blob: d414bc5771b73fa88ea5b6b9ad60c6a2f071863d [file] [log] [blame]
import os
import ctypes
import warnings
import torch.cuda
from torch.backends.cudnn import int_array
__all__ = ['all_reduce', 'reduce', 'broadcast', 'all_gather', 'reduce_scatter']
SUM = 0 # ncclRedOp_t
def is_available(tensors):
devices = set()
for tensor in tensors:
if tensor.is_sparse:
return False
if not tensor.is_contiguous():
return False
if not tensor.is_cuda:
return False
device = tensor.get_device()
if device in devices:
return False
devices.add(device)
if not hasattr(torch._C, '_nccl_all_reduce'):
warnings.warn('PyTorch is not compiled with NCCL support')
return False
return True
def all_reduce(inputs, outputs=None, op=SUM):
if outputs is None:
outputs = inputs
torch._C._nccl_all_reduce(inputs, outputs, op)
def reduce(inputs, outputs=None, root=0, op=SUM, streams=None):
assert(root >= 0 and root < len(inputs))
if outputs is None:
outputs = inputs
if streams is None:
streams = [None] * len(inputs)
torch._C._nccl_reduce(inputs, outputs, streams, root, op)
def broadcast(inputs, root=0):
assert(root >= 0 and root < len(inputs))
torch._C._nccl_broadcast(inputs, root)
def all_gather(inputs, outputs):
torch._C._nccl_all_gather(inputs, outputs)
def reduce_scatter(inputs, outputs, op=SUM):
torch._C._nccl_reduce_scatter(inputs, outputs, op)