  | // std::cout << dimlists << " <- dim lists!\n"; | 
|  | for (int64_t i = dimlists.size() - 1; i >=0; --i) { | 
|  | auto idx = dimlists[i]; | 
|  | // we added more elements to input because of ... | 
|  | // so we need to also adjust the index to get back to where the | 
|  | // dimlist existed | 
|  | if (!unbound_dim_list && expanding_object != -1 && idx > expanding_object) { | 
|  | idx += expanding_dims; | 
|  | } | 
|  | auto dl = DimList::unchecked_wrap(input[idx]); | 
|  | // XXX would be better if we used an OwnedSlice in DimList | 
|  | Slice<mpy::handle> more_dims((mpy::handle*) &*dl->dims_.begin(), (mpy::handle*) &*dl->dims_.end()); | 
|  | input.insert(A, input.slice(idx, idx + 1), more_dims); | 
|  | } | 
|  |  | 
|  | return getsetitem_flat(A, self_info, input, Slice<DimEntry>(), Slice<mpy::handle>(), has_dimpacks_or_none); | 
|  | } | 
|  |  | 
|  | IndexingInfo getsetitem_flat(Arena& A, TensorInfo self_info, Slice<mpy::handle> input, Slice<DimEntry> keys, Slice<mpy::handle> values, bool has_dimpacks_or_none) { | 
|  | // At this point: | 
|  | // ..., DimList have been eliminated | 
|  | // Dim, Tensor, Tuple[Dim,...], int, slice still remain | 
|  |  | 
|  |  | 
|  | // we have to count how many times we see a dimension. | 
|  | // A[i,j] is a simple binding operation, but A[i, i+j] or A[i, i] requires advanced indexing. | 
|  | Slice<mpy::hdl<Dim>> seen_dims; | 
|  | Slice<int64_t> seen_dims_nuses; | 
|  | auto add_dim = [&](mpy::hdl<Dim> entry) { | 
|  | auto midx = seen_dims.index(entry); | 
|  | if (!midx) { | 
|  | seen_dims.append(A, entry); | 
|  | seen_dims_nuses.append(A, 1); | 
|  | } else { | 
|  | ++seen_dims_nuses[*midx]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | Slice<mpy::handle> input_it = input; | 
|  |  | 
|  | Slice<mpy::handle> flat_inputs; | 
|  | // flat inputs will start with an empty mpy::handle if the | 
|  | // actual value is in the tensor-like object in the tensor info | 
|  | Slice<TensorInfo> tensor_inputs; | 
|  |  | 
|  | auto append_flat_handle = [&](mpy::handle h) { | 
|  | flat_inputs.append(A, h); | 
|  | tensor_inputs.append(A, TensorInfo()); | 
|  | }; | 
|  | TensorRef device_holding_tensor; | 
|  | auto append_tensor_input = [&](TensorInfo ti) { | 
|  | flat_inputs.append(A, mpy::handle()); | 
|  | tensor_inputs.append(A, ti); | 
|  | if (ti.has_device && !device_holding_tensor) { | 
|  | device_holding_tensor = ti.tensor; | 
|  | } | 
|  | }; | 
|  |  | 
|  | Slice<int64_t> nsz; | 
|  | Slice<int64_t> nsd; | 
|  | at::IntArrayRef sz = self_info.tensor->sizes(); | 
|  | at::IntArrayRef sd = self_info.tensor->strides(); | 
|  |  | 
|  | auto append_size = [&](int i) { | 
|  | if (has_dimpacks_or_none) { | 
|  | nsz.append(A, sz[i]); | 
|  | nsd.append(A, sd[i]); | 
|  | } | 
|  | }; | 
|  | // std::cout << "self levels: " << self_info.levels << "\n"; | 
|  |  | 
|  | auto parse_nones = [&]() { | 
|  | while (input_it.size() && mpy::is_none(input_it[0])) { | 
|  | append_flat_handle(no_slice); | 
|  | nsz.append(A, 1); | 
|  | nsd.append(A, 0); | 
|  | input_it = input_it.slice(1); | 
|  | } | 
|  | }; | 
|  |  | 
|  |  | 
|  | auto append_item = [&](int i, mpy::handle arg) { | 
|  | if (Dim::check_exact(arg)) { | 
|  | auto d = Dim::unchecked_wrap(arg); | 
|  | d->set_size(sz[i]); | 
|  | add_dim(d); | 
|  | append_size(i); | 
|  | append_flat_handle(arg); | 
|  | return; | 
|  | } | 
|  | auto info = TensorInfo::create(A, arg, false, false); | 
|  | if (info) { | 
|  | append_size(i); | 
|  | append_tensor_input(info); | 
|  | for (auto il : info.levels) { | 
|  | if (!il.is_positional()) { | 
|  | add_dim(il.dim()); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (has_dimpacks_or_none) { | 
|  | Slice<mpy::handle> mp; | 
|  | if (maybe_dimpack(mp, arg)) { | 
|  | // dim pack | 
|  | Slice<mpy::hdl<Dim>> dim_pack; | 
|  | for (auto d : mp) { | 
|  | dim_pack.append(A, Dim::wrap(d)); | 
|  | add_dim(dim_pack.back()); | 
|  | append_flat_handle(dim_pack.back()); | 
|  | } | 
|  | _bind_dims_to_size(A, sz[i], sd[i], dim_pack, nsz, nsd); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | append_size(i); | 
|  | append_flat_handle(arg); | 
|  | }; | 
|  |  | 
|  | // pair up the indexing expressions with dimension of self it indexes | 
|  | // self may have first-class dims, which do not participate the indexing. | 
