blob: 9e01ee1be4ec96593ae0d39c2d5d4382916a370c [file] [log] [blame]
from abc import ABC
from typing import List, Union
from dataclasses import dataclass
from torchgen.context import method_with_native_function
from torchgen.model import BackendIndex, NativeFunction, NativeFunctionsGroup
from torchgen.api.types import (
BaseCType,
OptionalCType,
VectorCType,
kernel_signature,
)
import torchgen.api.dispatcher as dispatcher
from torchgen.api.lazy import (
LazyIrSchema,
LazyArgument,
isValueType,
tensorListValueT,
)
from torchgen.dest.lazy_ts_lowering import ts_lowering_body
def node_ctor_arg_rvalue_string(arg: LazyArgument) -> str:
"""
Given a LazyArgument,
generate a c++ string for materializing an rvalue of that arg for passing into
a lazy Node constructor.
"""
if isValueType(arg.lazy_type):
if isinstance(arg.lazy_type, BaseCType):
if arg.is_wrapped_scalar:
return f"torch::lazy::LazyGraphExecutor::Get()->GetIrValueForScalarFromCodegen({arg.name})"
elif arg.lazy_type.type is tensorListValueT:
return f"lazy_{arg.name}_tensorlist"
elif arg.is_symint_or_list:
return f"Value(std::dynamic_pointer_cast<torch::lazy::SymbolicIntNode>({arg.name}.toSymbolicIntNode())->node_, 0)"
return f"lazy_{arg.name}->GetIrValue()"
elif isinstance(arg.lazy_type, OptionalCType):
if arg.is_wrapped_scalar:
return (
f"{arg.name} ? "
f"c10::make_optional(torch::lazy::LazyGraphExecutor::Get()->GetIrValueForScalarFromCodegen(*{arg.name})) : "
"c10::nullopt"
)
return (
f"lazy_{arg.name} ? "
f"c10::make_optional(lazy_{arg.name}->GetIrValue()) : "
"c10::nullopt"
)
else:
raise AssertionError(
f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})"
)
else:
if isinstance(arg.lazy_type, VectorCType) and isinstance(
arg.lazy_type.elem, BaseCType
):
return f"std::vector<{arg.lazy_type.elem.type}>({arg.name}.begin(), {arg.name}.end())"
elif (
isinstance(arg.lazy_type, OptionalCType)
and isinstance(arg.lazy_type.elem, VectorCType)
and isinstance(arg.lazy_type.elem.elem, BaseCType)
):
return f"torch::lazy::ToOptionalVector<{arg.lazy_type.elem.elem.type}>({arg.name})"
else:
return f"{arg.name}"
def node_ctor_inputs(schema: LazyIrSchema) -> str:
"""
Produce a formatted string with the arguments as passed into the constructor of a node class.
"""
node_ctor_values = [
node_ctor_arg_rvalue_string(arg) for arg in schema.filtered_args()
]
return ",\n ".join(node_ctor_values)
def gen_fallback_code(schema: LazyIrSchema, overload_name: str) -> str:
"""
Generate code that falls back to eager conditioned on a predicate
"""
fallback_args = ",\n ".join(
[str(arg.name) for arg in schema.filtered_args(generator=True)]
)
if len(overload_name):
aten_op_str = f"ATEN_OP2({schema.aten_name}, {overload_name})"
else:
aten_op_str = f"ATEN_OP({schema.aten_name})"
or_has_generator = ""
if schema.generator_arg:
# generators are always optional and there is never more than one, at least currently
or_has_generator = f" || ({schema.generator_arg.name}.has_value() && {schema.generator_arg.name}->defined())"
return f"""
if (force_eager_fallback({aten_symbol(schema)}){or_has_generator}) {{
return at::native::call_fallback_fn<&ltc_eager_fallback, {aten_op_str}>::call(
{fallback_args}
);
}}
"""
def aten_symbol(schema: LazyIrSchema) -> str:
missing_interned_strings = {
"sigmoid_backward",
}
if schema.aten_name in missing_interned_strings:
return f'c10::Symbol::fromQualString("aten::{schema.aten_name}")'
return f"at::aten::{schema.aten_name}"
@dataclass(frozen=True)
class GenLazyIR(ABC):
backend_index: BackendIndex
node_base: str
@method_with_native_function
def __call__(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> List[str]:
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
return self.gen(f)
