blob: 7f60efb73b93b70ffd722889766f2f948718a5e2 [file] [log] [blame]
#pragma once
#include "caffe2/core/context.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/scope_guard.h"
#include "caffe2/core/types.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2.pb.h"
#include <pybind11/pybind11.h>
#include <Python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#define PY_ARRAY_UNIQUE_SYMBOL caffe2_python_ARRAY_API
#include <numpy/arrayobject.h>
namespace caffe2 {
// Add methods common to both CPU and GPU mode.
void addGlobalMethods(pybind11::module& m);
// Expose Workspace, Net, Blob
void addObjectMethods(pybind11::module& m);
class BlobFetcherBase {
public:
virtual ~BlobFetcherBase();
virtual pybind11::object Fetch(const Blob& blob) = 0;
};
class BlobFeederBase {
public:
virtual ~BlobFeederBase();
virtual void
Feed(const DeviceOption& option, PyArrayObject* array, Blob* blob) = 0;
};
CAFFE_DECLARE_TYPED_REGISTRY(BlobFetcherRegistry, CaffeTypeId, BlobFetcherBase);
#define REGISTER_BLOB_FETCHER(id, ...) \
CAFFE_REGISTER_TYPED_CLASS(BlobFetcherRegistry, id, __VA_ARGS__)
inline unique_ptr<BlobFetcherBase> CreateFetcher(CaffeTypeId id) {
return BlobFetcherRegistry()->Create(id);
}
CAFFE_DECLARE_TYPED_REGISTRY(BlobFeederRegistry, int, BlobFeederBase);
#define REGISTER_BLOB_FEEDER(device_type, ...) \
CAFFE_REGISTER_TYPED_CLASS(BlobFeederRegistry, device_type, __VA_ARGS__)
inline unique_ptr<BlobFeederBase> CreateFeeder(int device_type) {
return BlobFeederRegistry()->Create(device_type);
}
static_assert(
sizeof(int) == sizeof(int32_t),
"We make an assumption that int is always int32 for numpy "
"type mapping.");
int CaffeToNumpyType(const TypeMeta& meta);
const TypeMeta& NumpyTypeToCaffe(int numpy_type);
template <class Context>
class TensorFetcher : public BlobFetcherBase {
public:
pybind11::object Fetch(const Blob& blob) override {
const Tensor<Context>& tensor = blob.Get<Tensor<Context>>();
Context context;
CAFFE_ENFORCE_GE(tensor.size(), 0, "Trying to fetch unitilized tensor");
std::vector<npy_intp> npy_dims;
for (const auto dim : tensor.dims()) {
npy_dims.push_back(dim);
}
int numpy_type = CaffeToNumpyType(tensor.meta());
CAFFE_ENFORCE(
numpy_type != -1,
"This tensor's data type is not supported: ",
tensor.meta().name(),
".");
PyObject* array =
PyArray_SimpleNew(tensor.ndim(), npy_dims.data(), numpy_type);
void* outPtr = static_cast<void*>(
PyArray_DATA(reinterpret_cast<PyArrayObject*>(array)));
if (numpy_type == NPY_OBJECT) {
PyObject** outObj = reinterpret_cast<PyObject**>(outPtr);
auto* str = tensor.template data<std::string>();
for (int i = 0; i < tensor.size(); ++i) {
outObj[i] = PyBytes_FromStringAndSize(str->data(), str->size());
str++;
// cleanup on failure
if (outObj[i] == nullptr) {
for (int j = 0; j < i; ++j) {
Py_DECREF(outObj[j]);
}
Py_DECREF(array);
CAFFE_THROW("Failed to allocate string for ndarray of strings.");
}
}
// TODO - is this refcounted correctly?
return pybind11::object(array, /* borrowed= */ false);
}
// Now, copy the data to the tensor.
// TODO(Yangqing): Right now, to make things consistent between CPU and
// GPU, we always do a data copy. This is not necessary for CPU and
// read-only cases, so we may want to make it a non-copy.
context.template CopyBytes<Context, CPUContext>(
tensor.nbytes(), tensor.raw_data(), outPtr);
context.FinishDeviceComputation();
return pybind11::object(array, /* borrowed= */ false);
}
};
template <class Context>
class TensorFeeder : public BlobFeederBase {
public:
virtual void
Feed(const DeviceOption& option, PyArrayObject* original_array, Blob* blob) {
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
auto g = MakeGuard([&]() { Py_XDECREF(array); });
const auto npy_type = PyArray_TYPE(array);
const TypeMeta& meta = NumpyTypeToCaffe(npy_type);
CAFFE_ENFORCE(
meta.id() != 0,
"This numpy data type is not supported: ",
PyArray_TYPE(array),
".");
Context context(option);
context.SwitchToDevice();
Tensor<Context>* tensor = blob->GetMutable<Tensor<Context>>();
// numpy requires long int as its dims.
int ndim = PyArray_NDIM(array);
npy_intp* npy_dims = PyArray_DIMS(array);
std::vector<TIndex> dims;
for (int i = 0; i < ndim; ++i) {
dims.push_back(npy_dims[i]);
}
tensor->Resize(dims);
// Now, copy the data to the tensor.
switch (npy_type) {
case NPY_OBJECT: {
PyObject** input = reinterpret_cast<PyObject**>(PyArray_DATA(array));
auto* outPtr = tensor->template mutable_data<std::string>();
for (int i = 0; i < tensor->size(); ++i) {
char* str;
Py_ssize_t strSize;
CAFFE_ENFORCE(
PyBytes_AsStringAndSize(input[i], &str, &strSize) != -1,
"Unsupported python object type passed into ndarray.");
outPtr[i] = std::string(str, strSize);
}
} break;
default:
context.template CopyBytes<CPUContext, Context>(
tensor->size() * meta.itemsize(),
static_cast<void*>(PyArray_DATA(array)),
tensor->raw_mutable_data(meta));
}
context.FinishDeviceComputation();
}
};
}