| """ |
| Note [Randomized statistical tests] |
| ----------------------------------- |
| |
| This note describes how to maintain tests in this file as random sources |
| change. This file contains two types of randomized tests: |
| |
| 1. The easier type of randomized test are tests that should always pass but are |
| initialized with random data. If these fail something is wrong, but it's |
| fine to use a fixed seed by inheriting from common.TestCase. |
| |
| 2. The trickier tests are statistical tests. These tests explicitly call |
| set_rng_seed(n) and are marked "see Note [Randomized statistical tests]". |
| These statistical tests have a known positive failure rate |
| (we set failure_rate=1e-3 by default). We need to balance strength of these |
| tests with annoyance of false alarms. One way that works is to specifically |
| set seeds in each of the randomized tests. When a random generator |
| occasionally changes (as in #4312 vectorizing the Box-Muller sampler), some |
| of these statistical tests may (rarely) fail. If one fails in this case, |
| it's fine to increment the seed of the failing test (but you shouldn't need |
| to increment it more than once; otherwise something is probably actually |
| wrong). |
| """ |
| |
| import math |
| import numbers |
| import unittest |
| from collections import namedtuple |
| from itertools import product |
| from random import shuffle |
| |
| import torch |
| from common import TestCase, run_tests, set_rng_seed |
| from torch.autograd import Variable, grad, gradcheck, variable |
| from torch.distributions import (Bernoulli, Beta, Binomial, Categorical, |
| Cauchy, Chi2, Dirichlet, Distribution, |
| Exponential, ExponentialFamily, |
| FisherSnedecor, Gamma, Geometric, |
| Gumbel, Laplace, LogNormal, Multinomial, |
| Normal, OneHotCategorical, Pareto, Poisson, |
| RelaxedBernoulli, RelaxedOneHotCategorical, StudentT, |
| TransformedDistribution, Uniform, constraints, |
| kl_divergence) |
| from torch.distributions.kl import _kl_expfamily_expfamily |
| from torch.distributions.constraint_registry import biject_to, transform_to |
| from torch.distributions.constraints import Constraint, is_dependent |
| from torch.distributions.dirichlet import _Dirichlet_backward |
| from torch.distributions.transforms import (AbsTransform, AffineTransform, |
| BoltzmannTransform, |
| ComposeTransform, ExpTransform, |
| LowerCholeskyTransform, |
| SigmoidTransform, |
| StickBreakingTransform, |
| identity_transform) |
| from torch.distributions.utils import _finfo, probs_to_logits, softmax |
| |
| TEST_NUMPY = True |
| try: |
| import numpy as np |
| import scipy.stats |
| import scipy.special |
| except ImportError: |
| TEST_NUMPY = False |
| |
| SCALAR_SHAPE = () if torch._C._with_scalars() else (1,) |
| TEST_CUDA = torch.cuda.is_available() |
| |
| |
| def pairwise(Dist, *params): |
| """ |
| Creates a pair of distributions `Dist` initialzed to test each element of |
| param with each other. |
| """ |
| params1 = [variable([p] * len(p)) for p in params] |
| params2 = [p.transpose(0, 1) for p in params1] |
| return Dist(*params1), Dist(*params2) |
| |
| |
| def is_all_nan(tensor): |
| """ |
| Checks if all entries of a tensor is nan. |
| """ |
| return (tensor != tensor).all() |
| |
| |
| # Register all distributions for generic tests. |
| Example = namedtuple('Example', ['Dist', 'params']) |
| EXAMPLES = [ |
| Example(Bernoulli, [ |
| {'probs': Variable(torch.Tensor([0.7, 0.2, 0.4]), requires_grad=True)}, |
| {'probs': Variable(torch.Tensor([0.3]), requires_grad=True)}, |
| {'probs': 0.3}, |
| ]), |
| Example(Geometric, [ |
| {'probs': Variable(torch.Tensor([0.7, 0.2, 0.4]), requires_grad=True)}, |
| {'probs': Variable(torch.Tensor([0.3]), requires_grad=True)}, |
| {'probs': 0.3}, |
| ]), |
| Example(Beta, [ |
| { |
| 'concentration1': Variable(torch.exp(torch.randn(2, 3)), requires_grad=True), |
| 'concentration0': Variable(torch.exp(torch.randn(2, 3)), requires_grad=True), |
| }, |
| { |
| 'concentration1': Variable(torch.exp(torch.randn(4)), requires_grad=True), |
| 'concentration0': Variable(torch.exp(torch.randn(4)), requires_grad=True), |
| }, |
| ]), |
| Example(Categorical, [ |
| {'probs': Variable(torch.Tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]]), requires_grad=True)}, |
| {'probs': Variable(torch.Tensor([[1.0, 0.0], [0.0, 1.0]]), requires_grad=True)}, |
| ]), |
| Example(Binomial, [ |
| {'probs': Variable(torch.Tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]]), requires_grad=True), 'total_count': 10}, |
| {'probs': Variable(torch.Tensor([[1.0, 0.0], [0.0, 1.0]]), requires_grad=True), 'total_count': 10}, |
| ]), |
| Example(Multinomial, [ |
| {'probs': Variable(torch.Tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]]), requires_grad=True), 'total_count': 10}, |
| {'probs': Variable(torch.Tensor([[1.0, 0.0], [0.0, 1.0]]), requires_grad=True), 'total_count': 10}, |
| ]), |
| Example(Cauchy, [ |
| {'loc': 0.0, 'scale': 1.0}, |
| {'loc': Variable(torch.Tensor([0.0])), 'scale': 1.0}, |
| {'loc': Variable(torch.Tensor([[0.0], [0.0]])), |
| 'scale': Variable(torch.Tensor([[1.0], [1.0]]))} |
| ]), |
| Example(Chi2, [ |
| {'df': Variable(torch.exp(torch.randn(2, 3)), requires_grad=True)}, |
| {'df': Variable(torch.exp(torch.randn(1)), requires_grad=True)}, |
| ]), |
| Example(StudentT, [ |
| {'df': Variable(torch.exp(torch.randn(2, 3)), requires_grad=True)}, |
| {'df': Variable(torch.exp(torch.randn(1)), requires_grad=True)}, |
| ]), |
| Example(Dirichlet, [ |
| {'concentration': Variable(torch.exp(torch.randn(2, 3)), requires_grad=True)}, |
| {'concentration': Variable(torch.exp(torch.randn(4)), requires_grad=True)}, |
| ]), |
| Example(Exponential, [ |
| {'rate': Variable(torch.randn(5, 5).abs(), requires_grad=True)}, |
| {'rate': Variable(torch.randn(1).abs(), requires_grad=True)}, |
| ]), |
| Example(FisherSnedecor, [ |
| { |
| 'df1': Variable(torch.randn(5, 5).abs(), requires_grad=True), |
| 'df2': Variable(torch.randn(5, 5).abs(), requires_grad=True), |
| }, |
| { |
| 'df1': Variable(torch.randn(1).abs(), requires_grad=True), |
| 'df2': Variable(torch.randn(1).abs(), requires_grad=True), |
| }, |
| { |
| 'df1': Variable(torch.Tensor([1.0])), |
| 'df2': 1.0, |
| } |
| ]), |
| Example(Gamma, [ |
| { |
| 'concentration': Variable(torch.exp(torch.randn(2, 3)), requires_grad=True), |
| 'rate': Variable(torch.exp(torch.randn(2, 3)), requires_grad=True), |
| }, |
| { |
| 'concentration': Variable(torch.exp(torch.randn(1)), requires_grad=True), |
| 'rate': Variable(torch.exp(torch.randn(1)), requires_grad=True), |
| }, |
| ]), |
| Example(Gumbel, [ |
| { |
| 'loc': Variable(torch.randn(5, 5), requires_grad=True), |
| 'scale': Variable(torch.randn(5, 5).abs(), requires_grad=True), |
| }, |
| { |
| 'loc': Variable(torch.randn(1), requires_grad=True), |
| 'scale': Variable(torch.randn(1).abs(), requires_grad=True), |
| }, |
| ]), |
| Example(Laplace, [ |
| { |
| 'loc': Variable(torch.randn(5, 5), requires_grad=True), |
| 'scale': Variable(torch.randn(5, 5).abs(), requires_grad=True), |
| }, |
| { |
| 'loc': Variable(torch.randn(1), requires_grad=True), |
| 'scale': Variable(torch.randn(1).abs(), requires_grad=True), |
| }, |
| { |
| 'loc': Variable(torch.Tensor([1.0, 0.0]), requires_grad=True), |
| 'scale': Variable(torch.Tensor([1e-5, 1e-5]), requires_grad=True), |
| }, |
| ]), |
| Example(LogNormal, [ |
| { |
| 'loc': Variable(torch.randn(5, 5), requires_grad=True), |
| 'scale': Variable(torch.randn(5, 5).abs(), requires_grad=True), |
| }, |
| { |
| 'loc': Variable(torch.randn(1), requires_grad=True), |
| 'scale': Variable(torch.randn(1).abs(), requires_grad=True), |
| }, |
| { |
| 'loc': Variable(torch.Tensor([1.0, 0.0]), requires_grad=True), |
| 'scale': Variable(torch.Tensor([1e-5, 1e-5]), requires_grad=True), |
| }, |
| ]), |
| Example(Normal, [ |
| { |
| 'loc': Variable(torch.randn(5, 5), requires_grad=True), |
| 'scale': Variable(torch.randn(5, 5).abs(), requires_grad=True), |
| }, |
| { |
| 'loc': Variable(torch.randn(1), requires_grad=True), |
| 'scale': Variable(torch.randn(1).abs(), requires_grad=True), |
| }, |
| { |
| 'loc': Variable(torch.Tensor([1.0, 0.0]), requires_grad=True), |
| 'scale': Variable(torch.Tensor([1e-5, 1e-5]), requires_grad=True), |
| }, |
| ]), |
| Example(OneHotCategorical, [ |
| {'probs': Variable(torch.Tensor([[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]]), requires_grad=True)}, |
| {'probs': Variable(torch.Tensor([[1.0, 0.0], [0.0, 1.0]]), requires_grad=True)}, |
| ]), |