# there is no lowering functionality generated unless this IR base class is subclassed and
# implemented as a backend-specific node
def lowering_function(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
return ""
def node_base_ctor_call(self, schema: LazyIrSchema) -> str:
# backends can customize the way the node base class constructor is called,
# as long as all of its arguments can be generated from information available from the schema
base_ctor_value_args_list = []
for arg in schema.filtered_args(values=True, scalars=False):
if isinstance(arg.lazy_type, BaseCType) or isinstance(
arg.lazy_type, VectorCType
):
base_ctor_value_args_list.append(f"{arg.name}")
elif isinstance(arg.lazy_type, OptionalCType):
base_ctor_value_args_list.append(f"{arg.name}.value_or(kNullValue)")
else:
raise AssertionError(
f"Unsupported type ({arg.lazy_type}) - add support if necessary"
)
base_ctor_value_args = ", ".join(base_ctor_value_args_list)
scalar_args = schema.filtered_args(values=False, scalars=True)
scalar_hashes = ", ".join([f"{a.name}" for a in scalar_args])
return f"""{self.node_base}(torch::lazy::OpKind({aten_symbol(schema)}),
{{{base_ctor_value_args}}}, std::move(shapes),
/* num_outputs */ {len(schema.returns)},
torch::lazy::MHash({scalar_hashes}))"""
def gen(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> List[str]:
# for now, we just want one IR class decl and soon after also the method defs
# and we use the functional version not out/inplace.
func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func
schema = LazyIrSchema(func)
all_args = schema.filtered_args()
value_args = schema.filtered_args(values=True, scalars=False)
scalar_args = schema.filtered_args(values=False, scalars=True)
node_ctor_args = ", ".join(
[f"const {i.lazy_type.cpp_type()}& {i.name}" for i in all_args]
)
scalar_initializers = ",\n ".join(
[f"{a.name}({a.name})" for a in scalar_args]
)
comma_if_scalar_initializers = ",\n" if len(scalar_initializers) else ""
scalar_decls = "\n ".join(
[
f"std::string {a.name};"
if a.lazy_type.cpp_type() == "c10::string_view"
else f"{a.lazy_type.cpp_type()} {a.name};"
for a in scalar_args
]
)
optional_values = [
arg.name
for arg in schema.filtered_args(values=True, scalars=False)
if isinstance(arg.lazy_type, OptionalCType)
]
has_optional_decls = "\n ".join(
[f"bool has_{value}: 1;" for value in optional_values]
)
has_optional_defs = "\n ".join(
[f"has_{value} = !!{value};" for value in optional_values]
)
members_to_string = []
for arg in scalar_args:
if isinstance(arg.lazy_type, OptionalCType):
members_to_string.append(
f"""if ({arg.name}.has_value()) {{
ss << ", {arg.name}=" << {arg.name}.value();
}} else {{
ss << ", {arg.name}=null";
}}"""
)
else:
members_to_string.append(f'ss << ", {arg.name}=" << {arg.name};')
members_to_string_str = "\n ".join(members_to_string)
return [
f"""\
class {schema.node_name} : public {self.node_base} {{
public:
{schema.node_name}({node_ctor_args}, std::vector<Shape>&& shapes)
: {self.node_base_ctor_call(schema)}{comma_if_scalar_initializers}
{scalar_initializers}
{{
{has_optional_defs}
}}
std::string ToString() const override {{
std::stringstream ss;
ss << {self.node_base}::ToString();
{members_to_string_str}
return ss.str();
}}
{self.lowering_function(f)}
{scalar_decls}
{has_optional_decls}
}};
""",
]
@dataclass(frozen=True)
class GenTSLazyIR(GenLazyIR):
def lowering_function(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
return f"""torch::lazy::TSOpVector Lower(std::shared_ptr<torch::jit::GraphFunction> function,
torch::lazy::TSLoweringContext* loctx) const override {{
{ts_lowering_body(f)}
}}"""
@dataclass(frozen=True)
class GenLazyNativeFuncDefinition:
class_method_name: str
backend_index: BackendIndex
tensor_class: str
gen_forced_fallback_code: bool
