blob: 6655aa56774b9382bfc16b3dff2624e12e223721 [file] [log] [blame]
#pragma once
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <THC/THC.h>
#include <c10/util/Optional.h>
#include <nccl.h>
#include <cstddef>
#include <vector>
namespace torch {
namespace cuda {
namespace nccl {
// NOTE: this is exposed only so that python_nccl.cpp can some of these helpers.
// Don't use them outside of these files.
namespace detail {
void throw_nccl_error(ncclResult_t status);
static inline void NCCL_CHECK(ncclResult_t status) {
if (status != ncclSuccess) {
throw_nccl_error(status);
}
}
struct AutoNcclGroup {
AutoNcclGroup() {
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
NCCL_CHECK(ncclGroupStart());
#endif
}
~AutoNcclGroup() {
#if defined(NCCL_MAJOR) && (NCCL_MAJOR >= 2)
NCCL_CHECK(ncclGroupEnd());
#endif
}
};
at::ArrayRef<ncclComm_t> _get_communicators(at::TensorList inputs);
void _check_inputs(
at::TensorList inputs,
at::TensorList outputs,
int input_multiplier,
int output_multiplier);
ncclDataType_t _get_data_type(const at::Tensor& t);
} // namespace detail
using comm_list = std::vector<ncclComm_t>;
using stream_list = std::vector<c10::optional<at::cuda::CUDAStream>>;
std::uint64_t version();
bool is_available(at::TensorList tensors);
void broadcast(
at::TensorList tensors,
const stream_list& streams = {},
const comm_list& user_comms = {});
size_t get_max_count();
void reduce(
const std::vector<at::Tensor>& inputs,
std::vector<at::Tensor>& outputs,
int32_t root = 0,
int32_t op = ncclSum,
const stream_list& streams = {},
const comm_list& user_comms = {});
void reduce(
std::vector<at::Tensor>& inputs,
int32_t root = 0,
int32_t op = ncclSum,
const stream_list& streams = {},
const comm_list& user_comms = {});
} // namespace nccl
} // namespace cuda
} // namespace torch