blob: 5952039cc531a4fb2ed20138e73ad946fd64716a [file] [log] [blame]
# Owner(s): ["oncall: profiler"]
import functools
import os
import re
import textwrap
import unittest
import torch
from torch.testing._internal.common_utils import (
TestCase, run_tests, IS_WINDOWS, TEST_WITH_CROSSREF)
class ProfilerTree:
@staticmethod
def test(f):
"""Mark unit test that will be using ProfilerTree to test traces.
This decorator serves two purposes. First, it provides a method name
that `format` can use to tell where the test runner (which is
environment specific) ends and the unit test begins. Second, it runs
the test with replicates and allows `assertTreesMatch` to adjust
based on which replicate is running.
"""
@functools.wraps(f)
def begin_unit_test_marker(self, replicates=5):
try:
for i in range(replicates):
self.tree_replicate = i
return f(self)
finally:
delattr(self, "tree_replicate")
return begin_unit_test_marker
@classmethod
def format(cls, profiler, indent: int = 0):
def flatten(nodes, depth=0, out=None):
if out is None:
out = []
for node in nodes:
out.append((depth, cls.fmt_name(node.name())))
flatten(node.children, depth + 1, out)
return out
flat_nodes = flatten(profiler.kineto_results.experimental_event_tree())
min_depth = min([d + 1 for d, name in flat_nodes if "begin_unit_test_marker" in name] or [0])
return textwrap.indent(
"\n".join([f"{' ' * (d - min_depth)}{name.rstrip()}" for d, name in flat_nodes if d >= min_depth]),
" " * indent)
@staticmethod
def fmt_name(name: str) -> str:
# torch::autograd::Node relies on c10::demangle to generate names, and
# Windows demangles to include `struct` in the name.
if IS_WINDOWS:
name = name.replace('struct torch::autograd::AccumulateGrad', 'torch::autograd::AccumulateGrad')
match = re.match(r"(.*)\.py\(([0-9]+)\): (.*)$", name)
if match:
filename, lineno, fn = match.groups()
# This test can appear as `test/test_profiler_tree.py` depending on
# where it is run from.
if filename.endswith(os.path.splitext(__file__)[0]):
filename = os.path.split(os.path.splitext(__file__)[0])[1]
# We test against a string literal, so all paths have to look like POSIX paths.
filename = filename.replace(os.sep, "/")
# We don't want to have to update this test every time PyTorch changes.
lineno = lineno if os.path.split(filename.strip())[1] == "test_profiler_tree" else "..."
return f"{filename}.py({lineno}): {fn}"
return re.sub(
"object at 0x[0-9a-fA-F]+>",
"object at 0xXXXXXXXXXXXX>",
name)
class TestProfilerTree(TestCase):
def assertTreesMatch(self, actual: str, expected: str):
# Warning: Here be dragons
# Different platforms will have subtly different behavior for Python
# tracing. Observed differences include:
# 1) Windows symbolicates names differently from posix
# 2) The profile callback for c_call does not fire for Tensor.__pow__
# on certain platforms. This is not caused by the function tracer,
# but by cPython itself.
#
# The purpose of these unit tests is to ensure that the profiler is
# doing reasonable things. When these platform dependent variations occur
# simply coerce them into a platform independent form. If you made a
# change in the codebase which changes the trace produced, simply use
# EXPECTTEST_ACCEPT=1 to update the tests to reflect the new structure.
replicate = getattr(self, "tree_replicate", None)
self.assertIsNotNone(replicate, "Please annotate test with `@ProfilerTree.test`")
# The profiler should produce deterministic results and should return
# to a clean state after each run. As a result, only the first
# replicate is allowed to update `expected`. If subsequent runs do not
# match it is a bug in the profiler.
if replicate:
self.assertEqual(actual, expected)
else:
self.assertExpectedInline(actual, expected, skip=1)
@ProfilerTree.test
def test_profiler_experimental_tree(self):
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
with torch.profiler.profile() as p:
z = torch.add(t1, t2)
y = torch.ones(1)
loss = (y - z) ** 2
loss.backward()
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
aten::add
aten::ones
aten::empty
aten::fill_
aten::sub
aten::pow
aten::result_type
aten::to
aten::ones_like
aten::empty_like
aten::empty_strided
aten::fill_
autograd::engine::evaluate_function: PowBackward0
PowBackward0
aten::pow
aten::result_type
aten::to
aten::copy_
aten::mul
aten::mul
aten::to
aten::_to_copy
aten::empty_strided
aten::copy_
aten::mul
autograd::engine::evaluate_function: SubBackward0
SubBackward0
aten::neg
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::new_empty_strided
aten::empty_strided
aten::copy_
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::detach
detach"""
)
@ProfilerTree.test
def test_profiler_experimental_tree_with_record_function(self):
with torch.profiler.profile() as p:
with torch.autograd.profiler.record_function("Top level Annotation"):
with torch.autograd.profiler.record_function("First Annotation"):
x = torch.ones((1,), requires_grad=True)