backend_namespace: str
get_tensorlist: str
get_tensor_or_wrap_number: str
try_get_tensor: str
metrics_counter: str
create_tensor: str
create_from_first_tensor: bool
def lazy_tensor_decls(self, func: NativeFunction, schema: LazyIrSchema) -> str:
value_args = schema.filtered_args(values=True, scalars=False)
# Generates lazy_{name} variables for LazyTensors wrapping input tensors
lazy_tensor_decls: List[str] = []
for arg in value_args:
if arg.is_wrapped_scalar:
# no lazy tensor wrapper for scalars that are promoted to IR values
continue
elif arg.is_symint_or_list:
continue # values are extracted in isValueType
elif isinstance(arg.lazy_type, BaseCType):
if arg.lazy_type.type is tensorListValueT:
lazy_tensor_decls.append(
f"auto lazy_{arg.name}_tensorlist = "
f"{self.backend_namespace}::{self.get_tensorlist}({arg.name});"
)
else:
lazy_tensor_decls.append(
f"{self.tensor_class}Ptr lazy_{arg.name} = "
f"{self.backend_namespace}::{self.get_tensor_or_wrap_number}({arg.name}, *common_device);"
)
elif isinstance(arg.lazy_type, OptionalCType):
# TODO(alanwaketan): Maybe we want to apply GetLtcTensorOrCreateForWrappedNumber here, but hold it
# until we encounter a real world example.
lazy_tensor_decls.append(
f" {self.tensor_class}Ptr lazy_{arg.name} = "
f"{self.backend_namespace}::{self.try_get_tensor}({arg.name}.value_or(at::Tensor()));"
)
else:
raise AssertionError(
f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})"
)
return ("\n ").join(lazy_tensor_decls)
def force_eager_fallback(self, func: NativeFunction, schema: LazyIrSchema) -> str:
if self.gen_forced_fallback_code:
return gen_fallback_code(schema, overload_name=func.func.name.overload_name)
return ""
def metrics(self, func: NativeFunction, schema: LazyIrSchema) -> str:
return f"{self.metrics_counter};"
def get_device(self, func: NativeFunction, schema: LazyIrSchema) -> str:
value_args = schema.filtered_args(values=True, scalars=False)
value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar]
assert (
len(value_types_names) > 0
), "Code below assumes there is at least one tensor arg"
return f"""auto common_device = torch::lazy::GetBackendDevice({', '.join(value_types_names)});
TORCH_INTERNAL_ASSERT(common_device);
"""
def shape_inference(self, func: NativeFunction, schema: LazyIrSchema) -> str:
metadata = self.backend_index.get_kernel(func)
assert metadata is not None
all_args = schema.filtered_args()
returns_length = len(schema.returns)
# call the meta kernel if it exists, to compute output shape/dtype for our IR
if func.structured or func.structured_delegate is not None:
meta_out = """std::vector<Shape> shapes{Shape(out_meta.scalar_type(), out_meta.sizes().vec())};"""
if returns_length > 1:
def this_shape(i: int) -> str:
return f"Shape(std::get<{i}>(out_meta).scalar_type(), std::get<{i}>(out_meta).sizes().vec())"
shapes_str = ",".join([this_shape(i) for i in range(returns_length)])
meta_out = "std::vector<Shape> shapes{" + shapes_str + "};"
shape_str = f"""auto out_meta = at::meta::{schema.aten_name}({', '.join(str(a.name) for a in all_args)});
{meta_out}"""
else:
shape_sig = ComputeShapeSignature(metadata.kernel, func)
shape_str = f"""
auto shapes = {shape_sig.shape_call};"""
shape_str += f"""
TORCH_INTERNAL_ASSERT(shapes.size() == {returns_length});"""
# Calculating which dimensions are symbolic
func_schema_str = "aten::" + str(func.func)
shape_str += f"""
if(symbolicShapeEnabled()){{
std::vector<jit::IValue> inputs = {{ {', '.join(str(a.name) for a in all_args)} }};
char* schema_str = "{func_schema_str}";
applySymbolicShapesOnLT(schema_str, inputs, shapes);
}}
"""
return shape_str
def build_ir_node(self, func: NativeFunction, schema: LazyIrSchema) -> str:
node_ctor_input_str = node_ctor_inputs(schema)
