| from abc import ABC |
| from typing import List, Union |
| from dataclasses import dataclass |
| from torchgen.context import method_with_native_function |
| from torchgen.model import BackendIndex, NativeFunction, NativeFunctionsGroup |
| from torchgen.api.types import ( |
| BaseCType, |
| OptionalCType, |
| VectorCType, |
| kernel_signature, |
| ) |
| import torchgen.api.dispatcher as dispatcher |
| from torchgen.api.lazy import ( |
| LazyIrSchema, |
| LazyArgument, |
| isValueType, |
| tensorListValueT, |
| ) |
| from torchgen.dest.lazy_ts_lowering import ts_lowering_body |
| |
| |
| def node_ctor_arg_rvalue_string(arg: LazyArgument) -> str: |
| """ |
| Given a LazyArgument, |
| generate a c++ string for materializing an rvalue of that arg for passing into |
| a lazy Node constructor. |
| """ |
| |
| if isValueType(arg.lazy_type): |
| if isinstance(arg.lazy_type, BaseCType): |
| if arg.is_wrapped_scalar: |
| return f"torch::lazy::LazyGraphExecutor::Get()->GetIrValueForScalarFromCodegen({arg.name})" |
| elif arg.lazy_type.type is tensorListValueT: |
| return f"lazy_{arg.name}_tensorlist" |
| elif arg.is_symint_or_list: |
| return f"Value(std::dynamic_pointer_cast<torch::lazy::SymbolicIntNode>({arg.name}.toSymbolicIntNode())->node_, 0)" |
| return f"lazy_{arg.name}->GetIrValue()" |
| elif isinstance(arg.lazy_type, OptionalCType): |
| if arg.is_wrapped_scalar: |
| return ( |
| f"{arg.name} ? " |
| f"c10::make_optional(torch::lazy::LazyGraphExecutor::Get()->GetIrValueForScalarFromCodegen(*{arg.name})) : " |
| "c10::nullopt" |
| ) |
| return ( |
| f"lazy_{arg.name} ? " |
| f"c10::make_optional(lazy_{arg.name}->GetIrValue()) : " |
| "c10::nullopt" |
| ) |
| else: |
| raise AssertionError( |
| f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})" |
| ) |
| else: |
| if isinstance(arg.lazy_type, VectorCType) and isinstance( |
| arg.lazy_type.elem, BaseCType |
| ): |
| return f"std::vector<{arg.lazy_type.elem.type}>({arg.name}.begin(), {arg.name}.end())" |
| elif ( |
| isinstance(arg.lazy_type, OptionalCType) |
| and isinstance(arg.lazy_type.elem, VectorCType) |
| and isinstance(arg.lazy_type.elem.elem, BaseCType) |
| ): |
| return f"torch::lazy::ToOptionalVector<{arg.lazy_type.elem.elem.type}>({arg.name})" |
| else: |
| return f"{arg.name}" |
| |
| |
| def node_ctor_inputs(schema: LazyIrSchema) -> str: |
| """ |
| Produce a formatted string with the arguments as passed into the constructor of a node class. |
| """ |
| node_ctor_values = [ |
| node_ctor_arg_rvalue_string(arg) for arg in schema.filtered_args() |
| ] |
| return ",\n ".join(node_ctor_values) |
| |
| |
| def gen_fallback_code(schema: LazyIrSchema, overload_name: str) -> str: |
| """ |
| Generate code that falls back to eager conditioned on a predicate |
| """ |
| fallback_args = ",\n ".join( |
| [str(arg.name) for arg in schema.filtered_args(generator=True)] |
| ) |
| if len(overload_name): |
| aten_op_str = f"ATEN_OP2({schema.aten_name}, {overload_name})" |
| else: |
| aten_op_str = f"ATEN_OP({schema.aten_name})" |
| or_has_generator = "" |
| if schema.generator_arg: |
| # generators are always optional and there is never more than one, at least currently |
| or_has_generator = f" || ({schema.generator_arg.name}.has_value() && {schema.generator_arg.name}->defined())" |
| return f""" |
| if (force_eager_fallback({aten_symbol(schema)}){or_has_generator}) {{ |
