blob: 125cc8a21ca965392f6ad942a27cdc824ef221ed [file] [log] [blame]
#include "caffe2/operators/accuracy_op.h"
namespace caffe2 {
template <>
bool AccuracyOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(PREDICTION);
auto& label = Input(LABEL);
auto* Y = Output(0);
DCHECK_EQ(X.ndim(), 2);
int N = X.dim32(0);
int D = X.dim32(1);
DCHECK_EQ(label.ndim(), 1);
DCHECK_EQ(label.dim32(0), N);
Y->Resize(vector<TIndex>());
const auto* Xdata = X.data<float>();
const auto* labeldata = label.data<int>();
int correct = 0;
for (int i = 0; i < N; ++i) {
float maxval = std::numeric_limits<float>::lowest();
int maxid = 0;
for (int j = 0; j < D; ++j) {
if (Xdata[i * D + j] > maxval) {
maxval = Xdata[i * D + j];
maxid = j;
}
}
if (maxid == labeldata[i]) {
++correct;
}
}
DCHECK_LE(correct, N);
*(Y->mutable_data<float>()) = static_cast<float>(correct) / N;
return true;
}
namespace {
REGISTER_CPU_OPERATOR(Accuracy, AccuracyOp<float, CPUContext>);
OPERATOR_SCHEMA(Accuracy)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Accuracy takes two inputs- predictions and labels, and returns a float
accuracy value for the batch. Predictions are expected in the form of 2-D tensor
containing a batch of scores for various classes, and labels are expected in the
form of 1-D tensor containing true label indices of samples in the batch. If
the score for the label index in the predictions is the highest among all
classes, it is considered a correct prediction.
)DOC")
.Input(0, "predictions", "2-D tensor (Tensor<float>) of size "
"(num_batches x num_classes) containing scores")
.Input(1, "labels", "1-D tensor (Tensor<int>) of size (num_batches) having "
"the indices of true labels")
.Output(0, "accuracy", "1-D tensor (Tensor<float>) of size 1 containing "
"accuracy");
SHOULD_NOT_DO_GRADIENT(Accuracy);
} // namespace
} // namespace caffe2