| from .module import Module |
| from typing import Optional |
| from .. import Parameter |
| from ... import Tensor |
| |
| |
| class Embedding(Module): |
| num_embeddings: int = ... |
| embedding_dim: int = ... |
| padding_idx: int = ... |
| max_norm: float = ... |
| norm_type: float = ... |
| scale_grad_by_freq: bool = ... |
| weight: Parameter = ... |
| sparse: bool = ... |
| |
| def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = ..., |
| max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ..., |
| sparse: bool = ..., _weight: Optional[Tensor] = ...) -> None: ... |
| |
| def reset_parameters(self) -> None: ... |
| |
| def forward(self, input: Tensor) -> Tensor: ... |
| |
| @classmethod |
| def from_pretrained(cls, embeddings: Tensor, freeze: bool = ..., padding_idx: Optional[int] = ..., |
| max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ..., |
| sparse: bool = ...): ... |
| |
| |
| class EmbeddingBag(Module): |
| num_embeddings: int = ... |
| embedding_dim: int = ... |
| max_norm: float = ... |
| norm_type: float = ... |
| scale_grad_by_freq: bool = ... |
| weight: Parameter = ... |
| mode: str = ... |
| sparse: bool = ... |
| |
| def __init__(self, num_embeddings: int, embedding_dim: int, max_norm: Optional[float] = ..., norm_type: float = ..., |
| scale_grad_by_freq: bool = ..., mode: str = ..., sparse: bool = ..., |
| _weight: Optional[Tensor] = ...) -> None: ... |
| |
| def reset_parameters(self) -> None: ... |
| |
| def forward(self, input: Tensor, offsets: Optional[Tensor] = ...) -> Tensor: ... |
| |
| @classmethod |
| def from_pretrained(cls, embeddings: Tensor, freeze: bool = ..., max_norm: Optional[float] = ..., |
| norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ..., |
| sparse: bool = ...): ... |