blob: e367c4b017ed6266f03aaf91c32df2cba7900e5c [file] [log] [blame]
#include <ATen/ATen.h>
#include <torch/csrc/jit/alias_info.h>
#include <torch/csrc/jit/operator.h>
#include <torch/csrc/jit/passes/alias_analysis.h>
#include <torch/csrc/jit/passes/python_print.h>
#include <torch/csrc/jit/script/edit_distance.h>
#include <torch/csrc/jit/script/error_report.h>
#include <queue>
#include <utility>
#include <vector>
namespace torch {
namespace jit {
namespace {
using OperatorMap =
std::unordered_map<Symbol, std::vector<std::shared_ptr<Operator>>>;
struct OperatorRegistry {
private:
std::mutex lock;
OperatorMap operators;
// list of operators whose schema have not yet been parsed, and must
// be registered before any call to lookup an opeator
std::vector<std::shared_ptr<Operator>> to_register;
// Those two maps are used to implement lookupByLiteral, which is needed for
// the n->match(...) calls. Basically, every function schema is assigned a
// unique string you can use to match it. However, parsing those strings or
// comparing and hashing them character by character would be very slow, so we
// use a trick here! Every string literal in your program is guaranteed to
// have static storage duration and so its address won't change at runtime.
// This allows us to memoize answers for every pointer, which is done by the
// operators_by_sig_literal map. Still, this map is initially empty, and so we
// still need to do the complete string matching at the first time, which is
// implemented by performing a lookup in the operators_by_sig map.
std::unordered_map<std::string, std::shared_ptr<Operator>> operators_by_sig;
std::unordered_map<const char*, std::shared_ptr<Operator>>
operators_by_sig_literal;
// XXX - caller must be holding lock
void registerPendingOperators() {
for (const auto& op : to_register) {
Symbol sym = Symbol::fromQualString(op->schema().name());
operators[sym].push_back(op);
operators_by_sig[canonicalSchemaString(op->schema())] = op;
}
to_register.clear();
}
public:
void registerOperator(Operator&& op) {
std::lock_guard<std::mutex> guard(lock);
to_register.push_back(std::make_shared<Operator>(std::move(op)));
}
const std::shared_ptr<Operator>& lookupByLiteral(const char* name) {
std::lock_guard<std::mutex> guard(lock);
registerPendingOperators();
auto it = operators_by_sig_literal.find(name);
if (it == operators_by_sig_literal.end()) {
auto op_ptr_it =
operators_by_sig.find(canonicalSchemaString(parseSchema(name)));
// Handy debugging code that dumps all operators we know about on mismatch
#if 0
if (op_ptr_it == operators_by_sig.end()) {
for (auto & entry : operators_by_sig) {
std::cout << entry.first << std::endl;
}
}
#endif
TORCH_CHECK(
op_ptr_it != operators_by_sig.end(),
"Couldn't find an operator for ",
name,
". Do you have to update a set of hardcoded JIT ops?");
it = operators_by_sig_literal.emplace_hint(it, name, op_ptr_it->second);
}
return it->second;
}
const std::vector<std::shared_ptr<Operator>>& getOperators(Symbol name) {
std::lock_guard<std::mutex> guard(lock);
registerPendingOperators();
static std::vector<std::shared_ptr<Operator>> empty;
auto it = operators.find(name);
if (it != operators.end())
return it->second;
return empty;
}
std::vector<Symbol> findSimilarOperators(Symbol input_op) {
std::lock_guard<std::mutex> guard(lock);
registerPendingOperators();
using EntryPair = std::pair<int64_t, Symbol>;
auto cmp = [](const EntryPair& lhs, const EntryPair& rhs) {
return lhs.first > rhs.first;
};
std::priority_queue<EntryPair, std::vector<EntryPair>, decltype(cmp)>
rankings(cmp);
static constexpr size_t MAX_EDIT_DIST = 2u;
for (const auto& op : operators) {
auto edit_dist = script::ComputeEditDistance(
input_op.toQualString(), op.first.toQualString(), MAX_EDIT_DIST);
if (edit_dist <= MAX_EDIT_DIST) {
rankings.emplace(edit_dist, op.first);
}
}
std::vector<Symbol> ret;
while (!rankings.empty()) {
ret.push_back(rankings.top().second);
rankings.pop();
}
return ret;
}
};
OperatorRegistry& getRegistry() {
static OperatorRegistry r;
return r;
}
} // anonymous namespace
