| from torch.onnx.symbolic_helper import _black_list_in_opset |
| |
| import torch.onnx.symbolic_opset9 as sym_opset9 |
| |
| import warnings |
| |
| |
| # Note [ONNX operators that are added/updated from opset 7 to opset 8] |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # New operators: |
| # Expand |
| # |
| # Updated operators: |
| # Min, Max, Sum, Mean: supports multidirectional broadcasting. |
| # MaxPool: added optional indices output. |
| # Scan |
| |
| black_listed_operators = [ |
| "scan", "expand", "expand_as", |
| "adaptive_max_pool1d", "adaptive_max_pool2d", "adaptive_max_pool3d", |
| "max_pool1d_with_indices", "max_pool2d_with_indices", "max_pool3d_with_indices" |
| ] |
| |
| |
| # NOTE: max, min, sum, mean: broadcasting is not supported in opset 7. |
| # torch.max (same for torch.min) actually has two interfaces smashed together: |
| # torch.max(x, dim, keepdim) and torch.max(x, y) |
| def max(g, self, dim_or_y=None, keepdim=None): |
| # torch.max(input, other) |
| if keepdim is None and dim_or_y is not None: |
| warnings.warn("Multidirectional broadcasting is not supported in opset 7. " |
| "This might cause the onnx model to be incorrect, if inputs to max operators " |
| "have different shapes") |
| return sym_opset9.max(g, self, dim_or_y, keepdim) |
| |
| |
| def min(g, self, dim_or_y=None, keepdim=None): |
| # torch.min(input, other) |
| if keepdim is None and dim_or_y is not None: |
| warnings.warn("Multidirectional broadcasting is not supported in opset 7. " |
| "This might cause the onnx model to be incorrect, if inputs to min operators " |
| "have different shapes") |
| return sym_opset9.min(g, self, dim_or_y, keepdim) |
| |
| |
| for black_listed_op in black_listed_operators: |
| vars()[black_listed_op] = _black_list_in_opset(black_listed_op) |