|  | for (auto i : self_info.levels.enumerate()) { | 
|  | auto l = self_info.levels[i]; | 
|  | auto idx = keys.index(l); | 
|  | if (idx) { | 
|  | append_item(i, values[*idx]); | 
|  | } else if (l.is_positional()) { | 
|  | // grab and index from the positional list | 
|  | parse_nones(); | 
|  | if (!input_it.size()) { | 
|  | // we might have fewer indices than tensor dimensions, | 
|  | // which implicitly indexes the remaining dimensions with : | 
|  | append_flat_handle(no_slice); | 
|  | append_size(i); | 
|  | } else { | 
|  | mpy::handle arg = input_it[0]; | 
|  | input_it = input_it.slice(1); | 
|  | append_item(i, arg); | 
|  | } | 
|  | } else { | 
|  | add_dim(l.dim()); | 
|  | append_flat_handle(l.dim()); | 
|  | append_size(i); | 
|  | } | 
|  | } | 
|  | // any training Nones may have no existing dimension associated with them in self. | 
|  | parse_nones(); | 
|  |  | 
|  | // we have to restride the tensor to collapse dimension packs and introduce our none dimensions. | 
|  | if (has_dimpacks_or_none) { | 
|  | self_info.tensor = A.autorelease(self_info.tensor->as_strided(at::IntArrayRef(nsz.begin(), nsz.end()),at::IntArrayRef(nsd.begin(), nsd.end()), self_info.tensor->storage_offset())); | 
|  | } | 
|  |  | 
|  |  | 
|  | // figure out what the shape of the indexing tensors will be | 
|  | // and what the shape of the resulting tensor will be | 
|  | Slice<DimEntry> result_levels; | 
|  | Slice<DimEntry> index_levels; | 
|  | int64_t tensor_insert_point = -1; | 
|  | bool requires_getindex = false; | 
|  | auto mark_tensor_index = [&] { | 
|  | if (tensor_insert_point == -1) { | 
|  | tensor_insert_point = result_levels.size(); | 
|  | } else if (tensor_insert_point != result_levels.size()) { | 
|  | tensor_insert_point = 0; | 
|  | } | 
|  | }; | 
|  | for (auto i : flat_inputs.enumerate()) { | 
|  | auto inp = flat_inputs[i]; | 
|  | if(tensor_inputs[i]) { | 
|  | requires_getindex = true; | 
|  | mark_tensor_index(); | 
|  | for (auto l : tensor_inputs[i].levels) { | 
|  | // std::cout << "Consider to add " << l << "\n"; | 
|  | if (!index_levels.contains(l)) { | 
|  | index_levels.append(A, l); | 
|  | } | 
|  | } | 
|  | } else if (Dim::check_exact(inp)) { | 
|  | auto d = Dim::unchecked_wrap(inp); | 
|  | // dimesions used once are just binding operations | 
|  | if (1 == seen_dims_nuses[*seen_dims.index(d)]) { | 
|  | flat_inputs[i] = no_slice; | 
|  | result_levels.append(A, d); | 
|  | } else { | 
|  | requires_getindex = true; | 
|  | flat_inputs[i] = mpy::handle(); | 
|  | tensor_inputs[i] = TensorInfo {d->range(), Slice<DimEntry>(A, DimEntry(d)), false, TensorRef()}; | 
|  | if (!index_levels.contains(d)) { | 
|  | index_levels.append(A, d); | 
|  | } | 
|  | mark_tensor_index(); | 
|  | } | 
|  | } else { | 
|  | if (inp.ptr() != no_slice.ptr()) { | 
|  | requires_getindex = true; | 
|  | } | 
|  | if (!mpy::is_int(inp)) { | 
|  | // note: actual positional indexes are accurately computed later | 
|  | result_levels.append(A, -1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // indexing dimensions appear in the tensor at the _first use of a tensor_ in the indexing. So insert | 
|  | // the indexing leveles into the result klevels at this spot | 
|  | if (tensor_insert_point != -1) { | 
|  | result_levels.insert(A, result_levels.slice(tensor_insert_point, tensor_insert_point), index_levels); | 
|  | } | 
|  |  | 
|  | // std::cout << "flat inputs: " << flat_inputs << "\n"; | 
|  | // std::cout << "result_levels: " << result_levels << "\n"; | 
|  | // std::cout << "index_levels: " << index_levels << "\n"; | 
|  |  | 
|  | // get all the tensors to be the right shape for indexing | 
|  | if (requires_getindex) { | 
|  | for (auto i : flat_inputs.enumerate()) { | 
|  | if (tensor_inputs[i]) { | 
|  | AT_ASSERT(!flat_inputs[i].ptr()); | 
|  | // std::cout << "tensor " << i << " " << tensor_inputs[i].levels << "\n"; | 
|  | TensorRef t = tensor_inputs[i].tensor; | 
|  | if (!tensor_inputs[i].has_device && device_holding_tensor) { | 
|  | t = A.autorelease(t->to(device_holding_tensor->device())); | 
|  | } | 
|  | flat_inputs[i] = handle_from_tensor(A, _match_levels(A, t, tensor_inputs[i].levels, index_levels)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // previously we didn't know how many positional dimensions there would be so we couldn't number them right | 