| Example(Pareto, [ |
| { |
| 'scale': 1.0, |
| 'alpha': 1.0 |
| }, |
| { |
| 'scale': Variable(torch.randn(5, 5).abs(), requires_grad=True), |
| 'alpha': Variable(torch.randn(5, 5).abs(), requires_grad=True) |
| }, |
| { |
| 'scale': variable([1.0]), |
| 'alpha': 1.0 |
| } |
| ]), |
| Example(Poisson, [ |
| { |
| 'rate': Variable(torch.randn(5, 5).abs(), requires_grad=True), |
| }, |
| { |
| 'rate': Variable(torch.randn(3).abs(), requires_grad=True), |
| }, |
| { |
| 'rate': 0.2, |
| } |
| ]), |
| Example(RelaxedBernoulli, [ |
| { |
| 'temperature': Variable(torch.Tensor([0.5]), requires_grad=True), |
| 'probs': Variable(torch.Tensor([0.7, 0.2, 0.4]), requires_grad=True), |
| }, |
| { |
| 'temperature': Variable(torch.Tensor([2.0])), |
| 'probs': Variable(torch.Tensor([0.3])), |
| }, |
| { |
| 'temperature': Variable(torch.Tensor([7.2])), |
| 'logits': Variable(torch.Tensor([-2.0, 2.0, 1.0, 5.0])) |
| } |
| ]), |
| Example(RelaxedOneHotCategorical, [ |
| { |
| 'temperature': Variable(torch.Tensor([0.5]), requires_grad=True), |
| 'probs': Variable(torch.Tensor([[0.1, 0.2, 0.7], [0.5, 0.3, 0.2]]), requires_grad=True) |
| }, |
| { |
| 'temperature': Variable(torch.Tensor([2.0])), |
| 'probs': Variable(torch.Tensor([[1.0, 0.0], [0.0, 1.0]])) |
| }, |
| { |
| 'temperature': Variable(torch.Tensor([7.2])), |
| 'logits': Variable(torch.Tensor([[-2.0, 2.0], [1.0, 5.0]])) |
| } |
| ]), |
| Example(TransformedDistribution, [ |
| { |
| 'base_distribution': Normal(Variable(torch.randn(2, 3), requires_grad=True), |
| Variable(torch.randn(2, 3).abs(), requires_grad=True)), |
| 'transforms': [], |
| }, |
| { |
| 'base_distribution': Normal(Variable(torch.randn(2, 3), requires_grad=True), |
| Variable(torch.randn(2, 3).abs(), requires_grad=True)), |
| 'transforms': ExpTransform(), |
| }, |
| { |
| 'base_distribution': Normal(Variable(torch.randn(2, 3, 5), requires_grad=True), |
| Variable(torch.randn(2, 3, 5).abs(), requires_grad=True)), |
| 'transforms': [AffineTransform(Variable(torch.randn(3, 5)), Variable(torch.randn(3, 5))), |
| ExpTransform()], |
| }, |
| ]), |
| Example(Uniform, [ |
| { |
| 'low': Variable(torch.zeros(5, 5), requires_grad=True), |
| 'high': Variable(torch.ones(5, 5), requires_grad=True), |
| }, |
| { |
| 'low': Variable(torch.zeros(1), requires_grad=True), |
| 'high': Variable(torch.ones(1), requires_grad=True), |
| }, |
| { |
| 'low': Variable(torch.Tensor([1.0, 1.0]), requires_grad=True), |
| 'high': Variable(torch.Tensor([2.0, 3.0]), requires_grad=True), |
| }, |
| ]), |
| ] |
| |
| |
| def unwrap(value): |
| if isinstance(value, Variable): |
| return value.data |
| return value |
| |
| |
| class TestDistributions(TestCase): |
| def _gradcheck_log_prob(self, dist_ctor, ctor_params): |
| # performs gradient checks on log_prob |
| distribution = dist_ctor(*ctor_params) |
| s = distribution.sample() |
| |
| expected_shape = distribution.batch_shape + distribution.event_shape |
| if not expected_shape and not torch._C._with_scalars(): |
| expected_shape = torch.Size((1,)) # Work around lack of scalars. |
| self.assertEqual(s.size(), expected_shape) |
| |
| def apply_fn(*params): |
| return dist_ctor(*params).log_prob(s) |
| |
| gradcheck(apply_fn, ctor_params, raise_exception=True) |
| |
| def _check_log_prob(self, dist, asset_fn): |
| # checks that the log_prob matches a reference function |
| s = dist.sample() |
| log_probs = dist.log_prob(s) |
| for i, (val, log_prob) in enumerate(zip(s.data.view(-1), log_probs.data.view(-1))): |
| asset_fn(i, val, log_prob) |
| |
| def _check_sampler_sampler(self, torch_dist, ref_dist, message, multivariate=False, |
| num_samples=10000, failure_rate=1e-3): |
| # Checks that the .sample() method matches a reference function. |
| torch_samples = torch_dist.sample((num_samples,)).squeeze() |
| if isinstance(torch_samples, Variable): |
| torch_samples = torch_samples.data |
| torch_samples = torch_samples.cpu().numpy() |
| ref_samples = ref_dist.rvs(num_samples).astype(np.float64) |
| if multivariate: |
| # Project onto a random axis. |
| axis = np.random.normal(size=torch_samples.shape[-1]) |
| axis /= np.linalg.norm(axis) |
| torch_samples = np.dot(torch_samples, axis) |
| ref_samples = np.dot(ref_samples, axis) |
| samples = [(x, +1) for x in torch_samples] + [(x, -1) for x in ref_samples] |
| shuffle(samples) # necessary to prevent stable sort from making uneven bins for discrete |
| samples.sort(key=lambda x: x[0]) |
| samples = np.array(samples)[:, 1] |
| |
| # Aggragate into bins filled with roughly zero-mean unit-variance RVs. |
| num_bins = 10 |
| samples_per_bin = len(samples) // num_bins |
| bins = samples.reshape((num_bins, samples_per_bin)).mean(axis=1) |
| stddev = samples_per_bin ** -0.5 |
| threshold = stddev * scipy.special.erfinv(1 - 2 * failure_rate / num_bins) |
| message = '{}.sample() is biased:\n{}'.format(message, bins) |
| for bias in bins: |
| self.assertLess(-threshold, bias, message) |
| self.assertLess(bias, threshold, message) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def _check_sampler_discrete(self, torch_dist, ref_dist, message, |
| num_samples=10000, failure_rate=1e-3): |
| """Runs a Chi2-test for the support, but ignores tail instead of combining""" |
| torch_samples = torch_dist.sample((num_samples,)).squeeze() |
| if isinstance(torch_samples, Variable): |
| torch_samples = torch_samples.data |
| torch_samples = torch_samples.cpu().numpy() |
| unique, counts = np.unique(torch_samples, return_counts=True) |
| pmf = ref_dist.pmf(unique) |
| msk = (counts > 5) & ((pmf * num_samples) > 5) |
| self.assertGreater(pmf[msk].sum(), 0.9, "Distribution is too sparse for test; try increasing num_samples") |
| chisq, p = scipy.stats.chisquare(counts[msk], pmf[msk] * num_samples) |
| self.assertGreater(p, failure_rate, message) |
| |
| def _check_enumerate_support(self, dist, examples): |
| for param, expected in examples: |
| param = torch.Tensor(param) |
| expected = torch.Tensor(expected) |
| actual = dist(param).enumerate_support() |
| self.assertEqual(actual, expected) |
| param = Variable(param) |
| expected = Variable(expected) |
| actual = dist(param).enumerate_support() |
| self.assertEqual(actual, expected) |
| |
| def test_sample_detached(self): |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| variable_params = [p for p in param.values() if getattr(p, 'requires_grad', False)] |
| if not variable_params: |
| continue |
| dist = Dist(**param) |
| sample = dist.sample() |
| self.assertFalse(sample.requires_grad, |
| msg='{} example {}/{}, .sample() is not detached'.format( |
| Dist.__name__, i + 1, len(params))) |
| |
| def test_rsample_requires_grad(self): |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| if not any(getattr(p, 'requires_grad', False) for p in param.values()): |
| continue |
| dist = Dist(**param) |
| if not dist.has_rsample: |
| continue |
| sample = dist.rsample() |
| self.assertTrue(sample.requires_grad, |
| msg='{} example {}/{}, .rsample() does not require grad'.format( |
| Dist.__name__, i + 1, len(params))) |
| |
| def test_enumerate_support_type(self): |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| try: |
| self.assertTrue(type(unwrap(dist.sample())) is type(unwrap(dist.enumerate_support())), |
| msg=('{} example {}/{}, return type mismatch between ' + |
| 'sample and enumerate_support.').format(Dist.__name__, i + 1, len(params))) |
| except NotImplementedError: |
| pass |
| |
| def test_has_examples(self): |
| distributions_with_examples = set(e.Dist for e in EXAMPLES) |
| for Dist in globals().values(): |
| if isinstance(Dist, type) and issubclass(Dist, Distribution) \ |
| and Dist is not Distribution and Dist is not ExponentialFamily: |
| self.assertIn(Dist, distributions_with_examples, |
| "Please add {} to the EXAMPLES list in test_distributions.py".format(Dist.__name__)) |
| |
| def test_bernoulli(self): |
| p = variable([0.7, 0.2, 0.4], requires_grad=True) |
| r = variable(0.3, requires_grad=True) |
| s = 0.3 |
| self.assertEqual(Bernoulli(p).sample((8,)).size(), (8, 3)) |
| self.assertTrue(isinstance(Bernoulli(p).sample().data, torch.Tensor)) |
| self.assertEqual(Bernoulli(r).sample((8,)).size(), (8,) + SCALAR_SHAPE) |
| self.assertEqual(Bernoulli(r).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(Bernoulli(r).sample((3, 2)).size(), (3, 2,) + SCALAR_SHAPE) |
| self.assertEqual(Bernoulli(s).sample().size(), SCALAR_SHAPE) |
| self._gradcheck_log_prob(Bernoulli, (p,)) |
| |
| def ref_log_prob(idx, val, log_prob): |
| prob = p.data[idx] |