void registerOperator(Operator&& op) {
if (op.schema().is_varret()) {
Symbol s = Symbol::fromQualString(op.schema().name());
if (!printerHasSpecialCaseFor(s)) {
AT_ERROR(
"Missing special case in python printer for non-schematized"
" operator ",
op.schema().name(),
". File a bug to add a case for this operator.\n");
}
if (!aliasAnalysisHasSpecialCaseFor(s) &&
op.aliasAnalysisKind() == AliasAnalysisKind::CONSERVATIVE) {
AT_ERROR(
"Missing special case in alias analysis for non-schematized"
" operator ",
op.schema().name(),
". File a bug to add a case for this operator.\n");
}
if (aliasAnalysisHasSpecialCaseFor(s) &&
op.aliasAnalysisKind() == AliasAnalysisKind::FROM_SCHEMA) {
AT_ERROR(
"The operator ",
op.schema().name(),
" is special cased and cannot use explicit alias analysis.");
}
}
getRegistry().registerOperator(std::move(op));
}
const std::vector<std::shared_ptr<Operator>>& getAllOperatorsFor(Symbol name) {
return getRegistry().getOperators(name);
}
std::vector<Symbol> findSimilarOperators(Symbol input_op) {
return getRegistry().findSimilarOperators(input_op);
}
Operator& sig(const char* signature) {
return *getRegistry().lookupByLiteral(signature);
}
std::string canonicalSchemaString(const FunctionSchema& schema) {
std::ostringstream out;
out << schema.name();
out << "(";
bool seen_kwarg_only = false;
for (size_t i = 0; i < schema.arguments().size(); ++i) {
if (i > 0)
out << ", ";
if (schema.arguments()[i].kwarg_only() && !seen_kwarg_only) {
out << "*, ";
seen_kwarg_only = true;
}
const auto& arg = schema.arguments()[i];
out << arg.type()->str() << " " << arg.name();
}
out << ") -> ";
if (schema.returns().size() == 1) {
out << schema.returns().at(0).type()->str();
} else if (schema.returns().size() > 1) {
out << "(";
for (size_t i = 0; i < schema.returns().size(); ++i) {
if (i > 0)
out << ", ";
out << schema.returns()[i].type()->str();
}
out << ")";
}
return out.str();
}
bool Operator::matches(const Node* node) const {
// wrong name
if (node->kind().toQualString() != schema().name()) {
return false;
}
at::ArrayRef<const Value*> actuals = node->inputs();
const auto& formals = schema().arguments();
// not enough inputs
if (actuals.size() < formals.size())
return false;
TypeEnv type_env;
for (size_t i = 0; i < formals.size(); ++i) {
const MatchTypeReturn matched_type =
matchTypeVariables(formals[i].type(), actuals[i]->type(), type_env);
if (!matched_type.type) {
return false;
}
TypePtr formal = *matched_type.type;
if (!actuals[i]->type()->isSubtypeOf(formal)) {
return false;
}
}
// too many inputs
if (!schema().is_vararg() && actuals.size() != formals.size()) {
return false;
}
return true;
}
std::shared_ptr<Operator> findOperatorFor(const Node* node) {
const auto& candidates = getAllOperatorsFor(node->kind());
for (const auto& candidate : candidates) {
if (candidate->matches(node)) {
return candidate;
}
}
return nullptr;
}
const Operator& getOperatorFor(const Node* node) {
auto op = findOperatorFor(node);
if (op)
return *op;
auto er = script::ErrorReport(node->sourceRange());
er << "Schema not found for node. File a bug report.\n";
er << "Node: " << *node << "\n";
er << "Input types:";
for (size_t i = 0; i < node->inputs().size(); ++i) {
if (i > 0)
er << ", ";
er << *node->inputs()[i]->type();
}
const auto& candidates = getAllOperatorsFor(node->kind());
if (candidates.size() > 0) {
er << "\ncandidates were:\n";
for (auto& candidate : candidates) {
er << " " << candidate->schema() << "\n";
}
} else {
er << "\nno candidates found\n";
}
er << "within the graph:\n";
er << *node->owningGraph() << "\n";
throw er;
}
OperatorSet::OperatorSet(std::initializer_list<const char*> sig_literals) {
auto& registry = getRegistry();
for (const char* sig : sig_literals) {
auto op = registry.lookupByLiteral(sig);
ops[Symbol::fromQualString(op->schema().name())].push_back(op);
}
}
Operator* OperatorSet::find(const Node* n) const {
auto it = ops.find(n->kind());
if (it == ops.end()) {
return nullptr;
}
for (auto& op : it->second) {
if (op->matches(n)) {
return op.get();
}
}
return nullptr;
}
} // namespace jit
} // namespace torch