# Check that we correctly handle the case when a user
# annotation does not call `__exit__`.
_ = torch.autograd.profiler.record_function("Second Annotation").__enter__()
y = x + 1
with torch.autograd.profiler.record_function("Third Annotation"):
y.backward()
# NB: The `aten::zeros` before the record function annotations are due to
# `at::cpp_custom_type_hack`. When we switch to `torch::CustomClassHolder`
# they will disappear.
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
aten::zeros
aten::empty
aten::zero_
Top level Annotation
aten::empty
aten::zeros
aten::empty
aten::zero_
First Annotation
aten::empty
aten::ones
aten::empty
aten::fill_
aten::zeros
aten::empty
aten::zero_
Second Annotation
aten::empty
aten::add
aten::to
aten::_to_copy
aten::empty_strided
aten::copy_
aten::zeros
aten::empty
aten::zero_
Third Annotation
aten::empty
aten::ones_like
aten::empty_like
aten::empty_strided
aten::fill_
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::new_empty_strided
aten::empty_strided
aten::copy_"""
)
@ProfilerTree.test
def test_profiler_experimental_tree_with_memory(self):
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
with torch.profiler.profile(profile_memory=True) as p:
z = torch.add(t1, t2)
y = torch.ones(1)
loss = (y - z) ** 2
loss.backward()
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
aten::add
[memory]
aten::ones
aten::empty
[memory]
aten::fill_
aten::sub
[memory]
aten::pow
aten::result_type
aten::to
[memory]
aten::ones_like
aten::empty_like
aten::empty_strided
[memory]
aten::fill_
autograd::engine::evaluate_function: PowBackward0
PowBackward0
aten::pow
aten::result_type
aten::to
[memory]
aten::copy_
aten::mul
[memory]
aten::mul
aten::to
aten::_to_copy
aten::empty_strided
[memory]
aten::copy_
[memory]
[memory]
[memory]
aten::mul
[memory]
[memory]
[memory]
[memory]
autograd::engine::evaluate_function: SubBackward0
SubBackward0
aten::neg
[memory]
[memory]
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::new_empty_strided
aten::empty_strided
[memory]
aten::copy_
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::detach
detach
[memory]"""
)
@unittest.skipIf(TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite.")
@unittest.skipIf(torch.has_cuda, "CUDA invokes extra Python functions.")
@ProfilerTree.test
def test_profiler_experimental_tree_with_memory_and_stack(self):
t1, t2 = torch.ones(1, requires_grad=True), torch.ones(1, requires_grad=True)
with torch.profiler.profile(with_stack=True, profile_memory=True) as p:
z = torch.add(t1, t2)
y = torch.ones(1)
loss = torch.pow(y - z, 2)
loss.backward()
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
test_profiler_tree.py(304): test_profiler_experimental_tree_with_memory_and_stack
torch/profiler/profiler.py(...): __enter__
torch/profiler/profiler.py(...): start
torch/profiler/profiler.py(...): _transit_action
torch/profiler/profiler.py(...): start_trace
torch/autograd/profiler.py(...): _start_trace
<built-in method kineto_available of PyCapsule object at 0xXXXXXXXXXXXX>
torch/profiler/profiler.py(...): _get_distributed_info
torch/distributed/__init__.py(...): is_available
<built-in function hasattr>
torch/distributed/distributed_c10d.py(...): is_initialized
<built-in method add of type object at 0xXXXXXXXXXXXX>
aten::add
[memory]
<built-in method ones of type object at 0xXXXXXXXXXXXX>
aten::ones
aten::empty
[memory]
aten::fill_
aten::sub
[memory]
<built-in method pow of type object at 0xXXXXXXXXXXXX>
aten::pow
aten::result_type
aten::to
[memory]
torch/_tensor.py(...): backward
<built-in function _has_torch_function_unary>
torch/autograd/__init__.py(...): backward
<built-in function isinstance>
<built-in function isinstance>
<built-in function len>
torch/autograd/__init__.py(...): _tensor_or_tensors_to_tuple
torch/autograd/__init__.py(...): _make_grads
<built-in function isinstance>
<built-in method numel of Tensor object at 0xXXXXXXXXXXXX>
<built-in method ones_like of type object at 0xXXXXXXXXXXXX>
aten::ones_like
aten::empty_like
aten::empty_strided
[memory]
aten::fill_
<built-in method numel of Tensor object at 0xXXXXXXXXXXXX>
<built-in method numel of Tensor object at 0xXXXXXXXXXXXX>
autograd::engine::evaluate_function: PowBackward0
PowBackward0
aten::pow
aten::result_type
aten::to
[memory]
aten::copy_
aten::mul
[memory]
aten::mul
aten::to
aten::_to_copy
aten::empty_strided
[memory]
aten::copy_
[memory]
[memory]
[memory]
aten::mul
[memory]
[memory]
[memory]
[memory]
autograd::engine::evaluate_function: SubBackward0
SubBackward0
aten::neg
[memory]
[memory]
autograd::engine::evaluate_function: AddBackward0
AddBackward0
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::new_empty_strided
aten::empty_strided
[memory]
aten::copy_
autograd::engine::evaluate_function: torch::autograd::AccumulateGrad
torch::autograd::AccumulateGrad
aten::detach
detach
[memory]
torch/profiler/profiler.py(...): __exit__
torch/profiler/profiler.py(...): stop
torch/profiler/profiler.py(...): _transit_action
<built-in method numel of Tensor object at 0xXXXXXXXXXXXX>
enum.py(...): __hash__
<built-in function hash>
torch/profiler/profiler.py(...): stop_trace
torch/autograd/profiler.py(...): __exit__
<built-in method _disable_profiler of PyCapsule object at 0xXXXXXXXXXXXX>"""
)
@unittest.skipIf(TEST_WITH_CROSSREF, "crossref intercepts calls and changes the callsite.")
