blob: cc6b8f986a65d36a7d75199e5e8b607d1a5d9405 [file] [log] [blame]
import torch
from torch._prims import utils
from torch._prims.utils import check
meta_lib = torch.library.Library("aten", "IMPL", "Meta")
def toRealValueType(dtype):
from_complex = {
torch.complex32: torch.half,
torch.cfloat: torch.float,
torch.cdouble: torch.double
}
return from_complex.get(dtype, dtype)
# Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py
@torch.library.impl(meta_lib, "index_select")
def meta_index_select(self, dim, index):
result_size = list(self.size())
if self.dim() > 0:
result_size[dim] = index.numel()
return self.new_empty(result_size)
@torch.library.impl(meta_lib, "index_select.out")
def meta_index_select_out(self, dim, index, out):
torch._resize_output_(out, self.size(), self.device)
return out.copy_(torch.index_select(self, dim, index))
@torch.library.impl(meta_lib, "abs")
def meta_abs(self):
if self.is_complex():
float_type = toRealValueType(self.dtype)
return self.new_empty(self.size(), dtype=float_type)
else:
return self.new_empty(self.size())
@torch.library.impl(meta_lib, "abs.out")
def meta_abs_out(self, out):
torch._resize_output_(out, self.size(), self.device)
return out.copy_(torch.abs(self))
@torch.library.impl(meta_lib, "max")
def meta_max(self):
return self.new_empty(())
@torch.library.impl(meta_lib, "min")
def meta_min(self):
return self.new_empty(())
def squareCheckInputs(self, f_name):
assert self.dim() >= 2, f"{f_name}: The input tensor must have at least 2 dimensions."
# TODO: I think the error message has the -2 and -1 swapped. If you fix
# it fix the C++ squareCheckInputs too
assert self.size(-1) == self.size(-2), \
f"{f_name}: A must be batches of square matrices, but they are {self.size(-1)} by {self.size(-2)} matrices"
def checkUplo(uplo: str):
uplo_uppercase = uplo.upper()
assert len(uplo) == 1 and uplo_uppercase == 'U' or uplo_uppercase == 'L', \
f"Expected UPLO argument to be 'L' or 'U', but got {uplo}"
@torch.library.impl(meta_lib, "linalg_eigh")
def meta_linalg_eigh(self, uplo="L"):
squareCheckInputs(self, "linalg_eigh")
checkUplo(uplo)
real_dtype = toRealValueType(self.dtype)
assert self.dim() >= 2
values = self.new_empty(self.shape, dtype=real_dtype)
values.transpose_(-2, -1)
vectors = self.new_empty(self.shape[:-1])
return (values, vectors)
@torch.library.impl(meta_lib, "reflection_pad2d")
def meta_pad2d(self, padding):
valid_dims = self.size(1) != 0 and self.size(2) != 0
check(
(self.ndim == 3 and valid_dims)
or (self.ndim == 4 and valid_dims and self.size(3) != 0),
f"3D or 4D (batch mode) tensor expected for input, but got: {self}"
)
if self.ndim == 4:
nbatch, nplane, input_h, input_w = self.shape
else:
nbatch = 1
nplane, input_h, input_w = self.shape
pad_l, pad_r, pad_t, pad_b = padding
output_h = input_h + pad_t + pad_b
output_w = input_w + pad_l + pad_r
if self.ndim == 3:
return self.new_empty((nplane, output_h, output_w))
else:
return self.new_empty((nbatch, nplane, output_h, output_w))
@torch.library.impl(meta_lib, "dot")
def meta_dot(self, tensor):
check(
self.dim() == 1 and tensor.dim() == 1,
f"1D tensors expected, but got {self.dim()}D and {tensor.dim()}D tensors"
)
return self.new_empty(())
@torch.library.impl(meta_lib, "var_mean.correction")
def meta_var_mean_correction(self, dim, *, correction, keepdim=False):
dim = utils.reduction_dims(self.shape, dim)
if keepdim:
output_shape = tuple(self.shape[i] if i not in dim else 1 for i in range(self.ndim))
else:
output_shape = utils.compute_reduction_output_shape(self.shape, dim)
result1 = self.new_empty(output_shape, dtype=toRealValueType(self.dtype))
result2 = self.new_empty(output_shape)
return result1, result2
@torch.library.impl(meta_lib, "inverse")
def meta_inverse(self):
# Bug: https://github.com/pytorch/pytorch/issues/77498
if self.numel() == 0:
return torch.empty_like(self)
r = self.new_empty(self.shape)
r.transpose_(-2, -1)
return r
@torch.library.impl(meta_lib, "bernoulli.out")
def meta_bernoulli(self, *, generator=None, out):
torch._resize_output_(out, self.size(), self.device)
return out
@torch.library.impl(meta_lib, "_adaptive_avg_pool2d")
def meta_adaptive_avg_pool2d(self, output_size):
check(self.ndim == 3 or self.ndim == 4, f"Expected 3D or 4D tensor, but got {self.shape}")
return self.new_empty(self.shape[:-2] + tuple(output_size))
@torch.library.impl(meta_lib, "_adaptive_avg_pool3d")
def meta_adaptive_avg_pool3d(self, output_size):
check(self.ndim == 4 or self.ndim == 5, f"Expected 4D or 5D tensor, but got {self.shape}")
return self.new_empty(self.shape[:-3] + tuple(output_size))