| self.assertEqual(log_prob, math.log(prob if val else 1 - prob)) |
| |
| self._check_log_prob(Bernoulli(p), ref_log_prob) |
| self._check_log_prob(Bernoulli(logits=p.log() - (-p).log1p()), ref_log_prob) |
| self.assertRaises(NotImplementedError, Bernoulli(r).rsample) |
| |
| # check entropy computation |
| self.assertEqual(Bernoulli(p).entropy().data, torch.Tensor([0.6108, 0.5004, 0.6730]), prec=1e-4) |
| self.assertEqual(Bernoulli(torch.Tensor([0.0])).entropy(), torch.Tensor([0.0])) |
| self.assertEqual(Bernoulli(s).entropy(), torch.Tensor([0.6108]), prec=1e-4) |
| |
| def test_bernoulli_enumerate_support(self): |
| examples = [ |
| ([0.1], [[0], [1]]), |
| ([0.1, 0.9], [[0, 0], [1, 1]]), |
| ([[0.1, 0.2], [0.3, 0.4]], [[[0, 0], [0, 0]], [[1, 1], [1, 1]]]), |
| ] |
| self._check_enumerate_support(Bernoulli, examples) |
| |
| def test_bernoulli_3d(self): |
| p = Variable(torch.Tensor(2, 3, 5).fill_(0.5), requires_grad=True) |
| self.assertEqual(Bernoulli(p).sample().size(), (2, 3, 5)) |
| self.assertEqual(Bernoulli(p).sample(sample_shape=(2, 5)).size(), |
| (2, 5, 2, 3, 5)) |
| self.assertEqual(Bernoulli(p).sample((2,)).size(), (2, 2, 3, 5)) |
| |
| def test_geometric(self): |
| p = variable([0.7, 0.2, 0.4], requires_grad=True) |
| r = variable(0.3, requires_grad=True) |
| s = 0.3 |
| self.assertEqual(Geometric(p).sample((8,)).size(), (8, 3)) |
| self.assertEqual(Geometric(1).sample(), 0) |
| self.assertEqual(Geometric(1).log_prob(variable(1)), -float('inf'), allow_inf=True) |
| self.assertEqual(Geometric(1).log_prob(variable(0)), 0) |
| self.assertTrue(isinstance(Geometric(p).sample().data, torch.Tensor)) |
| self.assertEqual(Geometric(r).sample((8,)).size(), (8,) + SCALAR_SHAPE) |
| self.assertEqual(Geometric(r).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(Geometric(r).sample((3, 2)).size(), (3, 2) + SCALAR_SHAPE) |
| self.assertEqual(Geometric(s).sample().size(), SCALAR_SHAPE) |
| self._gradcheck_log_prob(Geometric, (p,)) |
| self.assertRaises(ValueError, lambda: Geometric(0)) |
| self.assertRaises(NotImplementedError, Geometric(r).rsample) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_geometric_log_prob_and_entropy(self): |
| p = Variable(torch.Tensor([0.7, 0.2, 0.4]), requires_grad=True) |
| s = 0.3 |
| |
| def ref_log_prob(idx, val, log_prob): |
| prob = p.data[idx] |
| self.assertEqual(log_prob, scipy.stats.geom(prob, loc=-1).logpmf(val)) |
| |
| self._check_log_prob(Geometric(p), ref_log_prob) |
| self._check_log_prob(Geometric(logits=p.log() - (-p).log1p()), ref_log_prob) |
| |
| # check entropy computation |
| self.assertEqual(Geometric(p).entropy().data, scipy.stats.geom(p.data.numpy(), loc=-1).entropy(), prec=1e-3) |
| self.assertEqual(float(Geometric(s).entropy()), scipy.stats.geom(s, loc=-1).entropy().item(), prec=1e-3) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_geometric_sample(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| for prob in [0.01, 0.18, 0.8]: |
| self._check_sampler_discrete(Geometric(prob), |
| scipy.stats.geom(p=prob, loc=-1), |
| 'Geometric(prob={})'.format(prob)) |
| |
| def test_binomial(self): |
| p = Variable(torch.arange(0.05, 1, 0.1), requires_grad=True) |
| for total_count in [1, 2, 10]: |
| self._gradcheck_log_prob(lambda p: Binomial(total_count, p), [p]) |
| self._gradcheck_log_prob(lambda p: Binomial(total_count, None, p.log()), [p]) |
| self.assertRaises(NotImplementedError, Binomial(10, p).rsample) |
| self.assertRaises(NotImplementedError, Binomial(10, p).entropy) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_binomial_log_prob(self): |
| probs = Variable(torch.arange(0.05, 1, 0.1)) |
| for total_count in [1, 2, 10]: |
| |
| def ref_log_prob(idx, x, log_prob): |
| p = probs.data.view(-1)[idx] |
| expected = scipy.stats.binom(total_count, p).logpmf(x) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(Binomial(total_count, probs), ref_log_prob) |
| logits = probs_to_logits(probs, is_binary=True) |
| self._check_log_prob(Binomial(total_count, logits=logits), ref_log_prob) |
| |
| def test_binomial_extreme_vals(self): |
| total_count = 100 |
| bin0 = Binomial(total_count, 0) |
| self.assertEqual(bin0.sample(), 0) |
| self.assertAlmostEqual(bin0.log_prob(variable([0]))[0], 0, places=3) |
| self.assertEqual(float(bin0.log_prob(variable([1])).exp()), 0, allow_inf=True) |
| bin1 = Binomial(total_count, 1) |
| self.assertEqual(bin1.sample(), total_count) |
| self.assertAlmostEqual(bin1.log_prob(variable([total_count]))[0], 0, places=3) |
| self.assertEqual(float(bin1.log_prob(variable([total_count - 1])).exp()), 0, allow_inf=True) |
| |
| def test_multinomial_1d(self): |
| total_count = 10 |
| p = Variable(torch.Tensor([0.1, 0.2, 0.3]), requires_grad=True) |
| self.assertEqual(Multinomial(total_count, p).sample().size(), (3,)) |
| self.assertEqual(Multinomial(total_count, p).sample((2, 2)).size(), (2, 2, 3)) |
| self.assertEqual(Multinomial(total_count, p).sample((1,)).size(), (1, 3)) |
| self._gradcheck_log_prob(lambda p: Multinomial(total_count, p), [p]) |
| self._gradcheck_log_prob(lambda p: Multinomial(total_count, None, p.log()), [p]) |
| self.assertRaises(NotImplementedError, Multinomial(10, p).rsample) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_multinomial_1d_log_prob(self): |
| total_count = 10 |
| p = Variable(torch.Tensor([0.1, 0.2, 0.3]), requires_grad=True) |
| dist = Multinomial(total_count, probs=p) |
| x = dist.sample() |
| log_prob = dist.log_prob(x) |
| expected = torch.Tensor(scipy.stats.multinomial.logpmf(x.numpy(), n=total_count, p=dist.probs.detach().numpy())) |
| self.assertEqual(log_prob.data, expected) |
| |
| dist = Multinomial(total_count, logits=p.log()) |
| x = dist.sample() |
| log_prob = dist.log_prob(x) |
| expected = torch.Tensor(scipy.stats.multinomial.logpmf(x.numpy(), n=total_count, p=dist.probs.detach().numpy())) |
| self.assertEqual(log_prob.data, expected) |
| |
| def test_multinomial_2d(self): |
| total_count = 10 |
| probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] |
| probabilities_1 = [[1.0, 0.0], [0.0, 1.0]] |
| p = Variable(torch.Tensor(probabilities), requires_grad=True) |
| s = Variable(torch.Tensor(probabilities_1), requires_grad=True) |
| self.assertEqual(Multinomial(total_count, p).sample().size(), (2, 3)) |
| self.assertEqual(Multinomial(total_count, p).sample(sample_shape=(3, 4)).size(), (3, 4, 2, 3)) |
| self.assertEqual(Multinomial(total_count, p).sample((6,)).size(), (6, 2, 3)) |
| set_rng_seed(0) |
| self._gradcheck_log_prob(lambda p: Multinomial(total_count, p), [p]) |
| p.grad.zero_() |
| self._gradcheck_log_prob(lambda p: Multinomial(total_count, None, p.log()), [p]) |
| |
| # sample check for extreme value of probs |
| self.assertEqual(Multinomial(total_count, s).sample().data, |
| torch.Tensor([[total_count, 0], [0, total_count]])) |
| |
| # check entropy computation |
| self.assertRaises(NotImplementedError, Multinomial(10, p).entropy) |
| |
| def test_categorical_1d(self): |
| p = Variable(torch.Tensor([0.1, 0.2, 0.3]), requires_grad=True) |
| self.assertTrue(is_all_nan(Categorical(p).mean)) |
| self.assertTrue(is_all_nan(Categorical(p).variance)) |
| self.assertEqual(Categorical(p).sample().size(), SCALAR_SHAPE) |
| self.assertTrue(isinstance(Categorical(p).sample().data, torch.LongTensor)) |
| self.assertEqual(Categorical(p).sample((2, 2)).size(), (2, 2)) |
| self.assertEqual(Categorical(p).sample((1,)).size(), (1,)) |
| self._gradcheck_log_prob(Categorical, (p,)) |
| self.assertRaises(NotImplementedError, Categorical(p).rsample) |
| |
| def test_categorical_2d(self): |
| probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] |
| probabilities_1 = [[1.0, 0.0], [0.0, 1.0]] |
| p = Variable(torch.Tensor(probabilities), requires_grad=True) |
| s = Variable(torch.Tensor(probabilities_1), requires_grad=True) |
| self.assertEqual(Categorical(p).mean.size(), (2,)) |
| self.assertEqual(Categorical(p).variance.size(), (2,)) |
| self.assertTrue(is_all_nan(Categorical(p).mean)) |
| self.assertTrue(is_all_nan(Categorical(p).variance)) |
| self.assertEqual(Categorical(p).sample().size(), (2,)) |
| self.assertEqual(Categorical(p).sample(sample_shape=(3, 4)).size(), (3, 4, 2)) |
| self.assertEqual(Categorical(p).sample((6,)).size(), (6, 2)) |
| self._gradcheck_log_prob(Categorical, (p,)) |
| |
| # sample check for extreme value of probs |
| set_rng_seed(0) |
| self.assertEqual(Categorical(s).sample(sample_shape=(2,)).data, |
| torch.Tensor([[0, 1], [0, 1]])) |
| |
| def ref_log_prob(idx, val, log_prob): |
| sample_prob = p.data[idx][val] / p.data[idx].sum() |