| return at::native::call_fallback_fn<<c_eager_fallback, {aten_op_str}>::call( |
| {fallback_args} |
| ); |
| }} |
| """ |
| |
| |
| def aten_symbol(schema: LazyIrSchema) -> str: |
| missing_interned_strings = { |
| "sigmoid_backward", |
| } |
| if schema.aten_name in missing_interned_strings: |
| return f'c10::Symbol::fromQualString("aten::{schema.aten_name}")' |
| return f"at::aten::{schema.aten_name}" |
| |
| |
| @dataclass(frozen=True) |
| class GenLazyIR(ABC): |
| backend_index: BackendIndex |
| node_base: str |
| |
| @method_with_native_function |
| def __call__(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> List[str]: |
| func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func |
| return self.gen(f) |
| |
| # there is no lowering functionality generated unless this IR base class is subclassed and |
| # implemented as a backend-specific node |
| def lowering_function(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> str: |
| return "" |
| |
| def node_base_ctor_call(self, schema: LazyIrSchema) -> str: |
| # backends can customize the way the node base class constructor is called, |
| # as long as all of its arguments can be generated from information available from the schema |
| base_ctor_value_args_list = [] |
| for arg in schema.filtered_args(values=True, scalars=False): |
| if isinstance(arg.lazy_type, BaseCType) or isinstance( |
| arg.lazy_type, VectorCType |
| ): |
| base_ctor_value_args_list.append(f"{arg.name}") |
| elif isinstance(arg.lazy_type, OptionalCType): |
| base_ctor_value_args_list.append(f"{arg.name}.value_or(kNullValue)") |
| else: |
| raise AssertionError( |
| f"Unsupported type ({arg.lazy_type}) - add support if necessary" |
| ) |
| base_ctor_value_args = ", ".join(base_ctor_value_args_list) |
| |
| scalar_args = schema.filtered_args(values=False, scalars=True) |
| scalar_hashes = ", ".join([f"{a.name}" for a in scalar_args]) |
| |
| return f"""{self.node_base}(torch::lazy::OpKind({aten_symbol(schema)}), |
| {{{base_ctor_value_args}}}, std::move(shapes), |
| /* num_outputs */ {len(schema.returns)}, |
| torch::lazy::MHash({scalar_hashes}))""" |
| |
| def gen(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> List[str]: |
| # for now, we just want one IR class decl and soon after also the method defs |
| # and we use the functional version not out/inplace. |
| func = f.functional.func if isinstance(f, NativeFunctionsGroup) else f.func |
| schema = LazyIrSchema(func) |
| all_args = schema.filtered_args() |
| value_args = schema.filtered_args(values=True, scalars=False) |
| scalar_args = schema.filtered_args(values=False, scalars=True) |
| |
| node_ctor_args = ", ".join( |
| [f"const {i.lazy_type.cpp_type()}& {i.name}" for i in all_args] |
| ) |
| scalar_initializers = ",\n ".join( |
| [f"{a.name}({a.name})" for a in scalar_args] |
| ) |
| comma_if_scalar_initializers = ",\n" if len(scalar_initializers) else "" |
| scalar_decls = "\n ".join( |
| [ |
| f"std::string {a.name};" |
| if a.lazy_type.cpp_type() == "c10::string_view" |
| else f"{a.lazy_type.cpp_type()} {a.name};" |
| for a in scalar_args |
| ] |
| ) |
| optional_values = [ |
| arg.name |
| for arg in schema.filtered_args(values=True, scalars=False) |
| if isinstance(arg.lazy_type, OptionalCType) |
| ] |
| has_optional_decls = "\n ".join( |