|  | // so fill it in now. | 
|  | auto seen_positionals = 0; | 
|  | for (auto i : result_levels.reversed_enumerate()) { | 
|  | if (result_levels[i].is_positional()) { | 
|  | result_levels[i] = -(++seen_positionals); | 
|  | } | 
|  | } | 
|  |  | 
|  | return IndexingInfo {false, requires_getindex, self_info.tensor, flat_inputs, result_levels, self_info.has_device}; | 
|  | } | 
|  |  | 
|  | static mpy::object invoke_getitem(Arena& A, const IndexingInfo& iinfo) { | 
|  | at::Tensor rtensor; | 
|  | if (iinfo.advanced_indexing) { | 
|  | auto self_hdl = handle_from_tensor(A, iinfo.self); | 
|  | auto tup = slice_to_tuple(iinfo.flat_inputs); | 
|  | // std::cout << "calling original getindex " << self_hdl << " " << tup << "\n"; | 
|  | auto pytensor = mpy::object::checked_steal(THPVariable_getitem(self_hdl.ptr(), tup.ptr())); | 
|  | rtensor = THPVariable_Unpack(pytensor.ptr()); | 
|  | } else { | 
|  | // std::cout << "skipping original getindex\n"; | 
|  | rtensor = *iinfo.self; | 
|  | } | 
|  | // std::cout << "returning (from_positional)\n"; | 
|  | return Tensor::from_positional(A, std::move(rtensor), iinfo.result_levels, iinfo.has_device); | 
|  | } | 
|  |  | 
|  | static mpy::object __getitem__(Arena & A, mpy::handle self, mpy::handle index) { | 
|  | maybeInitializeGlobals(); | 
|  | auto iinfo = getsetitem(A, self, index, has_dims(self)); | 
|  | if (iinfo.can_call_original) { | 
|  | return mpy::object::checked_steal(THPVariable_getitem(self.ptr(), index.ptr())); | 
|  | } | 
|  |  | 
|  | return invoke_getitem(A, iinfo); | 
|  | } | 
|  |  | 
|  |  | 
|  | PyObject* Tensor_getitem(PyObject* self, PyObject* index) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | return __getitem__(A, self, index).release(); | 
|  | PY_END(nullptr); | 
|  | } | 
|  |  | 
|  | static void __setitem__(Arena & A, mpy::handle self, mpy::handle index, mpy::handle rhs) { | 
|  | maybeInitializeGlobals(); | 
|  | auto iinfo = getsetitem(A, self, index, has_dims(self) || has_dims(rhs)); | 
|  | if (iinfo.can_call_original) { | 
|  | if (-1 == THPVariable_setitem(self.ptr(), index.ptr(), rhs.ptr())) { | 
|  | throw mpy::exception_set(); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | auto rhs_info = TensorInfo::create(A, rhs, false, false); | 
|  | if (rhs_info) { // otherwise rhs can be a scalar... | 
|  | for (auto l : rhs_info.levels) { | 
|  | if (!iinfo.result_levels.contains(l)) { | 
|  | if (l.is_positional()) { | 
|  | mpy::raise_error(DimensionBindError(), "rhs contains too many dimensions (%d) compared to indexed value (%d)", ndim_of_levels(iinfo.result_levels), rhs_info.ndim()); | 
|  | } else { | 
|  | auto tup = levels_to_tuple(iinfo.result_levels); | 
|  | mpy::raise_error(DimensionBindError(), "rhs of setitem contains dimension %R which is not in the dimension on the left (%R)", l.dim().ptr(), tup.ptr()); | 
|  | } | 
|  | } | 
|  | } | 
|  | auto rhs_matched = _match_levels(A, rhs_info.tensor, rhs_info.levels, iinfo.result_levels); | 
|  | rhs = handle_from_tensor(A, rhs_matched); | 
|  | } | 
|  | self = handle_from_tensor(A, iinfo.self); | 
|  |  | 
|  | if (iinfo.advanced_indexing) { | 
|  | auto tup = slice_to_tuple(iinfo.flat_inputs); | 
|  | if (-1 == THPVariable_setitem(self.ptr(), tup.ptr(), rhs.ptr())) { | 
|  | throw mpy::exception_set(); | 
|  | } | 
|  | } else { | 
|  | torch_Tensor_copy_.call(self, rhs); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int Tensor_setitem(PyObject* self, PyObject* index, PyObject* value) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | __setitem__(A, self, index, value); | 
|  | return 0; | 
|  | PY_END(-1); | 
|  | } | 
|  |  | 
|  | static PyObject* py___getitem__(PyObject *_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | AT_ASSERT(nargs == 2); | 
|  | return __getitem__(A, args[0], args[1]).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* py___setitem__(PyObject *_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | AT_ASSERT(nargs == 3); | 
|  | __setitem__(A, args[0], args[1], args[2]); | 
|  | Py_RETURN_NONE; | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  |  | 
|  | static PyObject* py_index(PyObject *_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | mpy::vector_args va(args, nargs, kwnames); | 
|  | mpy::handle self, dims, indices; | 