| self.assertEqual(log_prob, math.log(sample_prob)) |
| |
| self._check_log_prob(Categorical(p), ref_log_prob) |
| self._check_log_prob(Categorical(logits=p.log()), ref_log_prob) |
| |
| # check entropy computation |
| self.assertEqual(Categorical(p).entropy().data, torch.Tensor([1.0114, 1.0297]), prec=1e-4) |
| self.assertEqual(Categorical(s).entropy().data, torch.Tensor([0.0, 0.0])) |
| |
| def test_categorical_enumerate_support(self): |
| examples = [ |
| ([0.1, 0.2, 0.7], [0, 1, 2]), |
| ([[0.1, 0.9], [0.3, 0.7]], [[0, 0], [1, 1]]), |
| ] |
| self._check_enumerate_support(Categorical, examples) |
| |
| def test_one_hot_categorical_1d(self): |
| p = Variable(torch.Tensor([0.1, 0.2, 0.3]), requires_grad=True) |
| self.assertEqual(OneHotCategorical(p).sample().size(), (3,)) |
| self.assertTrue(isinstance(OneHotCategorical(p).sample().data, torch.Tensor)) |
| self.assertEqual(OneHotCategorical(p).sample((2, 2)).size(), (2, 2, 3)) |
| self.assertEqual(OneHotCategorical(p).sample((1,)).size(), (1, 3)) |
| self._gradcheck_log_prob(OneHotCategorical, (p,)) |
| self.assertRaises(NotImplementedError, OneHotCategorical(p).rsample) |
| |
| def test_one_hot_categorical_2d(self): |
| probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] |
| probabilities_1 = [[1.0, 0.0], [0.0, 1.0]] |
| p = Variable(torch.Tensor(probabilities), requires_grad=True) |
| s = Variable(torch.Tensor(probabilities_1), requires_grad=True) |
| self.assertEqual(OneHotCategorical(p).sample().size(), (2, 3)) |
| self.assertEqual(OneHotCategorical(p).sample(sample_shape=(3, 4)).size(), (3, 4, 2, 3)) |
| self.assertEqual(OneHotCategorical(p).sample((6,)).size(), (6, 2, 3)) |
| self._gradcheck_log_prob(OneHotCategorical, (p,)) |
| |
| dist = OneHotCategorical(p) |
| x = dist.sample() |
| self.assertEqual(dist.log_prob(x), Categorical(p).log_prob(x.max(-1)[1])) |
| |
| def test_one_hot_categorical_enumerate_support(self): |
| examples = [ |
| ([0.1, 0.2, 0.7], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]), |
| ([[0.1, 0.9], [0.3, 0.7]], [[[1, 0], [1, 0]], [[0, 1], [0, 1]]]), |
| ] |
| self._check_enumerate_support(OneHotCategorical, examples) |
| |
| def test_poisson_shape(self): |
| rate = Variable(torch.randn(2, 3).abs(), requires_grad=True) |
| rate_1d = Variable(torch.randn(1).abs(), requires_grad=True) |
| self.assertEqual(Poisson(rate).sample().size(), (2, 3)) |
| self.assertEqual(Poisson(rate).sample((7,)).size(), (7, 2, 3)) |
| self.assertEqual(Poisson(rate_1d).sample().size(), (1,)) |
| self.assertEqual(Poisson(rate_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Poisson(2.0).sample((2,)).size(), (2,)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_poisson_log_prob(self): |
| rate = Variable(torch.randn(2, 3).abs(), requires_grad=True) |
| rate_1d = Variable(torch.randn(1).abs(), requires_grad=True) |
| |
| def ref_log_prob(idx, x, log_prob): |
| l = rate.data.view(-1)[idx] |
| expected = scipy.stats.poisson.logpmf(x, l) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| set_rng_seed(0) |
| self._check_log_prob(Poisson(rate), ref_log_prob) |
| self._gradcheck_log_prob(Poisson, (rate,)) |
| self._gradcheck_log_prob(Poisson, (rate_1d,)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_poisson_sample(self): |
| set_rng_seed(1) # see Note [Randomized statistical tests] |
| for rate in [0.1, 1.0, 5.0]: |
| self._check_sampler_discrete(Poisson(rate), |
| scipy.stats.poisson(rate), |
| 'Poisson(lambda={})'.format(rate), |
| failure_rate=1e-3) |
| |
| @unittest.skipIf(not TEST_CUDA, "CUDA not found") |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_poisson_gpu_sample(self): |
| set_rng_seed(0) |
| for rate in [0.12, 0.9, 4.0]: |
| self._check_sampler_discrete(Poisson(torch.Tensor([rate]).cuda()), |
| scipy.stats.poisson(rate), |
| 'Poisson(lambda={}, cuda)'.format(rate), |
| failure_rate=1e-3) |
| |
| def test_relaxed_bernoulli(self): |
| p = variable([0.7, 0.2, 0.4], requires_grad=True) |
| r = variable(0.3, requires_grad=True) |
| s = 0.3 |
| temp = variable(0.67, requires_grad=True) |
| self.assertEqual(RelaxedBernoulli(temp, p).sample((8,)).size(), (8, 3)) |
| self.assertTrue(isinstance(RelaxedBernoulli(temp, p).sample().data, torch.Tensor)) |
| self.assertEqual(RelaxedBernoulli(temp, r).sample((8,)).size(), (8,) + SCALAR_SHAPE) |
| self.assertEqual(RelaxedBernoulli(temp, r).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(RelaxedBernoulli(temp, r).sample((3, 2)).size(), (3, 2,) + SCALAR_SHAPE) |
| self.assertEqual(RelaxedBernoulli(temp, s).sample().size(), SCALAR_SHAPE) |
| self._gradcheck_log_prob(RelaxedBernoulli, (temp, p)) |
| self._gradcheck_log_prob(RelaxedBernoulli, (temp, r)) |
| |
| # test that rsample doesn't fail |
| s = RelaxedBernoulli(temp, p).rsample() |
| s.backward(torch.ones_like(s)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_rounded_relaxed_bernoulli(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| |
| class Rounded(object): |
| def __init__(self, dist): |
| self.dist = dist |
| |
| def sample(self, *args, **kwargs): |
| return torch.round(self.dist.sample(*args, **kwargs)) |
| |
| for probs, temp in product([0.1, 0.2, 0.8], [0.1, 1.0, 10.0]): |
| self._check_sampler_discrete(Rounded(RelaxedBernoulli(temp, probs)), |
| scipy.stats.bernoulli(probs), |
| 'Rounded(RelaxedBernoulli(temp={}, probs={}))'.format(temp, probs), |
| failure_rate=1e-3) |
| |
| for probs in [0.001, 0.2, 0.999]: |
| equal_probs = torch.Tensor([0.5]) |
| dist = RelaxedBernoulli(1e10, probs) |
| s = dist.rsample() |
| self.assertEqual(equal_probs, s) |
| |
| def test_relaxed_one_hot_categorical_1d(self): |
| p = Variable(torch.Tensor([0.1, 0.2, 0.3]), requires_grad=True) |
| temp = variable(0.67, requires_grad=True) |
| self.assertEqual(RelaxedOneHotCategorical(probs=p, temperature=temp).sample().size(), (3,)) |
| self.assertTrue(isinstance(RelaxedOneHotCategorical(probs=p, temperature=temp).sample().data, torch.Tensor)) |
| self.assertEqual(RelaxedOneHotCategorical(probs=p, temperature=temp).sample((2, 2)).size(), (2, 2, 3)) |
| self.assertEqual(RelaxedOneHotCategorical(probs=p, temperature=temp).sample_n(1).size(), (1, 3)) |
| self._gradcheck_log_prob(RelaxedOneHotCategorical, (temp, p)) |
| |
| def test_relaxed_one_hot_categorical_2d(self): |
| probabilities = [[0.1, 0.2, 0.3], [0.5, 0.3, 0.2]] |
| probabilities_1 = [[1.0, 0.0], [0.0, 1.0]] |
| temp = Variable(torch.Tensor([3.00]), requires_grad=True) |
| temp_2 = Variable(torch.Tensor([0.2]), requires_grad=True) |
| p = Variable(torch.Tensor(probabilities), requires_grad=True) |
| s = Variable(torch.Tensor(probabilities_1), requires_grad=True) |
| self.assertEqual(RelaxedOneHotCategorical(temp, p).sample().size(), (2, 3)) |
| self.assertEqual(RelaxedOneHotCategorical(temp, p).sample(sample_shape=(3, 4)).size(), (3, 4, 2, 3)) |
| self.assertEqual(RelaxedOneHotCategorical(temp, p).sample_n(6).size(), (6, 2, 3)) |
| self._gradcheck_log_prob(RelaxedOneHotCategorical, (temp, p)) |
| self._gradcheck_log_prob(RelaxedOneHotCategorical, (temp_2, p)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_argmax_relaxed_categorical(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| |
| class ArgMax(object): |
| def __init__(self, dist): |
| self.dist = dist |
| |
| def sample(self, *args, **kwargs): |
| s = self.dist.sample(*args, **kwargs) |
| _, idx = torch.max(s, -1) |
| return idx |
| |
| class ScipyCategorical(object): |
| def __init__(self, dist): |
| self.dist = dist |
| |
| def pmf(self, samples): |
| new_samples = np.zeros(samples.shape + self.dist.p.shape) |
| new_samples[np.arange(samples.shape[0]), samples] = 1 |
| return self.dist.pmf(new_samples) |
| |
| for probs, temp in product([torch.Tensor([0.1, 0.9]), torch.Tensor([0.2, 0.2, 0.6])], [0.1, 1.0, 10.0]): |
| self._check_sampler_discrete(ArgMax(RelaxedOneHotCategorical(temp, probs)), |
| ScipyCategorical(scipy.stats.multinomial(1, probs)), |
| 'Rounded(RelaxedOneHotCategorical(temp={}, probs={}))'.format(temp, probs), |
| failure_rate=1e-3) |
| |
| for probs in [torch.Tensor([0.1, 0.9]), torch.Tensor([0.2, 0.2, 0.6])]: |
| equal_probs = torch.ones(probs.size()) / probs.size()[0] |
| dist = RelaxedOneHotCategorical(1e10, probs) |
| s = dist.rsample() |
| self.assertEqual(equal_probs, s) |
| |
| def test_uniform(self): |
| low = Variable(torch.zeros(5, 5), requires_grad=True) |
| high = Variable(torch.ones(5, 5) * 3, requires_grad=True) |
| low_1d = Variable(torch.zeros(1), requires_grad=True) |
| high_1d = Variable(torch.ones(1) * 3, requires_grad=True) |
