blob: 7d9254b71e66ed516e392fcfaf5566dae43fb2b5 [file] [log] [blame]
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from caffe2.python import workspace
from caffe2.python import core
from caffe2.proto import caffe2_pb2
import benchmark_core
import benchmark_utils
"""Caffe2 performance microbenchmarks.
This module contains Caffe2-specific functionalities for performance
microbenchmarks.
"""
class Caffe2BenchmarkBase(object):
""" This is a base class used to create Caffe2 operator benchmark
"""
tensor_index = 0
test_index = 0
def __init__(self):
self.args = {}
self.user_provided_name = None
self._num_inputs_require_grads = 0
self._pass_count = 0
def _set_backward_test(self, is_backward):
pass
def _device_option(self, device):
""" This method is used to set device option.
"""
if device not in ['cuda', 'cpu']:
raise ValueError("Missing attrs in configs")
if 'cuda' in device:
self.dev = core.DeviceOption(caffe2_pb2.CUDA, 0)
else:
self.dev = core.DeviceOption(caffe2_pb2.CPU)
return self.dev
def tensor(self, shapes, dtype='float32', device='cpu'):
""" A wapper function to create C2 tensor filled with random data.
The name/label of the tensor is returned and it is available
throughout the benchmark execution phase.
Args:
shapes: int or a sequence of ints to defining the shapes of the tensor
dtype: use the dtypes from numpy
(https://docs.scipy.org/doc/numpy/user/basics.types.html)
Return:
C2 tensor of dtype
"""
blob_name = 'blob_' + str(Caffe2BenchmarkBase.tensor_index)
dev = self._device_option(device)
with core.DeviceScope(dev):
workspace.FeedBlob(blob_name, benchmark_utils.numpy_random(dtype, *shapes))
Caffe2BenchmarkBase.tensor_index += 1
return blob_name
def module_name(self):
""" this is used to label the operator being benchmarked
"""
if self.user_provided_name:
return self.user_provided_name
return self.__class__.__name__
def set_module_name(self, name):
self.user_provided_name = name
def _value_to_str(self, value):
""" if value is bool, we will convert it to 0 and 1
"""
ret = value
if type(value) == bool:
ret = int(value)
return str(ret)
def test_name(self, name_type="long", **kargs):
""" this is a globally unique name which can be used to
label a specific test
"""
if name_type == "long":
test_name_str = []
for key in kargs:
value = kargs[key]
test_name_str.append(
key + self._value_to_str(value))
name = (self.module_name() + '_' +
'_'.join(test_name_str)).replace(" ", "")
elif name_type == "short":
# this is used to generate test name based on unique index
name = '_'.join([self.module_name(), 'test', str(Caffe2BenchmarkBase.test_index)])
Caffe2BenchmarkBase.test_index += 1
return name
class Caffe2OperatorTestCase(object):
""" This class includes all the information needed to benchmark an operator.
op_bench: it's a user-defined class (child of Caffe2BenchmarkBase)
which includes input and operator, .etc
test_config: a namedtuple includes test_name, input_shape, tag, run_backward.
When run_backward is false, the run_forward method will be executed, otherwise
run_backward method will be executed.
"""
def __init__(self, op_bench, test_config):
self.op_bench = op_bench
self.test_config = test_config
self.framework = "Caffe2"
def run_forward(self, num_runs):
""" Run the forward path of an operator in a loop
"""
with core.DeviceScope(self.op_bench.dev):
op = self.op_bench.forward()
if not workspace.RunOperatorMultiple(op, num_runs):
raise ValueError("Unable to run operator test case: {}".format(self.test_name))
def run_backward(self, num_runs):
""" Run the backward path of an operator in a loop
"""
with core.DeviceScope(self.op_bench.dev):
op = self.op_bench.backward()
if not workspace.RunOperatorMultiple(op, num_runs):
raise ValueError("Unable to run operator gradient test case: {}".format(self.test_name))
def register_caffe2_op_test_case(op_bench, test_config):
test_case = Caffe2OperatorTestCase(op_bench, test_config)
benchmark_core._register_test(test_case)