| [f"bool has_{value}: 1;" for value in optional_values] |
| ) |
| has_optional_defs = "\n ".join( |
| [f"has_{value} = !!{value};" for value in optional_values] |
| ) |
| members_to_string = [] |
| for arg in scalar_args: |
| if isinstance(arg.lazy_type, OptionalCType): |
| members_to_string.append( |
| f"""if ({arg.name}.has_value()) {{ |
| ss << ", {arg.name}=" << {arg.name}.value(); |
| }} else {{ |
| ss << ", {arg.name}=null"; |
| }}""" |
| ) |
| else: |
| members_to_string.append(f'ss << ", {arg.name}=" << {arg.name};') |
| members_to_string_str = "\n ".join(members_to_string) |
| |
| return [ |
| f"""\ |
| class {schema.node_name} : public {self.node_base} {{ |
| public: |
| {schema.node_name}({node_ctor_args}, std::vector<Shape>&& shapes) |
| : {self.node_base_ctor_call(schema)}{comma_if_scalar_initializers} |
| {scalar_initializers} |
| |
| {{ |
| {has_optional_defs} |
| }} |
| |
| std::string ToString() const override {{ |
| std::stringstream ss; |
| ss << {self.node_base}::ToString(); |
| {members_to_string_str} |
| return ss.str(); |
| }} |
| |
| {self.lowering_function(f)} |
| |
| {scalar_decls} |
| {has_optional_decls} |
| |
| }}; |
| |
| """, |
| ] |
| |
| |
| @dataclass(frozen=True) |
| class GenTSLazyIR(GenLazyIR): |
| def lowering_function(self, f: Union[NativeFunctionsGroup, NativeFunction]) -> str: |
| return f"""torch::lazy::TSOpVector Lower(std::shared_ptr<torch::jit::GraphFunction> function, |
| torch::lazy::TSLoweringContext* loctx) const override {{ |
| {ts_lowering_body(f)} |
| }}""" |
| |
| |
| @dataclass(frozen=True) |
| class GenLazyNativeFuncDefinition: |
| class_method_name: str |
| backend_index: BackendIndex |
| tensor_class: str |
| gen_forced_fallback_code: bool |
| backend_namespace: str |
| get_tensorlist: str |
| get_tensor_or_wrap_number: str |
| try_get_tensor: str |
| metrics_counter: str |
| create_tensor: str |
| create_from_first_tensor: bool |
| |
| def lazy_tensor_decls(self, func: NativeFunction, schema: LazyIrSchema) -> str: |
| value_args = schema.filtered_args(values=True, scalars=False) |
| # Generates lazy_{name} variables for LazyTensors wrapping input tensors |
| lazy_tensor_decls: List[str] = [] |
| for arg in value_args: |
| if arg.is_wrapped_scalar: |
| # no lazy tensor wrapper for scalars that are promoted to IR values |
| continue |
| elif arg.is_symint_or_list: |
| continue # values are extracted in isValueType |
| elif isinstance(arg.lazy_type, BaseCType): |
| if arg.lazy_type.type is tensorListValueT: |
| lazy_tensor_decls.append( |
| f"auto lazy_{arg.name}_tensorlist = " |
| f"{self.backend_namespace}::{self.get_tensorlist}({arg.name});" |
| ) |
| else: |
| lazy_tensor_decls.append( |
| f"{self.tensor_class}Ptr lazy_{arg.name} = " |
| f"{self.backend_namespace}::{self.get_tensor_or_wrap_number}({arg.name}, *common_device);" |
| ) |
| elif isinstance(arg.lazy_type, OptionalCType): |
| # TODO(alanwaketan): Maybe we want to apply GetLtcTensorOrCreateForWrappedNumber here, but hold it |
| # until we encounter a real world example. |
| lazy_tensor_decls.append( |
| f" {self.tensor_class}Ptr lazy_{arg.name} = " |
| f"{self.backend_namespace}::{self.try_get_tensor}({arg.name}.value_or(at::Tensor()));" |
| ) |
| else: |
| raise AssertionError( |
| f"TODO not sure if there are other valid types to handle here ({arg.lazy_type})" |
| ) |