@unittest.skipIf(torch.has_cuda, "CUDA invokes extra Python functions.")
@ProfilerTree.test
def test_profiler_experimental_tree_with_stack_and_modules(self):
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.layers = [
torch.nn.ReLU(),
torch.nn.Linear(1, 1),
torch.nn.ReLU(),
]
def forward(self, x: torch.Tensor) -> torch.Tensor:
for l in self.layers:
x = l(x)
return x
model = MyModule()
with torch.profiler.profile(with_stack=True) as p:
for _ in range(2):
model(torch.ones((1,)))
self.maxDiff = None
self.assertTreesMatch(
ProfilerTree.format(p.profiler, 12),
"""\
test_profiler_tree.py(428): test_profiler_experimental_tree_with_stack_and_modules
torch/profiler/profiler.py(...): __enter__
torch/profiler/profiler.py(...): start
torch/profiler/profiler.py(...): _transit_action
torch/profiler/profiler.py(...): start_trace
torch/autograd/profiler.py(...): _start_trace
<built-in method kineto_available of PyCapsule object at 0xXXXXXXXXXXXX>
torch/profiler/profiler.py(...): _get_distributed_info
torch/distributed/__init__.py(...): is_available
<built-in function hasattr>
torch/distributed/distributed_c10d.py(...): is_initialized
<built-in method ones of type object at 0xXXXXXXXXXXXX>
aten::ones
aten::empty
aten::fill_
nn.Module: MyModule_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
test_profiler_tree.py(422): forward
nn.Module: ReLU_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/activation.py(...): forward
torch/nn/functional.py(...): relu
<built-in function _has_torch_function_unary>
<built-in method relu of type object at 0xXXXXXXXXXXXX>
aten::relu
aten::clamp_min
nn.Module: Linear_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/linear.py(...): forward
torch/nn/modules/module.py(...): __getattr__
torch/nn/modules/module.py(...): __getattr__
<built-in function linear>
aten::linear
aten::t
aten::transpose
aten::as_strided
aten::matmul
aten::t
aten::transpose
aten::as_strided
aten::mv
aten::empty
aten::addmv_
aten::add_
nn.Module: ReLU_1
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/activation.py(...): forward
torch/nn/functional.py(...): relu
<built-in function _has_torch_function_unary>
<built-in method relu of type object at 0xXXXXXXXXXXXX>
aten::relu
aten::clamp_min
<built-in method ones of type object at 0xXXXXXXXXXXXX>
aten::ones
aten::empty
aten::fill_
nn.Module: MyModule_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
test_profiler_tree.py(422): forward
nn.Module: ReLU_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/activation.py(...): forward
torch/nn/functional.py(...): relu
<built-in function _has_torch_function_unary>
<built-in method relu of type object at 0xXXXXXXXXXXXX>
aten::relu
aten::clamp_min
nn.Module: Linear_0
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/linear.py(...): forward
torch/nn/modules/module.py(...): __getattr__
torch/nn/modules/module.py(...): __getattr__
<built-in function linear>
aten::linear
aten::t
aten::transpose
aten::as_strided
aten::matmul
aten::t
aten::transpose
aten::as_strided
aten::mv
aten::empty
aten::addmv_
aten::add_
nn.Module: ReLU_1
<built-in method _get_tracing_state of PyCapsule object at 0xXXXXXXXXXXXX>
torch/nn/modules/activation.py(...): forward
torch/nn/functional.py(...): relu
<built-in function _has_torch_function_unary>
<built-in method relu of type object at 0xXXXXXXXXXXXX>
aten::relu
aten::clamp_min
torch/profiler/profiler.py(...): __exit__
torch/profiler/profiler.py(...): stop
torch/profiler/profiler.py(...): _transit_action
<built-in method get of dict object at 0xXXXXXXXXXXXX>
enum.py(...): __hash__
<built-in function hash>
torch/profiler/profiler.py(...): stop_trace
torch/autograd/profiler.py(...): __exit__
<built-in method _disable_profiler of PyCapsule object at 0xXXXXXXXXXXXX>"""
)
if __name__ == '__main__':
run_tests()