return f"""auto node = torch::lazy::MakeNode<{schema.node_name}>({node_ctor_input_str},
std::move(shapes));"""
def create_lazy_tensor(self, first_tensor_name: str) -> str:
# xla uses an instance method for tensor creation, for the time being
if self.create_from_first_tensor:
# TODO(whc) remove this if XLA switches to using static method for creation
return f"{first_tensor_name}.{self.create_tensor}"
return f"{self.backend_namespace}::{self.create_tensor}"
def return_aten_tensor(self, func: NativeFunction, schema: LazyIrSchema) -> str:
returns_length = len(schema.returns)
value_args = schema.filtered_args(values=True, scalars=False)
value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar]
assert (
len(value_types_names) > 0
), "Code below assumes there is at least one tensor arg"
first_tensor_name = value_types_names[0]
bridge_str = f"""auto result = torch::lazy::CreateAtenFromLtcTensor(
{self.create_lazy_tensor(first_tensor_name)}(std::move(node), *common_device));"""
if returns_length > 1:
bridge_str = f"""std::vector<{self.tensor_class}Ptr> lazy_tensors;
for (int i = 0; i < {returns_length}; i++) {{
lazy_tensors.push_back({self.create_lazy_tensor(first_tensor_name)}(torch::lazy::Value(node, i), *common_device));
}}
auto result = torch::lazy::TupleAtenFromLtcTensors<{returns_length}>(lazy_tensors);"""
if schema.name.name.inplace or func.func.is_out_fn():
assert returns_length == 1, (
"We assumed there was no such case where an op is an in-place variant "
f"and has tuple outputs, but got tuple of len {returns_length}."
)
bridge_str = f"""lazy_{first_tensor_name}->SetInPlaceIrValue(node);
auto& result = {first_tensor_name};"""
bridge_str += """
return result;"""
return bridge_str
@method_with_native_function
def __call__(self, func: NativeFunction) -> List[str]:
sig = kernel_signature(func, self.backend_index)
metadata = self.backend_index.get_kernel(func)
assert metadata is not None
schema = LazyIrSchema(func.func)
return [
f"""\
{sig.decl(name=f"{self.class_method_name}::{metadata.kernel}")} {{
{self.force_eager_fallback(func, schema)}
{self.metrics(func, schema)}
{self.get_device(func, schema)}
{self.lazy_tensor_decls(func, schema)}
{self.shape_inference(func, schema)}
{self.build_ir_node(func, schema)}
{self.return_aten_tensor(func, schema)}
}};\n
"""
]
class ComputeShapeSignature:
"""
Here we use the base name as the suffix of the signature to avoid generating for in-place variants.
"""
def __init__(self, kernel_name: str, f: NativeFunction):
self.__schema = LazyIrSchema(f.func)
self.__dispatch_args = ", ".join(
[a.decl() for a in dispatcher.arguments(f.func)]
)
self.__call_args = ", ".join(
[f"{arg.name}" for arg in self.__schema.filtered_args(generator=True)]
)
self.__kernel_name = kernel_name
def __decl_suffix(self) -> str:
return f"{self.__kernel_name}({self.__dispatch_args})"
def __call_suffix(self) -> str:
return f"{self.__kernel_name}({self.__call_args})"
@property
def shape_decl(self) -> str:
return f"TORCH_API std::vector<Shape> compute_shape_{self.__decl_suffix()}"
@property
def shape_call(self) -> str:
return f"torch::lazy::compute_shape_{self.__call_suffix()}"
@dataclass(frozen=True)
class GenLazyShapeInferenceDefinition:
backend_index: BackendIndex
tensor_class: str
@method_with_native_function
def __call__(self, f: NativeFunction) -> List[str]:
sig = kernel_signature(f, self.backend_index)
metadata = self.backend_index.get_kernel(f)
assert metadata is not None
# Only generate shape/dtype fn for non-structured kernels,
# since we just use the meta function for structured kernels
if not f.structured and f.structured_delegate is None:
shape_sig = ComputeShapeSignature(metadata.kernel, f)
return ["\n".join([f"{shape_sig.shape_decl};"])]
else:
return []