blob: 1dec72f4a711a4dd42621fdce7daa376f8f882df [file] [log] [blame]
from .module import Module
from typing import Optional
from .. import Parameter
from ... import Tensor
class Embedding(Module):
num_embeddings: int = ...
embedding_dim: int = ...
padding_idx: int = ...
max_norm: float = ...
norm_type: float = ...
scale_grad_by_freq: bool = ...
weight: Parameter = ...
sparse: bool = ...
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = ...,
max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ...,
sparse: bool = ..., _weight: Optional[Tensor] = ...) -> None: ...
def reset_parameters(self) -> None: ...
def forward(self, input: Tensor) -> Tensor: ...
@classmethod
def from_pretrained(cls, embeddings: Tensor, freeze: bool = ..., padding_idx: Optional[int] = ...,
max_norm: Optional[float] = ..., norm_type: float = ..., scale_grad_by_freq: bool = ...,
sparse: bool = ...): ...
class EmbeddingBag(Module):
num_embeddings: int = ...
embedding_dim: int = ...
max_norm: float = ...
norm_type: float = ...
scale_grad_by_freq: bool = ...
weight: Parameter = ...
mode: str = ...
sparse: bool = ...
def __init__(self, num_embeddings: int, embedding_dim: int, max_norm: Optional[float] = ..., norm_type: float = ...,
scale_grad_by_freq: bool = ..., mode: str = ..., sparse: bool = ...,
_weight: Optional[Tensor] = ...) -> None: ...
def reset_parameters(self) -> None: ...
def forward(self, input: Tensor, offsets: Optional[Tensor] = ...) -> Tensor: ...
@classmethod
def from_pretrained(cls, embeddings: Tensor, freeze: bool = ..., max_norm: Optional[float] = ...,
norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ...,
sparse: bool = ...): ...