blob: 0bf51a7dcaea6446022b26c8573037fdbcbb4cc9 [file] [log] [blame]
import sys
import ast
import inspect
import torch
from .._jit_internal import List, BroadcastingList1, BroadcastingList2, \
BroadcastingList3, Tuple, is_tuple, is_list, Dict, is_dict
from torch._C import TensorType, TupleType, FloatType, IntType, \
ListType, StringType, DictType, BoolType
from textwrap import dedent
PY35 = sys.version_info >= (3, 5)
class Module(object):
def __init__(self, name, members):
self.name = name
self.members = members
def __getattr__(self, name):
try:
return self.members[name]
except KeyError:
raise RuntimeError("Module {} has no member called {}".format(self.name, name))
_eval_env = {
'torch': Module('torch', {'Tensor': torch.Tensor}),
'Tensor': torch.Tensor,
'typing': Module('typing', {'Tuple': Tuple}),
'Tuple': Tuple,
'List': List,
'Dict': Dict,
}
def get_signature(fn):
# Python 3.5 adds support for the nice annotation syntax, so try that first.
if PY35:
sig = try_real_annotations(fn)
if sig is not None:
return sig
type_line, source = None, None
try:
source = dedent(inspect.getsource(fn))
type_line = get_type_line(source)
except TypeError:
pass
# This might happen both because we failed to get the source of fn, or
# because it didn't have any annotations.
if type_line is None:
return None
return parse_type_line(type_line)
# This is essentially a weaker form of get_signature(), where we don't care if
# we have the types, we just care that we can figure out how many parameters
# a function takes.
def get_num_params(fn):
try:
source = dedent(inspect.getsource(fn))
except (TypeError, IOError):
return None
if source is None:
return None
py_ast = ast.parse(source)
if len(py_ast.body) == 1 and isinstance(py_ast.body[0], ast.ClassDef):
raise RuntimeError("cannot instantiate class object ({}) inside jit.script".format(py_ast.body[0].name))
if len(py_ast.body) != 1 or not isinstance(py_ast.body[0], ast.FunctionDef):
raise RuntimeError("expected a single top-level function")
py_def = py_ast.body[0]
if py_def.args.vararg is not None:
return None
elif hasattr(py_def.args, 'kwonlyargs') and len(py_def.args.kwonlyargs) > 0:
return None
else:
num_params = len(py_def.args.args)
if inspect.ismethod(fn):
num_params = num_params - 1
return num_params
def parse_type_line(type_line):
"""Parses a type annotation specified as a comment.
Example inputs:
# type: (Tensor, torch.Tensor) -> Tuple[Tensor]
# type: (Tensor, Tuple[Tensor, Tensor]) -> Tensor
"""
arg_ann_str, ret_ann_str = split_type_line(type_line)
try:
arg_ann = eval(arg_ann_str, _eval_env)
except (NameError, SyntaxError) as e:
raise RuntimeError("Failed to parse the argument list of a type annotation: {}".format(str(e)))
if not isinstance(arg_ann, tuple):
arg_ann = (arg_ann,)
try:
ret_ann = eval(ret_ann_str, _eval_env)
except (NameError, SyntaxError) as e:
raise RuntimeError("Failed to parse the return type of a type annotation: {}".format(str(e)))
arg_types = [ann_to_type(ann) for ann in arg_ann]
return arg_types, ann_to_type(ret_ann)
def get_type_line(source):
"""Tries to find the line containing a comment with the type annotation."""
lines = source.split('\n')
type_line = None
for line in lines:
if '# type:' in line:
type_line = line.strip()
break
return type_line
def split_type_line(type_line):
"""Splits the comment with the type annotation into parts for argument and return types.
For example, for an input of:
# type: (Tensor, torch.Tensor) -> Tuple[Tensor, Tensor]
This function will return:
("(Tensor, torch.Tensor)", "Tuple[Tensor, Tensor]")
"""
start_offset = len('# type:')
try:
arrow_pos = type_line.index('->')
except ValueError:
raise RuntimeError("Syntax error in type annotation (cound't find `->`)")
return type_line[start_offset:arrow_pos].strip(), type_line[arrow_pos + 2:].strip()
def try_real_annotations(fn):
"""Tries to use the Py3.5+ annotation syntax to get the type."""
try:
sig = inspect.signature(fn)
except ValueError:
return None
all_annots = [sig.return_annotation] + [p.annotation for p in sig.parameters.values()]
if all(ann is sig.empty for ann in all_annots):
return None
def as_ann(ann):
# sig.empty is really annoying so convert it to None
return ann if ann is not sig.empty else None
arg_types = [ann_to_type(as_ann(p.annotation))
for p in sig.parameters.values()]
return_type = ann_to_type(as_ann(sig.return_annotation))
return arg_types, return_type
def ann_to_type(ann):
if ann is None:
return TensorType.get()
elif ann is torch.Tensor:
return TensorType.get()
elif is_tuple(ann):
return TupleType([ann_to_type(a) for a in ann.__args__])
elif is_list(ann):
return ListType(ann_to_type(ann.__args__[0]))
elif is_dict(ann):
key = ann_to_type(ann.__args__[0])
value = ann_to_type(ann.__args__[1])
return DictType(key, value)
elif ann is float:
return FloatType.get()
elif ann is int:
return IntType.get()
elif ann is str:
return StringType.get()
elif ann is bool:
return BoolType.get()
raise ValueError("Unknown type annotation: '{}'".format(ann.__name__))
__all__ = [
'List',
'BroadcastingList1',
'BroadcastingList2',
'BroadcastingList3',
'Tuple',
'is_tuple',
'is_list',
'Dict',
'is_dict',
'TensorType',
'TupleType',
'FloatType',
'IntType',
'ListType',
'StringType',
'DictType',
'Module',
# TODO: Consider not exporting these during wildcard import (reserve
# that for the types; for idiomatic typing code.)
'get_signature',
'get_num_params',
'parse_type_line',
'get_type_line',
'split_type_line',
'try_real_annotations',
'ann_to_type',
]