| self.assertEqual(Uniform(low, high).sample().size(), (5, 5)) |
| self.assertEqual(Uniform(low, high).sample((7,)).size(), (7, 5, 5)) |
| self.assertEqual(Uniform(low_1d, high_1d).sample().size(), (1,)) |
| self.assertEqual(Uniform(low_1d, high_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Uniform(0.0, 1.0).sample((1,)).size(), (1,)) |
| |
| # Check log_prob computation when value outside range |
| uniform = Uniform(low_1d, high_1d) |
| above_high = Variable(torch.Tensor([4.0])) |
| below_low = Variable(torch.Tensor([-1.0])) |
| self.assertEqual(uniform.log_prob(above_high).data[0], -float('inf'), allow_inf=True) |
| self.assertEqual(uniform.log_prob(below_low).data[0], -float('inf'), allow_inf=True) |
| |
| set_rng_seed(1) |
| self._gradcheck_log_prob(Uniform, (low, high)) |
| self._gradcheck_log_prob(Uniform, (low, 1.0)) |
| self._gradcheck_log_prob(Uniform, (0.0, high)) |
| |
| state = torch.get_rng_state() |
| rand = low.new(low.size()).uniform_() |
| torch.set_rng_state(state) |
| u = Uniform(low, high).rsample() |
| u.backward(torch.ones_like(u)) |
| self.assertEqual(low.grad, 1 - rand) |
| self.assertEqual(high.grad, rand) |
| low.grad.zero_() |
| high.grad.zero_() |
| |
| def test_cauchy(self): |
| loc = Variable(torch.zeros(5, 5), requires_grad=True) |
| scale = Variable(torch.ones(5, 5), requires_grad=True) |
| loc_1d = Variable(torch.zeros(1), requires_grad=True) |
| scale_1d = Variable(torch.ones(1), requires_grad=True) |
| self.assertTrue(is_all_nan(Cauchy(loc_1d, scale_1d).mean)) |
| self.assertEqual(Cauchy(loc_1d, scale_1d).variance, float('inf'), allow_inf=True) |
| self.assertEqual(Cauchy(loc, scale).sample().size(), (5, 5)) |
| self.assertEqual(Cauchy(loc, scale).sample((7,)).size(), (7, 5, 5)) |
| self.assertEqual(Cauchy(loc_1d, scale_1d).sample().size(), (1,)) |
| self.assertEqual(Cauchy(loc_1d, scale_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Cauchy(0.0, 1.0).sample((1,)).size(), (1,)) |
| |
| set_rng_seed(1) |
| self._gradcheck_log_prob(Uniform, (loc, scale)) |
| self._gradcheck_log_prob(Uniform, (loc, 1.0)) |
| self._gradcheck_log_prob(Uniform, (0.0, scale)) |
| |
| state = torch.get_rng_state() |
| eps = loc.new(loc.size()).cauchy_() |
| torch.set_rng_state(state) |
| c = Cauchy(loc, scale).rsample() |
| c.backward(torch.ones_like(c)) |
| self.assertEqual(loc.grad, torch.ones_like(scale)) |
| self.assertEqual(scale.grad, eps) |
| loc.grad.zero_() |
| scale.grad.zero_() |
| |
| def test_lognormal(self): |
| mean = Variable(torch.randn(5, 5), requires_grad=True) |
| std = Variable(torch.randn(5, 5).abs(), requires_grad=True) |
| mean_1d = Variable(torch.randn(1), requires_grad=True) |
| std_1d = Variable(torch.randn(1), requires_grad=True) |
| mean_delta = torch.Tensor([1.0, 0.0]) |
| std_delta = torch.Tensor([1e-5, 1e-5]) |
| self.assertEqual(LogNormal(mean, std).sample().size(), (5, 5)) |
| self.assertEqual(LogNormal(mean, std).sample((7,)).size(), (7, 5, 5)) |
| self.assertEqual(LogNormal(mean_1d, std_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(LogNormal(mean_1d, std_1d).sample().size(), (1,)) |
| self.assertEqual(LogNormal(0.2, .6).sample((1,)).size(), (1,)) |
| self.assertEqual(LogNormal(-0.7, 50.0).sample((1,)).size(), (1,)) |
| |
| # sample check for extreme value of mean, std |
| set_rng_seed(1) |
| self.assertEqual(LogNormal(mean_delta, std_delta).sample(sample_shape=(1, 2)), |
| torch.Tensor([[[math.exp(1), 1.0], [math.exp(1), 1.0]]]), |
| prec=1e-4) |
| |
| self._gradcheck_log_prob(LogNormal, (mean, std)) |
| self._gradcheck_log_prob(LogNormal, (mean, 1.0)) |
| self._gradcheck_log_prob(LogNormal, (0.0, std)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_lognormal_logprob(self): |
| mean = Variable(torch.randn(5, 1), requires_grad=True) |
| std = Variable(torch.randn(5, 1).abs(), requires_grad=True) |
| |
| def ref_log_prob(idx, x, log_prob): |
| m = mean.data.view(-1)[idx] |
| s = std.data.view(-1)[idx] |
| expected = scipy.stats.lognorm(s=s, scale=math.exp(m)).logpdf(x) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(LogNormal(mean, std), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_lognormal_sample(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| for mean, std in product([-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): |
| self._check_sampler_sampler(LogNormal(mean, std), |
| scipy.stats.lognorm(scale=math.exp(mean), s=std), |
| 'LogNormal(loc={}, scale={})'.format(mean, std)) |
| |
| def test_normal(self): |
| loc = Variable(torch.randn(5, 5), requires_grad=True) |
| scale = Variable(torch.randn(5, 5).abs(), requires_grad=True) |
| loc_1d = Variable(torch.randn(1), requires_grad=True) |
| scale_1d = Variable(torch.randn(1), requires_grad=True) |
| loc_delta = torch.Tensor([1.0, 0.0]) |
| scale_delta = torch.Tensor([1e-5, 1e-5]) |
| self.assertEqual(Normal(loc, scale).sample().size(), (5, 5)) |
| self.assertEqual(Normal(loc, scale).sample((7,)).size(), (7, 5, 5)) |
| self.assertEqual(Normal(loc_1d, scale_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Normal(loc_1d, scale_1d).sample().size(), (1,)) |
| self.assertEqual(Normal(0.2, .6).sample((1,)).size(), (1,)) |
| self.assertEqual(Normal(-0.7, 50.0).sample((1,)).size(), (1,)) |
| |
| # sample check for extreme value of mean, std |
| set_rng_seed(1) |
| self.assertEqual(Normal(loc_delta, scale_delta).sample(sample_shape=(1, 2)), |
| torch.Tensor([[[1.0, 0.0], [1.0, 0.0]]]), |
| prec=1e-4) |
| |
| self._gradcheck_log_prob(Normal, (loc, scale)) |
| self._gradcheck_log_prob(Normal, (loc, 1.0)) |
| self._gradcheck_log_prob(Normal, (0.0, scale)) |
| |
| state = torch.get_rng_state() |
| eps = torch.normal(torch.zeros_like(loc), torch.ones_like(scale)) |
| torch.set_rng_state(state) |
| z = Normal(loc, scale).rsample() |
| z.backward(torch.ones_like(z)) |
| self.assertEqual(loc.grad, torch.ones_like(loc)) |
| self.assertEqual(scale.grad, eps) |
| loc.grad.zero_() |
| scale.grad.zero_() |
| self.assertEqual(z.size(), (5, 5)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| m = loc.data.view(-1)[idx] |
| s = scale.data.view(-1)[idx] |
| expected = (math.exp(-(x - m) ** 2 / (2 * s ** 2)) / |
| math.sqrt(2 * math.pi * s ** 2)) |
| self.assertAlmostEqual(log_prob, math.log(expected), places=3) |
| |
| self._check_log_prob(Normal(loc, scale), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_normal_sample(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| for loc, scale in product([-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): |
| self._check_sampler_sampler(Normal(loc, scale), |
| scipy.stats.norm(loc=loc, scale=scale), |
| 'Normal(mean={}, std={})'.format(loc, scale)) |
| |
| def test_exponential(self): |
| rate = Variable(torch.randn(5, 5).abs(), requires_grad=True) |
| rate_1d = Variable(torch.randn(1).abs(), requires_grad=True) |
| self.assertEqual(Exponential(rate).sample().size(), (5, 5)) |
| self.assertEqual(Exponential(rate).sample((7,)).size(), (7, 5, 5)) |
| self.assertEqual(Exponential(rate_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Exponential(rate_1d).sample().size(), (1,)) |
| self.assertEqual(Exponential(0.2).sample((1,)).size(), (1,)) |
| self.assertEqual(Exponential(50.0).sample((1,)).size(), (1,)) |
| |
| self._gradcheck_log_prob(Exponential, (rate,)) |
| state = torch.get_rng_state() |
| eps = rate.new(rate.size()).exponential_() |
| torch.set_rng_state(state) |
| z = Exponential(rate).rsample() |
| z.backward(torch.ones_like(z)) |
| self.assertEqual(rate.grad, -eps / rate**2) |
| rate.grad.zero_() |
| self.assertEqual(z.size(), (5, 5)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| m = rate.data.view(-1)[idx] |
| expected = math.log(m) - m * x |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(Exponential(rate), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_exponential_sample(self): |
| set_rng_seed(1) # see Note [Randomized statistical tests] |
| for rate in [1e-5, 1.0, 10.]: |
| self._check_sampler_sampler(Exponential(rate), |
| scipy.stats.expon(scale=1. / rate), |
| 'Exponential(rate={})'.format(rate)) |
| |
| def test_laplace(self): |
| loc = Variable(torch.randn(5, 5), requires_grad=True) |
| scale = Variable(torch.randn(5, 5).abs(), requires_grad=True) |
| loc_1d = Variable(torch.randn(1), requires_grad=True) |
| scale_1d = Variable(torch.randn(1), requires_grad=True) |
| loc_delta = torch.Tensor([1.0, 0.0]) |
| scale_delta = torch.Tensor([1e-5, 1e-5]) |
| self.assertEqual(Laplace(loc, scale).sample().size(), (5, 5)) |
| self.assertEqual(Laplace(loc, scale).sample((7,)).size(), (7, 5, 5)) |