|  | va.parse("index", {"self", "dims", "indices"}, {&self, &dims, &indices}, 3); | 
|  | return index(A, self, dims, indices).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  |  | 
|  | static PyObject* py_stack(PyObject *_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | mpy::vector_args va(args, nargs, kwnames); | 
|  | mpy::handle tensors, new_dim, dim; | 
|  | va.parse("stack", {"tensors", "new_dim", "dim"}, {&tensors, &new_dim, &dim}, 2); | 
|  |  | 
|  | Slice<DimEntry> result_levels; | 
|  | Slice<TensorInfo> infos; | 
|  | mpy::sequence_view sv(tensors); | 
|  | auto new_dim_d = Dim::wrap(new_dim); | 
|  | for (auto i : sv.enumerate()) { | 
|  | infos.append(A, TensorInfo::create(A, A.autorelease(sv[i]), false)); | 
|  | for (auto l : infos.back().levels) { | 
|  | if (!result_levels.contains(l)) { | 
|  | result_levels.append(A, l); | 
|  | } | 
|  | } | 
|  | } | 
|  | new_dim_d->set_size(infos.size()); | 
|  | std::vector<at::Tensor> inputs; | 
|  | inputs.reserve(infos.size()); | 
|  | for (auto in : infos) { | 
|  | inputs.emplace_back(*_match_levels(A, in.tensor, in.levels, result_levels)); | 
|  | } | 
|  | auto ndim = ndim_of_levels(result_levels); | 
|  | int64_t rawdim = 0; | 
|  | if (dim.ptr()) { | 
|  | auto d = _wrap_dim(dim, ndim, false); | 
|  | auto idx = result_levels.index(d); | 
|  | if (!idx) { | 
|  | mpy::raise_error(PyExc_TypeError, "Dimension %R does not exist in inputs", dim.ptr()); | 
|  | } | 
|  | rawdim = *idx; | 
|  | } | 
|  | auto result = at::stack(inputs, rawdim); | 
|  | result_levels.insert(A, rawdim, new_dim_d); | 
|  | return Tensor::from_positional(A, std::move(result), result_levels, true).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* py_split(PyObject *_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | maybeInitializeGlobals(); | 
|  | mpy::vector_args va(args, nargs, kwnames); | 
|  | mpy::handle self, split_size_or_sections, dim; | 
|  | va.parse("split", {"self", "split_size_or_sections", "dim"}, {&self, &split_size_or_sections, &dim}, 2); | 
|  | bool dim_is_object = dim.ptr() && Dim::check_exact(dim); | 
|  | Slice<mpy::handle> sizes; | 
|  |  | 
|  | bool all_dims = true; | 
|  | bool all_ints = true; | 
|  |  | 
|  | if (!mpy::is_int(split_size_or_sections)) { | 
|  | mpy::sequence_view sv(split_size_or_sections); | 
|  | for (auto i : sv.enumerate()) { | 
|  | sizes.append(A, A.autorelease(sv[i])); | 
|  | if (Dim::check_exact(sizes.back())) { | 
|  | all_ints = false; | 
|  | } else { | 
|  | all_dims = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (all_ints) { | 
|  | if (dim_is_object) { | 
|  | mpy::raise_error(PyExc_TypeError, "when dim is specified as a Dim object, split sizes must also be dimensions."); | 
|  | } | 
|  | // call original split (if self has dimensions this will use torch function to do the split) | 
|  | return torch_Tensor_split.call_vector(mpy::vector_args(args, nargs, kwnames)).release(); | 
|  | } | 
|  | if (!all_dims) { | 
|  | mpy::raise_error(PyExc_TypeError, "split list must be ints or dims but got a mix"); | 
|  | } | 
|  |  | 
|  | auto self_info = TensorInfo::create(A, self, false); | 
|  | auto ndim = self_info.ndim(); | 
|  | if (!dim_is_object&& ndim == 0) { | 
|  | mpy::raise_error(PyExc_TypeError, "split expects at least a 1-dimension tensor"); | 
|  | } | 
|  | DimEntry dim_l = dim.ptr() ? _wrap_dim(dim, ndim, false) : -ndim; | 
|  |  | 
|  | auto idx = self_info.levels.index(dim_l); | 
|  | if (!idx) { | 
|  | if (!dim.ptr()) { | 
|  | dim = A.autorelease(mpy::from_int(0)); | 
|  | } | 
|  | mpy::raise_error(PyExc_TypeError, "tensor does not comtain dimension %R", dim.ptr()); | 
|  | } | 
|  | Slice<int64_t> indices; | 
|  |  | 
|  | int64_t total_size = 0; | 
|  | Slice<int64_t> unbound; | 
|  | for (auto i : sizes.enumerate()) { | 
|  | auto d = Dim::unchecked_wrap(sizes[i]); | 
|  | if (d->is_bound()) { | 
|  | indices.append(A, d->size()); | 
|  | total_size += indices.back(); | 
|  | } else { | 
|  | indices.append(A, 0); | 
|  | unbound.append(A, i); | 
|  | } | 
|  | } | 
|  | auto tensor_size = self_info.tensor->sizes()[*idx]; | 
|  |  | 
|  | if (unbound.size()) { | 
|  | if (total_size > tensor_size) { | 
|  | mpy::raise_error(PyExc_TypeError, "sizes of target dimensions add up to more (%d) than source dim (%d)", int(total_size), int(tensor_size)); | 
|  | } | 
