blob: 336e74a0214564a3cc031bea554f973e97c3e336 [file] [log] [blame]
"""
Defines a minimal set of data types that allow to represent datasets with
arbitrary nested structure, including objects of variable length, such as
maps and lists.
This defines a columnar storage format for such datasets on top of caffe2
tensors. In terms of capacity of representation, it can represent most of
the data types supported by Parquet, ORC, DWRF file formats.
See comments in operator_test/dataset_ops_test.py for a example and
walkthrough on how to use schema to store and iterate through a structured
in-memory dataset.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import logging
import numpy as np
from caffe2.python import core
from caffe2.python import workspace
from caffe2.python.core import BlobReference
from collections import OrderedDict
logger = logging.getLogger(__name__)
def _join_field_name(prefix, suffix):
if prefix and suffix:
return '{}:{}'.format(prefix, suffix)
elif prefix:
return prefix
elif suffix:
return suffix
else:
return ''
def _normalize_field(field_or_type_or_blob):
"""Clones/normalizes a field before adding it to a container."""
if isinstance(field_or_type_or_blob, Field):
return field_or_type_or_blob.clone()
elif type(field_or_type_or_blob) in (type, np.dtype):
return Scalar(dtype=field_or_type_or_blob)
else:
return Scalar(blob=field_or_type_or_blob)
class Field(object):
"""Represents an abstract field type in a dataset.
"""
def __init__(self, children):
"""Derived classes must call this after their initialization."""
self._parent = (None, 0)
offset = 0
self._field_offsets = []
for child in children:
self._field_offsets.append(offset)
offset += len(child.field_names())
self._field_offsets.append(offset)
def field_names(self):
"""Return the children field names for this field."""
raise NotImplementedError('Field is an abstract class.')
def field_types(self):
"""Return the numpy.dtype for each of the children fields."""
raise NotImplementedError('Field is an abstract class.')
def field_blobs(self):
"""Return the list of blobs with contents for this Field.
Values can either be all numpy.ndarray or BlobReference.
If any of the fields doens't have a blob, throws.
"""
raise NotImplementedError('Field is an abstract class.')
def clone(self):
"""Clone this Field along with its children."""
raise NotImplementedError('Field is an abstract class.')
def _set_parent(self, parent, relative_id):
self._parent = (parent, relative_id)
def slice(self):
"""
Returns a slice representing the range of field ids that belong to
this field. This slice can be used to index a list of fields.
E.g.:
>>> s = Struct(
>>> ('a', Scalar()),
>>> ('b', Struct(
>>> ('b1', Scalar()),
>>> ('b2', Scalar()),
>>> )),
>>> ('c', Scalar()),
>>> )
>>> field_data = ['da', 'db1', 'db2', 'dc']
>>> field_data[s.b.split()]
['db1', 'db2']
"""
base_id = self._child_base_id()
return slice(base_id, base_id + len(self.field_names()))
def _child_base_id(self, child_index=None):
"""Get the base id of the given child"""
p, i = self._parent
pos = 0 if child_index is None else self._field_offsets[child_index]
if p:
pos += p._child_base_id(i)
return pos
def __eq__(self, other):
"""Equivalance of two schemas"""
return ((self.field_names() == other.field_names()) and
(self.field_types() == other.field_types()))
class List(Field):
"""Represents a variable-length list.
Values of a list can also be complex fields such as Lists and Structs.
In addition to the fields exposed by its `values` field, a List exposes an
additional `lengths` field, which will contain the size of each list under
the parent domain.
"""
def __init__(self, values, lengths_blob=None):
self.lengths = Scalar(np.int32, lengths_blob)
self._items = _normalize_field(values)
self.lengths._set_parent(self, 0)
self._items._set_parent(self, 1)
Field.__init__(self, [self.lengths, self._items])
def field_names(self):
value_fields = self._items.field_names()
return (
['lengths'] +
[_join_field_name('values', v) for v in value_fields])
def field_types(self):
return self.lengths.field_types() + self._items.field_types()
def field_blobs(self):
return self.lengths.field_blobs() + self._items.field_blobs()
def clone(self):
return List(self._items, self.lengths._blob)
def __getattr__(self, item):
"""If the value of this list is a struct,
allow to instrospect directly into its fields."""
if item.startswith('__'):
raise AttributeError(item)
if isinstance(self._items, Struct):
return getattr(self._items, item)
elif item == 'value' or item == 'items':
return self._items
else:
raise AttributeError('Field not found in list: %s.' % item)
class Struct(Field):
"""Represents a named list of fields sharing the same domain.
