| # Owner(s): ["oncall: jit"] |
| |
| import torch |
| from torch._C import parse_ir |
| from torch.testing._internal.common_utils import TemporaryFileName |
| from torch.testing._internal.jit_utils import JitTestCase |
| |
| |
| if __name__ == "__main__": |
| raise RuntimeError( |
| "This test file is not meant to be run directly, use:\n\n" |
| "\tpython test/test_jit.py TESTNAME\n\n" |
| "instead." |
| ) |
| |
| |
| class TestAliasAnalysis(JitTestCase): |
| def test_becomes_wildcard_annotations(self): |
| graph_str = """ |
| graph(%a.1 : Tensor, %b.1 : Tensor): |
| %11 : NoneType = prim::Constant() |
| %8 : int = prim::Constant[value=0]() |
| %7 : int = prim::Constant[value=1]() |
| %x.1 : Tensor = aten::add(%a.1, %b.1, %7) |
| %y.1 : Tensor[] = aten::split(%x.1, %7, %8) |
| return () |
| """ |
| graph = parse_ir(graph_str) |
| alias_db = graph.alias_db() |
| split_node = graph.findNode("aten::split") |
| # split input enters wildcard set, list initalized as containing wildcard set |
| self.assertTrue( |
| alias_db.may_contain_alias(next(split_node.inputs()), split_node.output()) |
| ) |
| # because %x.1 enters wildcard set, it now aliases other members of wildcard set (graph inputs) |
| self.assertTrue( |
| alias_db.may_contain_alias(next(split_node.inputs()), next(graph.inputs())) |
| ) |
| |
| def test_nested_list_construct_not_wildcard(self): |
| @torch.jit.script |
| def foo(x): |
| y = torch.rand([2, 2]) |
| return [y] |
| |
| graph = foo.graph |
| graph.alias_db() |
| alias_db = graph.alias_db() |
| ten_construct = graph.findNode("aten::rand").output() |
| output = next(graph.outputs()) |
| self.assertTrue(alias_db.may_contain_alias(ten_construct, output)) |
| self.assertFalse( |
| alias_db.may_contain_alias(next(graph.inputs()), ten_construct) |
| ) |
| |
| def test_recursive_calls(self): |
| @torch.jit.script |
| def foo(x, y): |
| x.add_(1) |
| return x + y |
| |
| @torch.jit.script |
| def caller(): |
| a = torch.rand([2, 2]) |
| b = torch.ones([2, 2]) |
| out1 = foo(a, b) |
| c = torch.rand([1]) |
| d = torch.ones([2]) |
| out2 = foo(d, c) |
| return out1, out2 |
| |
| isFrozen = False |
| descend_function_calls = True |
| alias_db = caller.graph.alias_db(isFrozen, descend_function_calls) |
| func_calls = caller.graph.findAllNodes("prim::CallFunction") |
| self.assertEqual(len(func_calls), 2) |
| for node in func_calls: |
| inps = list(node.inputs()) |
| self.assertTrue(alias_db.has_writers(inps[1])) |
| self.assertFalse(alias_db.has_writers(inps[2])) |
| |
| class Mod(torch.nn.Module): |
| def forward(self): |
| a = torch.rand([2, 2]) |
| b = torch.ones([2, 2]) |
| out1 = self.foo2(a, b) |
| c = torch.rand([1]) |
| d = torch.ones([2]) |
| out2 = self.foo2(d, c) |
| return out1, out2 |
| |
| def foo2(self, x, y): |
| x.add_(1) |
| return x + y |
| |
| mod = torch.jit.script(Mod()) |
| alias_db = mod.graph.alias_db(isFrozen, descend_function_calls) |
| func_calls = mod.graph.findAllNodes("prim::CallMethod") |
| self.assertEqual(len(func_calls), 2) |
| for node in func_calls: |
| inps = list(node.inputs()) |
| self.assertTrue(alias_db.has_writers(inps[1])) |
| self.assertFalse(alias_db.has_writers(inps[2])) |
| |
| def test_multiple_compilation_units(self): |
| # This is a repro of an internal issue we saw. |
| # Here, we have a large number (40) of modules each with the same name (MyModuleCUTest). |
| # AliasDB uses some hash tables that hash on types; each of these 40 modules are not |
| # identical because they have different compilation units, but they have the same name. |
| # Therefore, if we hash only on the module name (which we previously did), we will have |
| # hash collisions for all of these module types. |
| # |
| # flat_hash_map has very bad performance (exponential) for this hash collision behavior. |
| # This OOMs prior to the fix. |
| N = 40 |
| |
| class MultiTmpFile: |
| def __init__(self, N): |
| self.N = N |
| self.ctxs = [ |
| TemporaryFileName(mode="w", suffix=".py") for _ in range(N) |
| ] |
| |
| def __enter__(self): |
| return [x.__enter__() for x in self.ctxs] |
| |
| def __exit__(self, exc_type, exc_value, traceback): |
| return [x.__exit__(exc_type, exc_value, traceback) for x in self.ctxs] |
| |
| class ModuleWrapper(torch.nn.Module): |
| def __init__(self, module_list): |
| super().__init__() |
| self.module_list = module_list |
| |
| def forward(self, x): |
| for mod in self.module_list: |
| x = mod(x) |
| return x |
| |
| with MultiTmpFile(N) as fnames: |
| module_list = torch.nn.ModuleList() |
| global MyModuleCUTest |
| |
| class MyModuleCUTest(torch.nn.Module): |
| def forward(self, x): |
| return x + 2 |
| |
| for _, fname in enumerate(fnames): |
| mod = torch.jit.script(MyModuleCUTest()) |
| torch.jit.save(mod, fname) |
| loaded_mod = torch.jit.load(fname) |
| module_list.append(loaded_mod) |
| |
| mod = ModuleWrapper(module_list) |
| mod = torch.jit.script(mod) |
| mod(torch.zeros((2, 2))) |