| self.assertEqual(Laplace(loc_1d, scale_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Laplace(loc_1d, scale_1d).sample().size(), (1,)) |
| self.assertEqual(Laplace(0.2, .6).sample((1,)).size(), (1,)) |
| self.assertEqual(Laplace(-0.7, 50.0).sample((1,)).size(), (1,)) |
| |
| # sample check for extreme value of mean, std |
| set_rng_seed(0) |
| self.assertEqual(Laplace(loc_delta, scale_delta).sample(sample_shape=(1, 2)), |
| torch.Tensor([[[1.0, 0.0], [1.0, 0.0]]]), |
| prec=1e-4) |
| |
| self._gradcheck_log_prob(Laplace, (loc, scale)) |
| self._gradcheck_log_prob(Laplace, (loc, 1.0)) |
| self._gradcheck_log_prob(Laplace, (0.0, scale)) |
| |
| state = torch.get_rng_state() |
| eps = torch.ones_like(loc).uniform_(-.5, .5) |
| torch.set_rng_state(state) |
| z = Laplace(loc, scale).rsample() |
| z.backward(torch.ones_like(z)) |
| self.assertEqual(loc.grad, torch.ones_like(loc)) |
| self.assertEqual(scale.grad, -eps.sign() * torch.log1p(-2 * eps.abs())) |
| loc.grad.zero_() |
| scale.grad.zero_() |
| self.assertEqual(z.size(), (5, 5)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| m = loc.data.view(-1)[idx] |
| s = scale.data.view(-1)[idx] |
| expected = (-math.log(2 * s) - abs(x - m) / s) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(Laplace(loc, scale), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_laplace_sample(self): |
| set_rng_seed(1) # see Note [Randomized statistical tests] |
| for loc, scale in product([-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): |
| self._check_sampler_sampler(Laplace(loc, scale), |
| scipy.stats.laplace(loc=loc, scale=scale), |
| 'Laplace(loc={}, scale={})'.format(loc, scale)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_gamma_shape(self): |
| alpha = Variable(torch.exp(torch.randn(2, 3)), requires_grad=True) |
| beta = Variable(torch.exp(torch.randn(2, 3)), requires_grad=True) |
| alpha_1d = Variable(torch.exp(torch.randn(1)), requires_grad=True) |
| beta_1d = Variable(torch.exp(torch.randn(1)), requires_grad=True) |
| self.assertEqual(Gamma(alpha, beta).sample().size(), (2, 3)) |
| self.assertEqual(Gamma(alpha, beta).sample((5,)).size(), (5, 2, 3)) |
| self.assertEqual(Gamma(alpha_1d, beta_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Gamma(alpha_1d, beta_1d).sample().size(), (1,)) |
| self.assertEqual(Gamma(0.5, 0.5).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(Gamma(0.5, 0.5).sample((1,)).size(), (1,)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| a = alpha.data.view(-1)[idx] |
| b = beta.data.view(-1)[idx] |
| expected = scipy.stats.gamma.logpdf(x, a, scale=1 / b) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(Gamma(alpha, beta), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_gamma_sample(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| for alpha, beta in product([0.1, 1.0, 5.0], [0.1, 1.0, 10.0]): |
| self._check_sampler_sampler(Gamma(alpha, beta), |
| scipy.stats.gamma(alpha, scale=1.0 / beta), |
| 'Gamma(concentration={}, rate={})'.format(alpha, beta)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_pareto(self): |
| scale = Variable(torch.randn(2, 3).abs(), requires_grad=True) |
| alpha = Variable(torch.randn(2, 3).abs(), requires_grad=True) |
| scale_1d = Variable(torch.randn(1).abs(), requires_grad=True) |
| alpha_1d = Variable(torch.randn(1).abs(), requires_grad=True) |
| self.assertEqual(Pareto(scale_1d, 0.5).mean, float('inf'), allow_inf=True) |
| self.assertEqual(Pareto(scale_1d, 0.5).variance, float('inf'), allow_inf=True) |
| self.assertEqual(Pareto(scale, alpha).sample().size(), (2, 3)) |
| self.assertEqual(Pareto(scale, alpha).sample((5,)).size(), (5, 2, 3)) |
| self.assertEqual(Pareto(scale_1d, alpha_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Pareto(scale_1d, alpha_1d).sample().size(), (1,)) |
| self.assertEqual(Pareto(1.0, 1.0).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(Pareto(1.0, 1.0).sample((1,)).size(), SCALAR_SHAPE + (1,)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| s = scale.data.view(-1)[idx] |
| a = alpha.data.view(-1)[idx] |
| expected = scipy.stats.pareto.logpdf(x, a, scale=s) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(Pareto(scale, alpha), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_pareto_sample(self): |
| set_rng_seed(1) # see Note [Randomized statistical tests] |
| for scale, alpha in product([0.1, 1.0, 5.0], [0.1, 1.0, 10.0]): |
| self._check_sampler_sampler(Pareto(scale, alpha), |
| scipy.stats.pareto(alpha, scale=scale), |
| 'Pareto(scale={}, alpha={})'.format(scale, alpha)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_gumbel(self): |
| loc = Variable(torch.randn(2, 3), requires_grad=True) |
| scale = Variable(torch.randn(2, 3).abs(), requires_grad=True) |
| loc_1d = Variable(torch.randn(1), requires_grad=True) |
| scale_1d = Variable(torch.randn(1).abs(), requires_grad=True) |
| self.assertEqual(Gumbel(loc, scale).sample().size(), (2, 3)) |
| self.assertEqual(Gumbel(loc, scale).sample((5,)).size(), (5, 2, 3)) |
| self.assertEqual(Gumbel(loc_1d, scale_1d).sample().size(), (1,)) |
| self.assertEqual(Gumbel(loc_1d, scale_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Gumbel(1.0, 1.0).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(Gumbel(1.0, 1.0).sample((1,)).size(), (1,)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| l = loc.data.view(-1)[idx] |
| s = scale.data.view(-1)[idx] |
| expected = scipy.stats.gumbel_r.logpdf(x, loc=l, scale=s) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(Gumbel(loc, scale), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_gumbel_sample(self): |
| set_rng_seed(1) # see note [Randomized statistical tests] |
| for loc, scale in product([-5.0, -1.0, -0.1, 0.1, 1.0, 5.0], [0.1, 1.0, 10.0]): |
| self._check_sampler_sampler(Gumbel(loc, scale), |
| scipy.stats.gumbel_r(loc=loc, scale=scale), |
| 'Gumbel(loc={}, scale={})'.format(loc, scale)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_fishersnedecor(self): |
| df1 = Variable(torch.randn(2, 3).abs(), requires_grad=True) |
| df2 = Variable(torch.randn(2, 3).abs(), requires_grad=True) |
| df1_1d = torch.randn(1).abs() |
| df2_1d = torch.randn(1).abs() |
| self.assertTrue(is_all_nan(FisherSnedecor(1, 2).mean)) |
| self.assertTrue(is_all_nan(FisherSnedecor(1, 4).variance)) |
| self.assertEqual(FisherSnedecor(df1, df2).sample().size(), (2, 3)) |
| self.assertEqual(FisherSnedecor(df1, df2).sample((5,)).size(), (5, 2, 3)) |
| self.assertEqual(FisherSnedecor(df1_1d, df2_1d).sample().size(), (1,)) |
| self.assertEqual(FisherSnedecor(df1_1d, df2_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(FisherSnedecor(1.0, 1.0).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(FisherSnedecor(1.0, 1.0).sample((1,)).size(), (1,)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| f1 = df1.data.view(-1)[idx] |
| f2 = df2.data.view(-1)[idx] |
| expected = scipy.stats.f.logpdf(x, f1, f2) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(FisherSnedecor(df1, df2), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_fishersnedecor_sample(self): |
| set_rng_seed(1) # see note [Randomized statistical tests] |
| for df1, df2 in product([0.1, 0.5, 1.0, 5.0, 10.0], [0.1, 0.5, 1.0, 5.0, 10.0]): |
| self._check_sampler_sampler(FisherSnedecor(df1, df2), |
| scipy.stats.f(df1, df2), |
| 'FisherSnedecor(loc={}, scale={})'.format(df1, df2)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_chi2_shape(self): |
| df = Variable(torch.exp(torch.randn(2, 3)), requires_grad=True) |
| df_1d = Variable(torch.exp(torch.randn(1)), requires_grad=True) |
| self.assertEqual(Chi2(df).sample().size(), (2, 3)) |
| self.assertEqual(Chi2(df).sample((5,)).size(), (5, 2, 3)) |
| self.assertEqual(Chi2(df_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(Chi2(df_1d).sample().size(), (1,)) |
| self.assertEqual(Chi2(variable(0.5, requires_grad=True)).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(Chi2(0.5).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(Chi2(0.5).sample((1,)).size(), (1,)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| d = df.data.view(-1)[idx] |
| expected = scipy.stats.chi2.logpdf(x, d) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(Chi2(df), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_chi2_sample(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| for df in [0.1, 1.0, 5.0]: |
| self._check_sampler_sampler(Chi2(df), |
| scipy.stats.chi2(df), |
| 'Chi2(df={})'.format(df)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_studentT(self): |