"""
def __init__(self, *fields):
for field in fields:
assert len(field) == 2
assert field[0], 'Field names cannot be empty'
assert field[0] != 'lengths', (
'Struct cannot contain a field named `lengths`.')
fields = [(name, _normalize_field(field)) for name, field in fields]
for id, (name, field) in enumerate(fields):
field._set_parent(self, id)
self.fields = OrderedDict(fields)
Field.__init__(self, self.fields.values())
def get_children(self):
return self.fields.items()
def field_names(self):
names = []
for name, field in self.fields.items():
names += [_join_field_name(name, f) for f in field.field_names()]
return names
def field_types(self):
types = []
for name, field in self.fields.items():
types += field.field_types()
return types
def field_blobs(self):
blobs = []
for name, field in self.fields.items():
blobs += field.field_blobs()
return blobs
def clone(self):
return Struct(*self.fields.items())
def __getitem__(self, item):
if isinstance(item, list) or isinstance(item, tuple):
return Struct(*[(
self.fields.keys()[k] if isinstance(k, int) else k, self[k])
for k in item])
elif isinstance(item, int):
return self.fields.values()[item]
else:
return self.fields[item]
def __getattr__(self, item):
if item.startswith('__'):
raise AttributeError(item)
try:
return self.__dict__['fields'][item]
except KeyError:
raise AttributeError(item)
class Scalar(Field):
"""Represents a typed scalar or tensor of fixed shape.
A Scalar is a leaf in a schema tree, translating to exactly one tensor in
the dataset's underlying storage.
Usually, the tensor storing the actual values of this field is a 1D tensor,
representing a series of values in its domain. It is possible however to
have higher rank values stored as a Scalar, as long as all entries have
the same shape.
E.g.:
Scalar(np.float64)
Scalar field of type float32. Caffe2 will expect readers and
datasets to expose it as a 1D tensor of doubles (vector), where
the size of the vector is determined by this fields' domain.
Scalar((np.int32, 5))
Tensor field of type int32. Caffe2 will expect readers and
datasets to implement it as a 2D tensor (matrix) of shape (L, 5),
where L is determined by this fields' domain.
Scalar((str, (10, 20)))
Tensor field of type str. Caffe2 will expect readers and
datasets to implement it as a 3D tensor of shape (L, 10, 20),
where L is determined by this fields' domain.
If the field type is unknown at construction time, call Scalar(), that will
default to np.void as its dtype.
It is an error to pass a structured dtype to Scalar, since it would contain
more than one field. Instead, use from_dtype, which will construct
a nested `Struct` field reflecting the given dtype's structure.
A Scalar can also contain a blob, which represents the value of this
Scalar. A blob can be either a numpy.ndarray, in which case it contain the
actual contents of the Scalar, or a BlobReference, which represents a
blob living in a caffe2 Workspace. If blob of different types are passed,
a conversion to numpy.ndarray is attempted.
"""
def __init__(self, dtype=None, blob=None):
self.set(dtype, blob)
Field.__init__(self, [])
def field_names(self):
return ['']
def field_types(self):
return [self.dtype]
def field_blobs(self):
assert self._blob is not None, 'Value is not set for this field.'
return [self._blob]
def clone(self):
return Scalar(dtype=self._original_dtype, blob=self._blob)
def get(self):
"""Gets the current blob of this Scalar field."""
assert self._blob is not None, 'Value is not set for this field.'
return self._blob
def __call__(self):
"""Shortcut for self.get()"""
return self.get()
def set(self, dtype=None, blob=None):
"""Set the type and/or blob of this scalar. See __init__ for details.
Args:
dtype: can be any numpy type. If not provided and `blob` is
provided, it will be inferred. If no argument is provided,
this Scalar will be of type np.void.
blob: if provided, can be either a BlobReference or a
numpy.ndarray. If a value of different type is passed,
a conversion to numpy.ndarray is attempted. Strings aren't
accepted, since they can be ambiguous. If you want to pass
a string, to either BlobReference(blob) or np.array(blob).
