| #include "caffe2/operators/accuracy_op.h" |
| |
| namespace caffe2 { |
| |
| template <> |
| bool AccuracyOp<float, CPUContext>::RunOnDevice() { |
| auto& X = Input(PREDICTION); |
| auto& label = Input(LABEL); |
| auto* Y = Output(0); |
| DCHECK_EQ(X.ndim(), 2); |
| int N = X.dim32(0); |
| int D = X.dim32(1); |
| DCHECK_EQ(label.ndim(), 1); |
| DCHECK_EQ(label.dim32(0), N); |
| Y->Resize(vector<TIndex>()); |
| const auto* Xdata = X.data<float>(); |
| const auto* labeldata = label.data<int>(); |
| int correct = 0; |
| for (int i = 0; i < N; ++i) { |
| float maxval = std::numeric_limits<float>::lowest(); |
| int maxid = 0; |
| for (int j = 0; j < D; ++j) { |
| if (Xdata[i * D + j] > maxval) { |
| maxval = Xdata[i * D + j]; |
| maxid = j; |
| } |
| } |
| if (maxid == labeldata[i]) { |
| ++correct; |
| } |
| } |
| DCHECK_LE(correct, N); |
| *(Y->mutable_data<float>()) = static_cast<float>(correct) / N; |
| return true; |
| } |
| |
| namespace { |
| REGISTER_CPU_OPERATOR(Accuracy, AccuracyOp<float, CPUContext>); |
| |
| OPERATOR_SCHEMA(Accuracy) |
| .NumInputs(2) |
| .NumOutputs(1) |
| .SetDoc(R"DOC( |
| Accuracy takes two inputs- predictions and labels, and returns a float |
| accuracy value for the batch. Predictions are expected in the form of 2-D tensor |
| containing a batch of scores for various classes, and labels are expected in the |
| form of 1-D tensor containing true label indices of samples in the batch. If |
| the score for the label index in the predictions is the highest among all |
| classes, it is considered a correct prediction. |
| )DOC") |
| .Input(0, "predictions", "2-D tensor (Tensor<float>) of size " |
| "(num_batches x num_classes) containing scores") |
| .Input(1, "labels", "1-D tensor (Tensor<int>) of size (num_batches) having " |
| "the indices of true labels") |
| .Output(0, "accuracy", "1-D tensor (Tensor<float>) of size 1 containing " |
| "accuracy"); |
| |
| SHOULD_NOT_DO_GRADIENT(Accuracy); |
| } // namespace |
| } // namespace caffe2 |