| #include "caffe2/operators/fully_connected_op.h" |
| |
| namespace caffe2 { |
| namespace { |
| |
| REGISTER_CPU_OPERATOR(FC, FullyConnectedOp<float, CPUContext>); |
| REGISTER_CPU_OPERATOR(FCGradient, FullyConnectedGradientOp<float, CPUContext>); |
| |
| OPERATOR_SCHEMA(FC) |
| .NumInputs(3) |
| .NumOutputs(1) |
| .SetDoc(R"DOC( |
| Computes the result of passing an input vector X into a fully connected |
| layer with 2D weight matrix W and 1D bias vector b. |
| |
| The layer computes Y = X * W^T + b, where X has |
| size (M x K), W has size (N x K), |
| b has size (N), and Y has size (M x N), where M is the batch size. Even though b |
| is 1D, it is resized to size (M x N) implicitly and added to each vector in the |
| batch. These dimensions must be matched correctly, or else the operator will |
| throw errors. |
| )DOC") |
| .Arg( |
| "axis", |
| "(int32_t) default to 1; describes the axis of the inputs; " |
| "defaults to one because the 0th axis most likely describes " |
| "the batch_size") |
| .Input(0, "X", "2D input of size (MxK) data") |
| .Input( |
| 1, |
| "W", |
| "2D blob of size (KxN) containing fully connected weight " |
| "matrix") |
| .Input(2, "b", "1D blob containing bias vector") |
| .Output(0, "Y", "2D output tensor"); |
| |
| OPERATOR_SCHEMA(FCGradient).NumInputs(3).NumOutputs(2, 3); |
| |
| class GetFCGradient : public GradientMakerBase { |
| using GradientMakerBase::GradientMakerBase; |
| vector<OperatorDef> GetGradientDefs() override { |
| CAFFE_ENFORCE_EQ(def_.input_size(), 3); |
| return SingleGradientDef( |
| "FCGradient", "", |
| vector<string>{I(0), I(1), GO(0)}, |
| vector<string>{GI(1), GI(2), GI(0)}); |
| } |
| }; |
| REGISTER_GRADIENT(FC, GetFCGradient); |
| } // namespace |
| } // namespace caffe2 |