| return ("\n ").join(lazy_tensor_decls) |
| |
| def force_eager_fallback(self, func: NativeFunction, schema: LazyIrSchema) -> str: |
| if self.gen_forced_fallback_code: |
| return gen_fallback_code(schema, overload_name=func.func.name.overload_name) |
| return "" |
| |
| def metrics(self, func: NativeFunction, schema: LazyIrSchema) -> str: |
| return f"{self.metrics_counter};" |
| |
| def get_device(self, func: NativeFunction, schema: LazyIrSchema) -> str: |
| value_args = schema.filtered_args(values=True, scalars=False) |
| value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar] |
| assert ( |
| len(value_types_names) > 0 |
| ), "Code below assumes there is at least one tensor arg" |
| return f"""auto common_device = torch::lazy::GetBackendDevice({', '.join(value_types_names)}); |
| TORCH_INTERNAL_ASSERT(common_device); |
| """ |
| |
| def shape_inference(self, func: NativeFunction, schema: LazyIrSchema) -> str: |
| metadata = self.backend_index.get_kernel(func) |
| assert metadata is not None |
| all_args = schema.filtered_args() |
| returns_length = len(schema.returns) |
| # call the meta kernel if it exists, to compute output shape/dtype for our IR |
| if func.structured or func.structured_delegate is not None: |
| meta_out = """std::vector<Shape> shapes{Shape(out_meta.scalar_type(), out_meta.sizes().vec())};""" |
| if returns_length > 1: |
| |
| def this_shape(i: int) -> str: |
| return f"Shape(std::get<{i}>(out_meta).scalar_type(), std::get<{i}>(out_meta).sizes().vec())" |
| |
| shapes_str = ",".join([this_shape(i) for i in range(returns_length)]) |
| meta_out = "std::vector<Shape> shapes{" + shapes_str + "};" |
| |
| shape_str = f"""auto out_meta = at::meta::{schema.aten_name}({', '.join(str(a.name) for a in all_args)}); |
| {meta_out}""" |
| else: |
| shape_sig = ComputeShapeSignature(metadata.kernel, func) |
| shape_str = f""" |
| auto shapes = {shape_sig.shape_call};""" |
| |
| shape_str += f""" |
| TORCH_INTERNAL_ASSERT(shapes.size() == {returns_length});""" |
| |
| # Calculating which dimensions are symbolic |
| func_schema_str = "aten::" + str(func.func) |
| shape_str += f""" |
| if(symbolicShapeEnabled()){{ |
| std::vector<jit::IValue> inputs = {{ {', '.join(str(a.name) for a in all_args)} }}; |
| char* schema_str = "{func_schema_str}"; |
| applySymbolicShapesOnLT(schema_str, inputs, shapes); |
| }} |
| """ |
| return shape_str |
| |
| def build_ir_node(self, func: NativeFunction, schema: LazyIrSchema) -> str: |
| node_ctor_input_str = node_ctor_inputs(schema) |
| return f"""auto node = torch::lazy::MakeNode<{schema.node_name}>({node_ctor_input_str}, |
| std::move(shapes));""" |
| |
| def create_lazy_tensor(self, first_tensor_name: str) -> str: |
| # xla uses an instance method for tensor creation, for the time being |
| if self.create_from_first_tensor: |
| # TODO(whc) remove this if XLA switches to using static method for creation |
| return f"{first_tensor_name}.{self.create_tensor}" |
| return f"{self.backend_namespace}::{self.create_tensor}" |
| |
| def return_aten_tensor(self, func: NativeFunction, schema: LazyIrSchema) -> str: |
| returns_length = len(schema.returns) |
| value_args = schema.filtered_args(values=True, scalars=False) |
| value_types_names = [f"{a.name}" for a in value_args if not a.is_wrapped_scalar] |
| assert ( |
| len(value_types_names) > 0 |