| df = Variable(torch.exp(torch.randn(2, 3)), requires_grad=True) |
| df_1d = Variable(torch.exp(torch.randn(1)), requires_grad=True) |
| self.assertTrue(is_all_nan(StudentT(1).mean)) |
| self.assertTrue(is_all_nan(StudentT(1).variance)) |
| self.assertEqual(StudentT(2).variance, float('inf'), allow_inf=True) |
| self.assertEqual(StudentT(df).sample().size(), (2, 3)) |
| self.assertEqual(StudentT(df).sample((5,)).size(), (5, 2, 3)) |
| self.assertEqual(StudentT(df_1d).sample((1,)).size(), (1, 1)) |
| self.assertEqual(StudentT(df_1d).sample().size(), (1,)) |
| self.assertEqual(StudentT(variable(0.5, requires_grad=True)).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(StudentT(0.5).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(StudentT(0.5).sample((1,)).size(), (1,)) |
| |
| def ref_log_prob(idx, x, log_prob): |
| d = df.data.view(-1)[idx] |
| expected = scipy.stats.t.logpdf(x, d) |
| self.assertAlmostEqual(log_prob, expected, places=3) |
| |
| self._check_log_prob(StudentT(df), ref_log_prob) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_studentT_sample(self): |
| set_rng_seed(11) # see Note [Randomized statistical tests] |
| for df, loc, scale in product([0.1, 1.0, 5.0, 10.0], [-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): |
| self._check_sampler_sampler(StudentT(df=df, loc=loc, scale=scale), |
| scipy.stats.t(df=df, loc=loc, scale=scale), |
| 'StudentT(df={}, loc={}, scale={})'.format(df, loc, scale)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "Numpy not found") |
| def test_studentT_log_prob(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| num_samples = 10 |
| for df, loc, scale in product([0.1, 1.0, 5.0, 10.0], [-1.0, 0.0, 1.0], [0.1, 1.0, 10.0]): |
| dist = StudentT(df=df, loc=loc, scale=scale) |
| x = dist.sample((num_samples,)) |
| actual_log_prob = dist.log_prob(x) |
| for i in range(num_samples): |
| expected_log_prob = scipy.stats.t.logpdf(x[i], df=df, loc=loc, scale=scale) |
| self.assertAlmostEqual(float(actual_log_prob[i]), float(expected_log_prob), places=3) |
| |
| def test_dirichlet_shape(self): |
| alpha = Variable(torch.exp(torch.randn(2, 3)), requires_grad=True) |
| alpha_1d = Variable(torch.exp(torch.randn(4)), requires_grad=True) |
| self.assertEqual(Dirichlet(alpha).sample().size(), (2, 3)) |
| self.assertEqual(Dirichlet(alpha).sample((5,)).size(), (5, 2, 3)) |
| self.assertEqual(Dirichlet(alpha_1d).sample().size(), (4,)) |
| self.assertEqual(Dirichlet(alpha_1d).sample((1,)).size(), (1, 4)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_dirichlet_log_prob(self): |
| num_samples = 10 |
| alpha = torch.exp(torch.randn(5)) |
| dist = Dirichlet(alpha) |
| x = dist.sample((num_samples,)) |
| actual_log_prob = dist.log_prob(x) |
| for i in range(num_samples): |
| expected_log_prob = scipy.stats.dirichlet.logpdf(x[i].numpy(), alpha.numpy()) |
| self.assertAlmostEqual(actual_log_prob[i], expected_log_prob, places=3) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_dirichlet_sample(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| alpha = torch.exp(torch.randn(3)) |
| self._check_sampler_sampler(Dirichlet(alpha), |
| scipy.stats.dirichlet(alpha.numpy()), |
| 'Dirichlet(alpha={})'.format(list(alpha)), |
| multivariate=True) |
| |
| def test_beta_shape(self): |
| con1 = Variable(torch.exp(torch.randn(2, 3)), requires_grad=True) |
| con0 = Variable(torch.exp(torch.randn(2, 3)), requires_grad=True) |
| con1_1d = Variable(torch.exp(torch.randn(4)), requires_grad=True) |
| con0_1d = Variable(torch.exp(torch.randn(4)), requires_grad=True) |
| self.assertEqual(Beta(con1, con0).sample().size(), (2, 3)) |
| self.assertEqual(Beta(con1, con0).sample((5,)).size(), (5, 2, 3)) |
| self.assertEqual(Beta(con1_1d, con0_1d).sample().size(), (4,)) |
| self.assertEqual(Beta(con1_1d, con0_1d).sample((1,)).size(), (1, 4)) |
| self.assertEqual(Beta(0.1, 0.3).sample().size(), SCALAR_SHAPE) |
| self.assertEqual(Beta(0.1, 0.3).sample((5,)).size(), (5,)) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_beta_log_prob(self): |
| for _ in range(100): |
| con1 = np.exp(np.random.normal()) |
| con0 = np.exp(np.random.normal()) |
| dist = Beta(con1, con0) |
| x = dist.sample() |
| actual_log_prob = dist.log_prob(x).sum() |
| expected_log_prob = scipy.stats.beta.logpdf(x, con1, con0) |
| self.assertAlmostEqual(float(actual_log_prob), float(expected_log_prob), places=3, allow_inf=True) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_beta_sample(self): |
| set_rng_seed(1) # see Note [Randomized statistical tests] |
| for con1, con0 in product([0.1, 1.0, 10.0], [0.1, 1.0, 10.0]): |
| self._check_sampler_sampler(Beta(con1, con0), |
| scipy.stats.beta(con1, con0), |
| 'Beta(alpha={}, beta={})'.format(con1, con0)) |
| # Check that small alphas do not cause NANs. |
| for Tensor in [torch.FloatTensor, torch.DoubleTensor]: |
| x = Beta(Tensor([1e-6]), Tensor([1e-6])).sample()[0] |
| self.assertTrue(np.isfinite(x) and x > 0, 'Invalid Beta.sample(): {}'.format(x)) |
| |
| def test_cdf_icdf_inverse(self): |
| # Tests the invertibility property on the distributions |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| samples = dist.sample(sample_shape=(20,)) |
| try: |
| cdf = dist.cdf(samples) |
| actual = dist.icdf(cdf) |
| except NotImplementedError: |
| continue |
| rel_error = torch.abs(actual - samples) / (1e-10 + torch.abs(samples)) |
| self.assertLess(rel_error.max(), 1e-4, msg='\n'.join([ |
| '{} example {}/{}, icdf(cdf(x)) != x'.format(Dist.__name__, i + 1, len(params)), |
| 'x = {}'.format(samples), |
| 'cdf(x) = {}'.format(cdf), |
| 'icdf(cdf(x)) = {}'.format(actual), |
| ])) |
| |
| def test_cdf_log_prob(self): |
| # Tests if the differentiation of the CDF gives the PDF at a given value |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| samples = Variable(dist.sample().data, requires_grad=True) |
| try: |
| cdfs = dist.cdf(samples) |
| pdfs = dist.log_prob(samples).exp() |
| except NotImplementedError: |
| continue |
| cdfs_derivative = grad(cdfs.sum(), [samples])[0] # this should not be wrapped in torch.abs() |
| self.assertEqual(cdfs_derivative, pdfs, message='\n'.join([ |
| '{} example {}/{}, d(cdf)/dx != pdf(x)'.format(Dist.__name__, i + 1, len(params)), |
| 'x = {}'.format(samples), |
| 'cdf = {}'.format(cdfs), |
| 'pdf = {}'.format(pdfs), |
| 'grad(cdf) = {}'.format(cdfs_derivative), |
| ])) |
| |
| def test_valid_parameter_broadcasting(self): |
| # Test correct broadcasting of parameter sizes for distributions that have multiple |
| # parameters. |
| # example type (distribution instance, expected sample shape) |
| valid_examples = [ |
| (Normal(loc=variable([0, 0]), scale=1), |
| (2,)), |
| (Normal(loc=0, scale=variable([1, 1])), |
| (2,)), |
| (Normal(loc=variable([0, 0]), scale=variable([1])), |
| (2,)), |
| (Normal(loc=variable([0, 0]), scale=variable([[1], [1]])), |
| (2, 2)), |
| (Normal(loc=variable([0, 0]), scale=variable([[1]])), |
| (1, 2)), |
| (Normal(loc=variable([0]), scale=variable([[1]])), |
| (1, 1)), |
| (FisherSnedecor(df1=variable([1, 1]), df2=1), |
| (2,)), |
| (FisherSnedecor(df1=1, df2=variable([1, 1])), |
| (2,)), |
| (FisherSnedecor(df1=variable([1, 1]), df2=variable([1])), |
| (2,)), |
| (FisherSnedecor(df1=variable([1, 1]), df2=variable([[1], [1]])), |
| (2, 2)), |
| (FisherSnedecor(df1=variable([1, 1]), df2=variable([[1]])), |
| (1, 2)), |
| (FisherSnedecor(df1=variable([1]), df2=variable([[1]])), |
| (1, 1)), |
| (Gamma(concentration=variable([1, 1]), rate=1), |
| (2,)), |
| (Gamma(concentration=1, rate=variable([1, 1])), |
| (2,)), |
| (Gamma(concentration=variable([1, 1]), rate=variable([[1], [1], [1]])), |
| (3, 2)), |
| (Gamma(concentration=variable([1, 1]), rate=variable([[1], [1]])), |
| (2, 2)), |
| (Gamma(concentration=variable([1, 1]), rate=variable([[1]])), |
| (1, 2)), |
| (Gamma(concentration=variable([1]), rate=variable([[1]])), |
| (1, 1)), |
| (Gumbel(loc=variable([0, 0]), scale=1), |
| (2,)), |
| (Gumbel(loc=0, scale=variable([1, 1])), |
| (2,)), |
| (Gumbel(loc=variable([0, 0]), scale=variable([1])), |
| (2,)), |
| (Gumbel(loc=variable([0, 0]), scale=variable([[1], [1]])), |
| (2, 2)), |
| (Gumbel(loc=variable([0, 0]), scale=variable([[1]])), |
| (1, 2)), |
| (Gumbel(loc=variable([0]), scale=variable([[1]])), |
| (1, 1)), |
| (Laplace(loc=variable([0, 0]), scale=1), |
| (2,)), |
| (Laplace(loc=0, scale=variable([1, 1])), |
| (2,)), |
| (Laplace(loc=variable([0, 0]), scale=variable([1])), |
| (2,)), |
| (Laplace(loc=variable([0, 0]), scale=variable([[1], [1]])), |
| (2, 2)), |
