| #ifndef THCUNN_ROW2COL_H |
| #define THCUNN_ROW2COL_H |
| |
| #include "THCNumerics.cuh" |
| #include "common.h" |
| |
| // Kernel for fast unfold+copy on rows |
| template <typename Dtype> |
| __global__ void |
| row2col_kernel(const int n, const Dtype *data_row, const int width, |
| const int ksize_w, const int pad_w, const int stride_w, |
| const int dilation_w, const int width_col, Dtype *data_col) { |
| CUDA_KERNEL_LOOP(index, n) { |
| int w_out = index % width_col; |
| index /= width_col; |
| int channel_in = index; |
| int channel_out = channel_in * ksize_w; |
| int w_in = w_out * stride_w - pad_w; |
| data_col += (channel_out)*width_col + w_out; |
| data_row += (channel_in)*width + w_in; |
| for (int j = 0; j < ksize_w; ++j) { |
| int w = w_in + j * dilation_w; |
| *data_col = (w >= 0 && w < width) ? data_row[j * dilation_w] |
| : ScalarConvert<int, Dtype>::to(0); |
| data_col += width_col; |
| } |
| } |
| } |
| |
| template <typename Dtype> |
| void row2col(cudaStream_t stream, const Dtype *data_row, const int channels, |
| const int width, const int ksize_w, const int pad_w, |
| const int stride_w, const int dilation_w, Dtype *data_col) { |
| // We are going to launch channels * width_col kernels, each |
| // kernel responsible for copying a single-channel grid. |
| int width_col = |
| (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1; |
| int num_kernels = channels * width_col; |
| // Launch |
| row2col_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>>( |
| num_kernels, data_row, width, ksize_w, pad_w, stride_w, 1, width_col, |
| data_col); |
| THCudaCheck(cudaGetLastError()); |
| } |
| |
| template <typename Dtype, typename Acctype> |
| __global__ void col2row_kernel(const int n, const Dtype *data_col, |
| const int width, const int channels, |
| const int kernel_w, const int pad_w, |
| const int stride_w, const int dilation_w, |
| const int width_col, Dtype *data_row) { |
| CUDA_KERNEL_LOOP(index, n) { |
| Acctype val = Acctype(0); |
| const int w_row = index % width + pad_w; |
| const int c_row = index / width; |
| int kernel_extent_w = (kernel_w - 1) * dilation_w + 1; |
| // compute the start and end of the output |
| const int w_col_start = (w_row < kernel_extent_w) |
| ? 0 |
| : (w_row - kernel_extent_w) / stride_w + 1; |
| const int w_col_end = min(w_row / stride_w + 1, width_col); |
| for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) { |
| int w_k = (w_row - w_col * stride_w); |
| if (w_k % dilation_w == 0) { |
| w_k /= dilation_w; |
| int data_col_index = (c_row * kernel_w + w_k) * width_col + w_col; |
| val += data_col[data_col_index]; |
| } |
| } |
| data_row[index] = ScalarConvert<Acctype, Dtype>::to(val); |
| } |
| } |
| |
| template <typename Dtype, typename Acctype> |
| void col2row(cudaStream_t stream, const Dtype *data_col, const int channels, |
| const int width, const int patch_w, const int pad_w, |
| const int stride_w, const int dilation_w, Dtype *data_row) { |
| int width_col = |
| (width + 2 * pad_w - (dilation_w * (patch_w - 1) + 1)) / stride_w + 1; |
| int num_kernels = channels * width; |
| // To avoid involving atomic operations, we will launch one kernel per |
| // bottom dimension, and then in the kernel add up the top dimensions. |
| col2row_kernel< |
| Dtype, Acctype><<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>>( |
| num_kernels, data_col, width, channels, patch_w, pad_w, stride_w, |
| dilation_w, width_col, data_row); |
| |
| THCudaCheck(cudaGetLastError()); |
| } |
| #endif |