| from __future__ import absolute_import, division, print_function, unicode_literals |
| |
| import torch |
| from .qconfig import QConfig |
| from torch.jit._recursive import wrap_cpp_module |
| |
| def _check_is_script_module(model): |
| if not isinstance(model, torch.jit.ScriptModule): |
| raise ValueError('input must be a script module, got: ' + str(type(model))) |
| |
| def _check_forward_method(model): |
| if not model._c._has_method('forward'): |
| raise ValueError('input script module does not have forward method') |
| |
| def script_qconfig(qconfig): |
| return QConfig( |
| activation=torch.jit.script(qconfig.activation())._c, |
| weight=torch.jit.script(qconfig.weight())._c) |
| |
| def script_qconfig_dict(qconfig_dict): |
| return {k: script_qconfig(v) if v else None for k, v in qconfig_dict.items()} |
| |
| def _prepare_script(model, qconfig_dict, is_dynamic): |
| _check_is_script_module(model) |
| if any(map(lambda x : not isinstance(x, str), qconfig_dict.keys())): |
| raise ValueError('qconfig_dict should contain names(str) as keys.') |
| scripted_qconfig_dict = script_qconfig_dict(qconfig_dict) |
| return wrap_cpp_module(torch._C._jit_pass_insert_observers(model._c, |
| 'forward', |
| scripted_qconfig_dict, |
| False, |
| is_dynamic)) |
| |
| def prepare_script(model, qconfig_dict, inplace=False): |
| if not inplace: |
| model = model.copy() |
| return _prepare_script(model, qconfig_dict, is_dynamic=False) |
| |
| def prepare_dynamic_script(model, qconfig_dict): |
| return _prepare_script(model, qconfig_dict, is_dynamic=True) |
| |
| def _convert_script(model, is_dynamic, debug=False): |
| _check_is_script_module(model) |
| model.eval() |
| model = wrap_cpp_module(torch._C._jit_pass_insert_quant_dequant(model._c, 'forward', False, is_dynamic)) |
| if not debug: |
| model = wrap_cpp_module(torch._C._jit_pass_quant_finalize(model._c, is_dynamic)) |
| return model |
| |
| def convert_script(model, inplace=False, debug=False): |
| if not inplace: |
| model = model.copy() |
| return _convert_script(model, is_dynamic=False, debug=debug) |
| |
| def convert_dynamic_script(model, debug=False): |
| return _convert_script(model, is_dynamic=True, debug=debug) |
| |
| def _quantize_script(model, qconfig_dict, run_fn=None, run_args=None, is_dynamic=False, debug=False): |
| _check_is_script_module(model) |
| _check_forward_method(model) |
| torch._C._jit_pass_dedup_module_uses(model._c) |
| model = wrap_cpp_module(torch._C._jit_pass_fold_convbn(model._c)) |
| if is_dynamic: |
| model = prepare_dynamic_script(model, qconfig_dict) |
| model(*run_args) |
| model = convert_dynamic_script(model, debug) |
| else: |
| model = prepare_script(model, qconfig_dict, True) |
| run_fn(model._c._get_method('forward'), *run_args) |
| model = convert_script(model, True, debug) |
| |
| return model |
| |
| def quantize_script(model, qconfig_dict, run_fn, run_args, inplace=False, debug=False): |
| assert not inplace, "We don't support inplace right now" |
| if not inplace: |
| model = model.copy() |
| return _quantize_script(model, qconfig_dict, run_fn, run_args, is_dynamic=False, debug=debug) |
| |
| def quantize_dynamic_script(model, qconfig_dict, sample_model_inputs, debug=False): |
| return _quantize_script(model, qconfig_dict, run_args=sample_model_inputs, is_dynamic=True, debug=debug) |