| ), "Code below assumes there is at least one tensor arg" |
| first_tensor_name = value_types_names[0] |
| bridge_str = f"""auto result = torch::lazy::CreateAtenFromLtcTensor( |
| {self.create_lazy_tensor(first_tensor_name)}(std::move(node), *common_device));""" |
| |
| if returns_length > 1: |
| bridge_str = f"""std::vector<{self.tensor_class}Ptr> lazy_tensors; |
| for (int i = 0; i < {returns_length}; i++) {{ |
| lazy_tensors.push_back({self.create_lazy_tensor(first_tensor_name)}(torch::lazy::Value(node, i), *common_device)); |
| }} |
| auto result = torch::lazy::TupleAtenFromLtcTensors<{returns_length}>(lazy_tensors);""" |
| |
| if schema.name.name.inplace or func.func.is_out_fn(): |
| assert returns_length == 1, ( |
| "We assumed there was no such case where an op is an in-place variant " |
| f"and has tuple outputs, but got tuple of len {returns_length}." |
| ) |
| bridge_str = f"""lazy_{first_tensor_name}->SetInPlaceIrValue(node); |
| auto& result = {first_tensor_name};""" |
| |
| bridge_str += """ |
| return result;""" |
| return bridge_str |
| |
| @method_with_native_function |
| def __call__(self, func: NativeFunction) -> List[str]: |
| sig = kernel_signature(func, self.backend_index) |
| metadata = self.backend_index.get_kernel(func) |
| assert metadata is not None |
| schema = LazyIrSchema(func.func) |
| return [ |
| f"""\ |
| {sig.decl(name=f"{self.class_method_name}::{metadata.kernel}")} {{ |
| {self.force_eager_fallback(func, schema)} |
| {self.metrics(func, schema)} |
| {self.get_device(func, schema)} |
| {self.lazy_tensor_decls(func, schema)} |
| {self.shape_inference(func, schema)} |
| {self.build_ir_node(func, schema)} |
| {self.return_aten_tensor(func, schema)} |
| }};\n |
| """ |
| ] |
| |
| |
| class ComputeShapeSignature: |
| """ |
| Here we use the base name as the suffix of the signature to avoid generating for in-place variants. |
| """ |
| |
| def __init__(self, kernel_name: str, f: NativeFunction): |
| self.__schema = LazyIrSchema(f.func) |
| self.__dispatch_args = ", ".join( |
| [a.decl() for a in dispatcher.arguments(f.func)] |
| ) |
| self.__call_args = ", ".join( |
| [f"{arg.name}" for arg in self.__schema.filtered_args(generator=True)] |
| ) |
| self.__kernel_name = kernel_name |
| |
| def __decl_suffix(self) -> str: |
| return f"{self.__kernel_name}({self.__dispatch_args})" |
| |
| def __call_suffix(self) -> str: |
| return f"{self.__kernel_name}({self.__call_args})" |
| |
| @property |
| def shape_decl(self) -> str: |
| return f"TORCH_API std::vector<Shape> compute_shape_{self.__decl_suffix()}" |
| |
| @property |
| def shape_call(self) -> str: |
| return f"torch::lazy::compute_shape_{self.__call_suffix()}" |
| |
| |
| @dataclass(frozen=True) |
| class GenLazyShapeInferenceDefinition: |
| backend_index: BackendIndex |
| tensor_class: str |
| |
| @method_with_native_function |
| def __call__(self, f: NativeFunction) -> List[str]: |
| sig = kernel_signature(f, self.backend_index) |
| metadata = self.backend_index.get_kernel(f) |
| assert metadata is not None |
| |
| # Only generate shape/dtype fn for non-structured kernels, |
| # since we just use the meta function for structured kernels |
| if not f.structured and f.structured_delegate is None: |
| shape_sig = ComputeShapeSignature(metadata.kernel, f) |
| return ["\n".join([f"{shape_sig.shape_decl};"])] |
| else: |
| return [] |