|  | auto remaining_size = tensor_size - total_size; | 
|  | auto chunk_size = (remaining_size + unbound.size() - 1) / unbound.size(); | 
|  | for (auto u : unbound) { | 
|  | auto sz = std::min(chunk_size, remaining_size); | 
|  | Dim::unchecked_wrap(sizes[u])->set_size(sz); | 
|  | indices[u] = sz; | 
|  | remaining_size -= sz; | 
|  | } | 
|  | } else if (tensor_size != total_size) { | 
|  | mpy::raise_error(PyExc_TypeError, "sum of sizes of target dimensions (%d) do not match the than source dim (%d)", int(total_size), int(tensor_size)); | 
|  | } | 
|  |  | 
|  | auto result_tensors = self_info.tensor->split_with_sizes(at::IntArrayRef(indices.begin(), indices.end()), *idx); | 
|  | mpy::tuple result(result_tensors.size()); | 
|  | Slice<DimEntry> new_levels; | 
|  | new_levels.extend(A, self_info.levels); | 
|  | for (auto i : sizes.enumerate()) { | 
|  | new_levels[*idx] = Dim::unchecked_wrap(sizes[i]); | 
|  | result.set(i, Tensor::from_positional(A, std::move(result_tensors[i]), new_levels, true)); | 
|  | } | 
|  |  | 
|  | return result.release(); | 
|  |  | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  |  | 
|  | static DimEntry _wrap_dim(mpy::handle d, size_t N, bool keepdim) { | 
|  | if (Dim::check(d)) { | 
|  | if (keepdim) { | 
|  | mpy::raise_error(PyExc_ValueError, "cannot preserve first-class dimensions with keepdim=True"); | 
|  | } | 
|  | return Dim::unchecked_wrap(d); | 
|  | } else if (mpy::is_int(d)) { | 
|  | auto i = mpy::to_int(d); | 
|  | while (i >= 0) { | 
|  | i -= N; | 
|  | } | 
|  | return i; | 
|  | } else { | 
|  | return DimEntry(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static Slice<DimEntry> _wrap_dims(Arena& A, mpy::handle d, size_t N, bool keepdim) { | 
|  | auto de = _wrap_dim(d, N, keepdim); | 
|  | Slice<DimEntry> r; | 
|  | if (!de.is_none()) { | 
|  | r.append(A, de); | 
|  | } else { | 
|  | mpy::sequence_view sq(d); | 
|  | for (auto i : sq.enumerate()) { | 
|  | r.append(A, _wrap_dim(A.autorelease(sq[i]), N, keepdim)); | 
|  | } | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | struct WrappedOperator : public mpy::base<WrappedOperator> { | 
|  | mpy::object orig; | 
|  | PyMethodDef method_def; | 
|  | mpy::object name, doc; | 
|  |  | 
|  | bool is_pointwise = false; | 
|  | int64_t dim_offset = 0; | 
|  | int64_t keepdim_offset = 1; | 
|  | std::string dim_name; | 
|  | bool single_dim = false; | 
|  | bool reduce = true; | 
|  |  | 
|  | static PyTypeObject Type; | 
|  |  | 
|  | void init(mpy::object orig_, PyCFunction wrapper_implementation, std::string dim_name_="") { | 
|  | orig = std::move(orig_); | 
|  | method_def.ml_meth = wrapper_implementation; | 
|  | name = orig.attr("__name__"); | 
|  | doc = orig.attr("__doc__"); | 
|  | dim_name = std::move(dim_name_); | 
|  | if (!mpy::is_none(doc) && !dim_name.empty()) { | 
|  | doc = mpy::unicode_from_format("%S\nArgument '%s' can be either an integer or a torchdim.Dim object.\n", doc.ptr(), dim_name.c_str()); | 
|  | } | 
|  | method_def.ml_name = mpy::is_none(name) ? "" : PyUnicode_AsUTF8(name.ptr()); | 
|  | method_def.ml_doc = mpy::is_none(doc) ? "" : PyUnicode_AsUTF8(doc.ptr()); | 
|  | method_def.ml_flags = METH_FASTCALL | METH_KEYWORDS; | 
|  | } | 
|  |  | 
|  | mpy::object function() { | 
|  | return mpy::object::checked_steal(PyCFunction_New(&method_def, ptr())); | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  | PyTypeObject WrappedOperator::Type = { | 
|  | PyVarObject_HEAD_INIT(NULL, 0) | 
|  | "_C.WrappedOperator",               /* tp_name */ | 
|  | sizeof(WrappedOperator),               /* tp_basicsize */ | 
|  | 0,                              /* tp_itemsize */ | 
|  | WrappedOperator::dealloc_stub,      /* tp_dealloc */ | 
|  | 0,                              /* tp_vectorcall_offset */ | 
|  | 0,                              /* tp_getattr */ | 
|  | 0,                              /* tp_setattr */ | 
|  | 0,                              /* tp_as_async */ | 
|  | 0,           /* tp_repr */ | 
|  | 0,                 /* tp_as_number */ | 
|  | 0,                 /* tp_as_sequence */ | 
|  | 0,             /* tp_as_mapping */ | 
|  | 0,      /* tp_hash */ | 
|  | 0,                              /* tp_call */ | 
|  | 0,                              /* tp_str */ | 
|  | 0,                              /* tp_getattro */ | 
|  | 0,                              /* tp_setattro */ | 