"""
if blob is not None and isinstance(blob, core.basestring):
raise ValueError(
'Passing str blob to Scalar.set() is ambiguous. '
'Do either set(blob=np.array(blob)) or '
'set(blob=BlobReference(blob))')
self._original_dtype = dtype
if dtype is not None:
dtype = np.dtype(dtype)
# If blob is not None and it is not a BlobReference, we assume that
# it is actual tensor data, so we will try to cast it to an numpy array.
if blob is not None and not isinstance(blob, BlobReference):
if dtype is not None:
blob = np.array(blob, dtype=dtype.base)
# if array is empty we may need to reshape a little
if blob.size == 0:
blob = blob.reshape((0,) + dtype.shape)
else:
assert isinstance(blob, np.ndarray), (
'Invalid blob type: %s' % str(type(blob)))
assert len(blob.shape), ('Value must be at least a 1D array.')
# infer inner shape from the blob given
# TODO(dzhulgakov): tweak this to make it work with PackedStruct
if len(blob.shape) > 1:
dtype = np.dtype((dtype.base, blob.shape[1:]))
# if we were still unable to infer the dtype
if dtype is None:
dtype = np.dtype(np.void)
assert not dtype.fields, (
'Cannot create Scalar with a structured dtype. ' +
'Use from_dtype instead.')
self.dtype = dtype
self._blob = blob
def set_type(self, dtype):
self._original_dtype = dtype
self.dtype = np.dtype(dtype or np.void)
def id(self):
"""
Return the zero-indexed position of this scalar field in its schema.
Used in order to index into the field_blob list returned by readers or
accepted by writers.
"""
return self._child_base_id()
def Map(keys, values, keys_name='keys', values_name='values',
lengths_blob=None):
"""A map is a List of Struct containing keys and values fields.
Optionally, you can provide custom name for the key and value fields.
"""
return List(
Struct((keys_name, keys), (values_name, values)),
lengths_blob=lengths_blob)
def Tuple(*fields):
"""
Creates a Struct with default, sequential, field names of given types.
"""
return Struct(*[
('field_%d' % i, field) for i, field in enumerate(fields)])
def RawTuple(num_fields):
"""
Creates a tuple of `num_field` untyped scalars.
"""
assert isinstance(num_fields, int)
assert num_fields > 0
return Tuple(*([np.void] * num_fields))
def from_dtype(dtype, _outer_shape=()):
"""Constructs a Caffe2 schema from the given numpy's dtype.
Numpy supports scalar, array-like and structured datatypes, as long as
all the shapes are fixed. This function breaks down the given dtype into
a Caffe2 schema containing `Struct` and `Scalar` types.
Fields containing byte offsets are not currently supported.
"""
if not isinstance(dtype, np.dtype):
# wrap into a ndtype
shape = _outer_shape
dtype = np.dtype((dtype, _outer_shape))
else:
# concatenate shapes if necessary
shape = _outer_shape + dtype.shape
if shape != dtype.shape:
dtype = np.dtype((dtype.base, shape))
if not dtype.fields:
return Scalar(dtype)
struct_fields = []
for name, (fdtype, offset) in dtype.fields:
assert offset == 0, ('Fields with byte offsets are not supported.')
struct_fields += (name, from_dtype(fdtype, _outer_shape=shape))
return Struct(*struct_fields)
class _SchemaNode(object):
"""This is a private class used to represent a Schema Node"""
def __init__(self, name, type_str=''):
self.name = name
self.children = []
self.type_str = type_str
self.field = None
self.col_blob = None
def add_child(self, name, type_str=''):
for child in self.children:
if child.name == name and child.type_str == type_str:
return child
child = _SchemaNode(name, type_str)
self.children.append(child)
return child
def get_field(self):
list_names = ['lengths', 'values']
map_names = ['lengths', 'keys', 'values']
if len(self.children) == 0 or self.field is not None:
assert self.field is not None
return self.field
child_names = []
for child in self.children:
child_names.append(child.name)
if (set(child_names) == set(list_names)):
for child in self.children:
if child.name == 'values':
self.field = List(
child.get_field(),
lengths_blob=self.children[0].col_blob)
self.type_str = "List"
return self.field
elif (set(child_names) == set(map_names)):
for child in self.children:
if child.name == 'keys':
key_field = child.get_field()
elif child.name == 'values':
values_field = child.get_field()
self.field = Map(
key_field,
values_field,
lengths_blob=self.children[0].col_blob)
self.type_str = "Map"
return self.field
else:
struct_fields = []
for child in self.children:
if child.field is not None:
struct_fields.append((child.name, child.field))
else:
struct_fields.append((child.name, child.get_field()))
self.field = Struct(*struct_fields)
self.type_str = "Struct"
return self.field
def print_recursively(self):
for child in self.children:
child.print_recursively()
logger.info("Printing node: Name and type")
logger.info(self.name)
logger.info(self.type_str)
def from_column_list(col_names, col_types=None, col_blobs=None):
"""
Given a list of names, types, and optionally values, construct a Schema.