|  | 0,                              /* tp_as_buffer */ | 
|  | Py_TPFLAGS_DEFAULT, /* tp_flags */ | 
|  | "Wrapped Object Holder",                   /* tp_doc */ | 
|  | 0,                              /* tp_traverse */ | 
|  | 0,                              /* tp_clear */ | 
|  | 0,  /* tp_richcompare */ | 
|  | 0,                              /* tp_weaklistoffset */ | 
|  | 0,                              /* tp_iter */ | 
|  | 0,                              /* tp_iternext */ | 
|  | 0,                /* tp_methods */ | 
|  | 0,                              /* tp_members */ | 
|  | 0,             /* tp_getset */ | 
|  | 0,                              /* tp_base */ | 
|  | 0,                              /* tp_dict */ | 
|  | 0,                              /* tp_descr_get */ | 
|  | 0,                              /* tp_descr_set */ | 
|  | 0,                              /* tp_dictoffset */ | 
|  | 0,            /* tp_init */ | 
|  | 0,                              /* tp_alloc */ | 
|  | WrappedOperator::new_stub,                      /* tp_new */ | 
|  | }; | 
|  |  | 
|  | static PyObject* patched_dim_method(PyObject * self_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | auto self = WrappedOperator::unchecked_wrap(self_); | 
|  | PY_BEGIN | 
|  |  | 
|  | mpy::vector_args va(args, nargs, kwnames); | 
|  |  | 
|  | auto _getarg = [&](const char* name, int64_t offset_) -> mpy::handle { | 
|  | auto offset = offset_ + 1; // do not include self | 
|  | auto idx = va.index(name, offset); | 
|  | return idx == -1 ? mpy::handle() : va[idx]; | 
|  | }; | 
|  | Slice<mpy::handle> patched_args; | 
|  | patched_args.extend(A, va.begin(), va.end()); | 
|  | auto _patcharg = [&](const char* name, int64_t offset_, mpy::handle value) { | 
|  | auto offset = offset_ + 1; // do not include self | 
|  | auto idx = va.index(name, offset); | 
|  | if (idx == -1) { | 
|  | mpy::raise_error(PyExc_ValueError, "Missing argument %s", name); | 
|  | } | 
|  | patched_args[idx] = value; | 
|  | }; | 
|  |  | 
|  | auto dim = _getarg(self->dim_name.c_str(), self->dim_offset); | 
|  | if (!dim.ptr()) { | 
|  | auto info = TensorInfo::create(A, args[0], true); | 
|  | EnableAllLayers l(A, info.levels); | 
|  | l.inplace_update_layers(info.batchedtensor, info.levels); | 
|  | patched_args[0] = handle_from_tensor(A, info.batchedtensor); | 
|  | auto r = self->orig.call_vector(patched_args.begin(), nargs, kwnames); | 
|  | return l.from_batched(A, THPVariable_Unpack(r.ptr()), info.has_device).release(); | 
|  | } | 
|  |  | 
|  | auto info = TensorInfo::create(A, args[0]); | 
|  | auto keepdim = false; | 
|  | if (self->reduce) { | 
|  | auto py_keepdim = _getarg("keepdim", self->keepdim_offset); | 
|  | if (py_keepdim.ptr()) { | 
|  | keepdim = mpy::to_bool(py_keepdim); | 
|  | } | 
|  | } | 
|  |  | 
|  | auto ndim = info.ndim(); | 
|  | auto dims = _wrap_dims(A, dim, ndim, keepdim); | 
|  | Slice<int64_t> dim_indices; | 
|  | auto seen = A.allocate<bool>(info.levels.size()); | 
|  | std::fill(seen, seen + info.levels.size(), false); | 
|  |  | 
|  | for (auto d : dims) { | 
|  | auto midx = info.levels.index(d); | 
|  | if (!midx) { | 
|  | auto tup = levels_to_tuple(info.levels); | 
|  | mpy::raise_error(PyExc_ValueError, "Tensor with dimensions %R does not contain one of %R\n", tup.ptr(), dim.ptr()); | 
|  | } | 
|  | seen[*midx] = true; | 
|  | dim_indices.append(A, *midx); | 
|  | } | 
|  | Slice<DimEntry> new_levels; | 
|  | if (self->reduce && !keepdim) { | 
|  | for (auto i : info.levels.enumerate()) { | 
|  | if (!seen[i]) { | 
|  | new_levels.append(A, info.levels[i]); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | new_levels = info.levels; | 
|  | } | 
|  | mpy::object py_indices; | 
|  | if (dim_indices.size() == 1) { | 
|  | py_indices = mpy::from_int(dim_indices[0]); | 
|  | } else { | 
|  | mpy::tuple tup(dim_indices.size()); | 
|  | for (auto i : dim_indices.enumerate()) { | 
|  | tup.set(i, mpy::from_int(dim_indices[i])); | 
|  | } | 
|  | py_indices = std::move(tup); | 
|  | } | 
|  | _patcharg(self->dim_name.c_str(), self->dim_offset, py_indices); | 
|  | patched_args[0] = handle_from_tensor(A, info.tensor); | 
|  | auto r = self->orig.call_vector(patched_args.begin(), nargs, kwnames); | 
|  | auto wrap = [&](mpy::handle h) { | 
|  | if (THPVariable_Check(h.ptr())) { | 