"""
if col_types is None:
col_types = [None] * len(col_names)
if col_blobs is None:
col_blobs = [None] * len(col_names)
assert len(col_names) == len(col_types), (
'col_names and col_types must have the same length.')
assert len(col_names) == len(col_blobs), (
'col_names and col_blobs must have the same length.')
root = _SchemaNode('root', 'Struct')
for col_name, col_type, col_blob in zip(col_names, col_types, col_blobs):
columns = col_name.split(':')
current = root
for i in range(len(columns)):
name = columns[i]
type_str = ''
field = None
if i == len(columns) - 1:
type_str = col_type
field = Scalar(dtype=col_type, blob=col_blob)
next = current.add_child(name, type_str)
if field is not None:
next.field = field
next.col_blob = col_blob
current = next
return root.get_field()
def from_blob_list(schema, values):
"""
Create a schema that clones the given schema, but containing the given
list of values.
"""
assert isinstance(schema, Field), 'Argument `schema` must be a Field.'
if isinstance(values, BlobReference):
values = [values]
names = schema.field_names()
types = schema.field_types()
assert len(names) == len(values), (
'Values must have %d elements, got %d.' % (len(names), len(values)))
return from_column_list(names, types, values)
def FetchRecord(blob_record):
"""
Given a record containing BlobReferences, return a new record with same
schema, containing numpy arrays, fetched from the current active workspace.
"""
assert isinstance(blob_record, Field)
field_blobs = blob_record.field_blobs()
assert all(isinstance(v, BlobReference) for v in field_blobs)
field_arrays = [workspace.FetchBlob(value) for value in field_blobs]
return from_blob_list(blob_record, field_arrays)
def FeedRecord(blob_record, arrays):
"""
Given a Record containing blob_references and arrays, which is either
a list of numpy arrays or a Record containing numpy arrays, feeds the
record to the current workspace.
"""
assert isinstance(blob_record, Field)
field_blobs = blob_record.field_blobs()
assert all(isinstance(v, BlobReference) for v in field_blobs)
if isinstance(arrays, Field):
# TODO: check schema
arrays = arrays.field_blobs()
assert len(arrays) == len(field_blobs), (
'Values must contain exactly %d ndarrays.' % len(field_blobs))
for blob, array in zip(field_blobs, arrays):
workspace.FeedBlob(blob, array)
def NewRecord(net, schema):
"""
Given a record of np.arrays, create a BlobReference for each one of them,
returning a record containing BlobReferences. The BlobReferences will be
added as ExternalInputs of the given net.
"""
assert isinstance(schema, Field), 'Record must be a schema.Field instance.'
blob_refs = [
net.AddExternalInput(net.NextName(prefix=name))
for name in schema.field_names()]
return from_blob_list(schema, blob_refs)
_DATA_TYPE_FOR_DTYPE = [
(np.str, core.DataType.STRING),
(np.float32, core.DataType.FLOAT),
(np.float64, core.DataType.DOUBLE),
(np.bool, core.DataType.BOOL),
(np.int8, core.DataType.INT8),
(np.int16, core.DataType.INT16),
(np.int32, core.DataType.INT32),
(np.int64, core.DataType.INT64),
(np.uint8, core.DataType.UINT8),
(np.uint16, core.DataType.UINT16),
]
def data_type_for_dtype(dtype):
for np_type, dt in _DATA_TYPE_FOR_DTYPE:
if dtype.base == np_type:
return dt
raise TypeError('Unknown dtype: ' + str(dtype.base))