|  | return A.autorelease(Tensor::from_positional(A, THPVariable_Unpack(h.ptr()), new_levels, info.has_device)); | 
|  | } | 
|  | return h; | 
|  | }; | 
|  | return tree_map(A, wrap, r).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* _wrap(PyObject * self_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  |  | 
|  | #define ARGS(_) _(mpy::handle, orig) _(mpy::handle, dim_offset) _(mpy::handle, keepdim_offset) \ | 
|  | _(mpy::handle, dim_name) _(mpy::handle, single_dim) _(mpy::handle, reduce) | 
|  | MPY_PARSE_ARGS_KWNAMES("O|OOOOO", ARGS) | 
|  |  | 
|  | std::string dim_name_str; | 
|  | if (dim_name.ptr()) { | 
|  | dim_name_str = PyUnicode_AsUTF8(dim_name.ptr()); | 
|  | } else { | 
|  | dim_name_str = "dim"; | 
|  | } | 
|  | auto info = WrappedOperator::create(mpy::object::borrow(orig), (PyCFunction)(void*) patched_dim_method, std::move(dim_name_str)); | 
|  | if (dim_offset.ptr()) { | 
|  | info->dim_offset = mpy::to_int(dim_offset); | 
|  | } | 
|  | if (keepdim_offset.ptr()) { | 
|  | info->keepdim_offset = mpy::to_int(keepdim_offset); | 
|  | } | 
|  |  | 
|  | if (single_dim.ptr()) { | 
|  | info->single_dim = mpy::to_bool(single_dim); | 
|  | } | 
|  | if (reduce.ptr()) { | 
|  | info->reduce = mpy::to_bool(reduce); | 
|  | } | 
|  | return info->function().release(); | 
|  | #undef ARGS | 
|  |  | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* call_torch_function(PyObject *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | Arena A; | 
|  | maybeInitializeGlobals(); | 
|  | auto info = WrappedOperator::unchecked_wrap(self); | 
|  | return __torch_function__(A, info->orig, mpy::vector_args(args, nargs, kwnames), info->is_pointwise).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* _wrap_method(PyObject *self, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | AT_ASSERT(nargs == 2); | 
|  | // XXX - ignore python function wrapped, we will call torch function directly | 
|  | mpy::handle orig = args[0]; | 
|  | if (!pointwise.ptr()) { | 
|  | auto dim = mpy::import("functorch.dim"); | 
|  | pointwise = dim.attr("pointwise"); | 
|  | } | 
|  | auto info = WrappedOperator::create(mpy::object::borrow(orig), (PyCFunction)(void*) call_torch_function); | 
|  | info->is_pointwise = pointwise.contains(orig); | 
|  | return PyInstanceMethod_New(info->function().release()); | 
|  | PY_END(nullptr); | 
|  | } | 
|  |  | 
|  |  | 
|  | static PyObject* Tensor_sum(PyObject * self_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | Arena A; | 
|  | PY_BEGIN | 
|  | maybeInitializeGlobals(); | 
|  | mpy::vector_args va(args, nargs, kwnames); | 
|  | auto self_ = Tensor::unchecked_wrap(args[0]); | 
|  | auto d = self_->delayed(); | 
|  | if (!d) { | 
|  | return _Tensor_sum.call_vector(va).release(); | 
|  | } | 
|  | mpy::handle self, dim, keepdim, dtype; | 
|  | va.parse("sum", {"self", "dim", "keepdim", "dtype"}, {&self, &dim, &keepdim, &dtype}, 1, 1); | 
|  |  | 
|  | if (dtype.ptr() || (keepdim.ptr() && mpy::to_bool(keepdim))) { | 
|  | // std::cout << "SKIPPING fusion because dtype or keepdim=True specified\n"; | 
|  | return _Tensor_sum.call_vector(va).release(); | 
|  | } | 
|  | auto levels = self_->levels(); | 
|  |  | 
|  | auto N = ndim_of_levels(levels); | 
|  | auto reduced_dims = _wrap_dims(A, dim, N, false); | 
|  |  | 
|  | return dot(A, TensorInfo::create(A, d->args[0], false), TensorInfo::create(A, d->args[1], false), reduced_dims).release(); | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* _parse_test(PyObject * self_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | maybeInitializeGlobals(); | 
|  |  | 
|  | int required = mpy::to_int(args[0]); | 
|  | int kwonly = mpy::to_int(args[1]); | 
|  |  | 
|  | mpy::vector_args va(args + 2, nargs - 2, kwnames); | 
|  |  | 
|  |  | 
|  | mpy::handle a, b, c, d; | 
|  | va.parse("_parse_test", {"a", "b", "c", "d"}, {&a, &b, &c, &d}, required, kwonly); | 
|  | mpy::tuple r(4); | 
|  | r.set(0, mpy::object::borrow(a.ptr() ? a : Py_None)); | 
|  | r.set(1, mpy::object::borrow(b.ptr() ? b : Py_None)); | 
|  | r.set(2, mpy::object::borrow(c.ptr() ? c : Py_None)); | 
|  | r.set(3, mpy::object::borrow(d.ptr() ? d : Py_None)); | 
|  | return r.release(); | 
|  |  | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* _set_pointwise_optimize(PyObject * self_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  | mpy::handle value; | 
|  | mpy::vector_args va(args, nargs, kwnames); | 
|  | va.parse("_set_pointwise_optimization", {"value"}, {&value}, 1); | 
|  | pointwise_optimize = mpy::to_bool(value); | 
|  | Py_RETURN_NONE; | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  | static PyObject* _patch_tensor_class(PyObject * self_, | 
|  | PyObject *const *args, | 
|  | Py_ssize_t nargs, | 
|  | PyObject *kwnames) { | 
|  | PY_BEGIN | 
|  |  | 
|  | auto torch = mpy::import("torch"); | 
|  | auto py_TensorBase = torch.attr("_C").attr("_TensorBase"); | 
|  | replaceMappingIfMatches(py_TensorBase); | 
|  |  | 
|  | Py_RETURN_NONE; | 
|  | PY_END(nullptr) | 
|  | } | 
|  |  | 
|  |  | 
|  | const char* dims_doc = R"""( | 
|  | dims(n=None, sizes=None) -> torchdim.Dim or Tuple[torchdim.Dim, ...] | 
|  |  | 
|  | Creates and returns one or more Dim objects. | 
|  |  | 
|  | Arg: | 
|  | n (int, optional): The number of dimensions to create. Can be omitted if sizes is specified. | 
|  | sizes (List[Optional[int]], optional): A list the same size as the number of dimensions to be | 
|  | created, specifying each dimensions size, or None to leave the size unset. | 
|  |  | 
|  | Example:: | 
|  | >>> batch, channel, width, height = dims(4) | 
|  | >>> batch, channel, width, height = dims(sizes=[None, 3, 224, 224]) | 
|  | )"""; | 
|  |  | 
|  | static PyMethodDef methods[] = { | 
|  | {"dims", (PyCFunction)(void*) _dims<create_dim>, METH_FASTCALL | METH_KEYWORDS, dims_doc}, | 
|  | {"dimlists", (PyCFunction)(void*) _dims<create_dimlist>, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"_test_c", (PyCFunction)(void*) test_c, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"_wrap_method", (PyCFunction)(void*) _wrap_method, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"Tensor_from_positional", (PyCFunction)(void*) py_Tensor_from_positional, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"__torch_function__", (PyCFunction)(void*) py___torch_function__, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"tree_flatten", (PyCFunction)(void*) py_tree_flatten, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"order", (PyCFunction)(void*) order, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"index", (PyCFunction)(void*) py_index, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"stack", (PyCFunction)(void*) py_stack, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"split", (PyCFunction)(void*) py_split, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"expand", (PyCFunction)(void*) expand, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"__getitem__", (PyCFunction)(void*) py___getitem__, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"__setitem__", (PyCFunction)(void*) py___setitem__, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"_wrap", (PyCFunction)(void*) _wrap, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"Tensor_sum", (PyCFunction)(void*) Tensor_sum, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"_parse_test", (PyCFunction)(void*) _parse_test, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"_set_pointwise_optimize", (PyCFunction)(void*) _set_pointwise_optimize, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {"_patch_tensor_class", (PyCFunction)(void*) _patch_tensor_class, METH_FASTCALL | METH_KEYWORDS}, | 
|  | {NULL, NULL, 0, NULL}        /* Sentinel */ | 
|  | }; | 
|  |  | 
|  | static struct PyModuleDef module_def = { | 
|  | PyModuleDef_HEAD_INIT, | 
|  | "_C",   /* name of module */ | 
|  | NULL, /* module documentation, may be NULL */ | 
|  | -1,       /* size of per-interpreter state of the module, | 
|  | or -1 if the module keeps state in global variables. */ | 
|  | methods | 
|  | }; | 
|  |  | 
|  | PyObject* Dim_init(void) { | 
|  | Arena A; | 
|  | try { | 
|  | mpy::object mod = mpy::object::checked_steal(PyModule_Create(&module_def)); | 
|  | Dim::ready(mod, "Dim"); | 
|  | DimList::ready(mod, "DimList"); | 
|  | Tensor::ready(mod, "Tensor"); | 
|  | WrappedOperator::ready(mod, "_WrappedOperator"); | 
|  | Py_INCREF(&PyInstanceMethod_Type); | 
|  | PyModule_AddObject(mod.ptr(), "_instancemethod", (PyObject *)&PyInstanceMethod_Type); | 
|  |  | 
|  | initializeGlobals(A); | 
|  | return mod.release(); | 
|  | } catch(mpy::exception_set& err) { | 
|  | return nullptr; | 
|  | } | 
|  | } |