| (Laplace(loc=variable([0, 0]), scale=variable([[1]])), |
| (1, 2)), |
| (Laplace(loc=variable([0]), scale=variable([[1]])), |
| (1, 1)), |
| (Pareto(scale=variable([1, 1]), alpha=1), |
| (2,)), |
| (Pareto(scale=1, alpha=variable([1, 1])), |
| (2,)), |
| (Pareto(scale=variable([1, 1]), alpha=variable([1])), |
| (2,)), |
| (Pareto(scale=variable([1, 1]), alpha=variable([[1], [1]])), |
| (2, 2)), |
| (Pareto(scale=variable([1, 1]), alpha=variable([[1]])), |
| (1, 2)), |
| (Pareto(scale=variable([1]), alpha=variable([[1]])), |
| (1, 1)), |
| (StudentT(df=variable([1, 1]), loc=1), |
| (2,)), |
| (StudentT(df=1, scale=variable([1, 1])), |
| (2,)), |
| (StudentT(df=variable([1, 1]), loc=variable([1])), |
| (2,)), |
| (StudentT(df=variable([1, 1]), scale=variable([[1], [1]])), |
| (2, 2)), |
| (StudentT(df=variable([1, 1]), loc=variable([[1]])), |
| (1, 2)), |
| (StudentT(df=variable([1]), scale=variable([[1]])), |
| (1, 1)), |
| ] |
| |
| for dist, expected_size in valid_examples: |
| dist_sample_size = dist.sample().size() |
| self.assertEqual(dist_sample_size, expected_size, |
| 'actual size: {} != expected size: {}'.format(dist_sample_size, expected_size)) |
| |
| def test_invalid_parameter_broadcasting(self): |
| # invalid broadcasting cases; should throw error |
| # example type (distribution class, distribution params) |
| invalid_examples = [ |
| (Normal, { |
| 'loc': variable([[0, 0]]), |
| 'scale': variable([1, 1, 1, 1]) |
| }), |
| (Normal, { |
| 'loc': variable([[[0, 0, 0], [0, 0, 0]]]), |
| 'scale': variable([1, 1]) |
| }), |
| (FisherSnedecor, { |
| 'df1': variable([1, 1]), |
| 'df2': variable([1, 1, 1]), |
| }), |
| (Gumbel, { |
| 'loc': variable([[0, 0]]), |
| 'scale': variable([1, 1, 1, 1]) |
| }), |
| (Gumbel, { |
| 'loc': variable([[[0, 0, 0], [0, 0, 0]]]), |
| 'scale': variable([1, 1]) |
| }), |
| (Gamma, { |
| 'concentration': variable([0, 0]), |
| 'rate': variable([1, 1, 1]) |
| }), |
| (Laplace, { |
| 'loc': variable([0, 0]), |
| 'scale': variable([1, 1, 1]) |
| }), |
| (Pareto, { |
| 'scale': variable([1, 1]), |
| 'alpha': variable([1, 1, 1]) |
| }), |
| (StudentT, { |
| 'df': variable([1, 1]), |
| 'scale': variable([1, 1, 1]) |
| }), |
| (StudentT, { |
| 'df': variable([1, 1]), |
| 'loc': variable([1, 1, 1]) |
| }) |
| ] |
| |
| for dist, kwargs in invalid_examples: |
| self.assertRaises(RuntimeError, dist, **kwargs) |
| |
| |
| # These tests are only needed for a few distributions that implement custom |
| # reparameterized gradients. Most .rsample() implementations simply rely on |
| # the reparameterization trick and do not need to be tested for accuracy. |
| class TestRsample(TestCase): |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_gamma(self): |
| num_samples = 100 |
| for alpha in [1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]: |
| alphas = Variable(torch.FloatTensor([alpha] * num_samples), requires_grad=True) |
| betas = Variable(torch.ones(num_samples).type_as(alphas)) |
| x = Gamma(alphas, betas).rsample() |
| x.sum().backward() |
| x, ind = x.data.sort() |
| x = x.numpy() |
| actual_grad = alphas.grad.data[ind].numpy() |
| # Compare with expected gradient dx/dalpha along constant cdf(x,alpha). |
| cdf = scipy.stats.gamma.cdf |
| pdf = scipy.stats.gamma.pdf |
| eps = 0.01 * alpha / (1.0 + alpha ** 0.5) |
| cdf_alpha = (cdf(x, alpha + eps) - cdf(x, alpha - eps)) / (2 * eps) |
| cdf_x = pdf(x, alpha) |
| expected_grad = -cdf_alpha / cdf_x |
| rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) |
| self.assertLess(np.max(rel_error), 0.0005, '\n'.join([ |
| 'Bad gradient dx/alpha for x ~ Gamma({}, 1)'.format(alpha), |
| 'x {}'.format(x), |
| 'expected {}'.format(expected_grad), |
| 'actual {}'.format(actual_grad), |
| 'rel error {}'.format(rel_error), |
| 'max error {}'.format(rel_error.max()), |
| 'at alpha={}, x={}'.format(alpha, x[rel_error.argmax()]), |
| ])) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_chi2(self): |
| num_samples = 100 |
| for df in [1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3, 1e4]: |
| dfs = Variable(torch.FloatTensor([df] * num_samples), requires_grad=True) |
| x = Chi2(dfs).rsample() |
| x.sum().backward() |
| x, ind = x.data.sort() |
| x = x.numpy() |
| actual_grad = dfs.grad.data[ind].numpy() |
| # Compare with expected gradient dx/ddf along constant cdf(x,df). |
| cdf = scipy.stats.chi2.cdf |
| pdf = scipy.stats.chi2.pdf |
| eps = 0.01 * df / (1.0 + df ** 0.5) |
| cdf_df = (cdf(x, df + eps) - cdf(x, df - eps)) / (2 * eps) |
| cdf_x = pdf(x, df) |
| expected_grad = -cdf_df / cdf_x |
| rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) |
| self.assertLess(np.max(rel_error), 0.001, '\n'.join([ |
| 'Bad gradient dx/ddf for x ~ Chi2({})'.format(df), |
| 'x {}'.format(x), |
| 'expected {}'.format(expected_grad), |
| 'actual {}'.format(actual_grad), |
| 'rel error {}'.format(rel_error), |
| 'max error {}'.format(rel_error.max()), |
| ])) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_dirichlet_on_diagonal(self): |
| num_samples = 20 |
| grid = [1e-1, 1e0, 1e1] |
| for a0, a1, a2 in product(grid, grid, grid): |
| alphas = Variable(torch.FloatTensor([[a0, a1, a2]] * num_samples), requires_grad=True) |
| x = Dirichlet(alphas).rsample()[:, 0] |
| x.sum().backward() |
| x, ind = x.data.sort() |
| x = x.numpy() |
| actual_grad = alphas.grad.data[ind].numpy()[:, 0] |
| # Compare with expected gradient dx/dalpha0 along constant cdf(x,alpha). |
| # This reduces to a distribution Beta(alpha[0], alpha[1] + alpha[2]). |
| cdf = scipy.stats.beta.cdf |
| pdf = scipy.stats.beta.pdf |
| alpha, beta = a0, a1 + a2 |
| eps = 0.01 * alpha / (1.0 + np.sqrt(alpha)) |
| cdf_alpha = (cdf(x, alpha + eps, beta) - cdf(x, alpha - eps, beta)) / (2 * eps) |
| cdf_x = pdf(x, alpha, beta) |
| expected_grad = -cdf_alpha / cdf_x |
| rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) |
| self.assertLess(np.max(rel_error), 0.001, '\n'.join([ |
| 'Bad gradient dx[0]/dalpha[0] for Dirichlet([{}, {}, {}])'.format(a0, a1, a2), |
| 'x {}'.format(x), |
| 'expected {}'.format(expected_grad), |
| 'actual {}'.format(actual_grad), |
| 'rel error {}'.format(rel_error), |
| 'max error {}'.format(rel_error.max()), |
| 'at x={}'.format(x[rel_error.argmax()]), |
| ])) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_beta_wrt_alpha(self): |
| num_samples = 20 |
| grid = [1e-2, 1e-1, 1e0, 1e1, 1e2] |
| for con1, con0 in product(grid, grid): |
| con1s = Variable(torch.FloatTensor([con1] * num_samples), requires_grad=True) |
| con0s = Variable(torch.FloatTensor([con0] * num_samples).type_as(con1s)) |
| x = Beta(con1s, con0s).rsample() |
| x.sum().backward() |
| x, ind = x.data.sort() |
| x = x.numpy() |
| actual_grad = con1s.grad.data[ind].numpy() |
| # Compare with expected gradient dx/dcon1 along constant cdf(x,con1,con0). |
| cdf = scipy.stats.beta.cdf |
| pdf = scipy.stats.beta.pdf |
| eps = 0.01 * con1 / (1.0 + np.sqrt(con1)) |
| cdf_alpha = (cdf(x, con1 + eps, con0) - cdf(x, con1 - eps, con0)) / (2 * eps) |
| cdf_x = pdf(x, con1, con0) |
| expected_grad = -cdf_alpha / cdf_x |
| rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) |
| self.assertLess(np.max(rel_error), 0.005, '\n'.join([ |
| 'Bad gradient dx/dcon1 for x ~ Beta({}, {})'.format(con1, con0), |
| 'x {}'.format(x), |
| 'expected {}'.format(expected_grad), |
| 'actual {}'.format(actual_grad), |
| 'rel error {}'.format(rel_error), |
| 'max error {}'.format(rel_error.max()), |
| 'at x = {}'.format(x[rel_error.argmax()]), |
| ])) |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| def test_beta_wrt_beta(self): |
| num_samples = 20 |
| grid = [1e-2, 1e-1, 1e0, 1e1, 1e2] |
| for con1, con0 in product(grid, grid): |
| con0s = Variable(torch.FloatTensor([con0] * num_samples), requires_grad=True) |
| con1s = Variable(torch.FloatTensor([con1] * num_samples).type_as(con0s)) |
| x = Beta(con1s, con0s).rsample() |
| x.sum().backward() |
| x, ind = x.data.sort() |
| x = x.numpy() |
| actual_grad = con0s.grad.data[ind].numpy() |
| # Compare with expected gradient dx/dcon0 along constant cdf(x,con1,con0). |
| cdf = scipy.stats.beta.cdf |
| pdf = scipy.stats.beta.pdf |
| eps = 0.01 * con0 / (1.0 + np.sqrt(con0)) |
| cdf_beta = (cdf(x, con1, con0 + eps) - cdf(x, con1, con0 - eps)) / (2 * eps) |
| cdf_x = pdf(x, con1, con0) |
| expected_grad = -cdf_beta / cdf_x |
| rel_error = np.abs(actual_grad - expected_grad) / (expected_grad + 1e-30) |
| self.assertLess(np.max(rel_error), 0.005, '\n'.join([ |
| 'Bad gradient dx/dcon0 for x ~ Beta({}, {})'.format(con1, con0), |
| 'x {}'.format(x), |
| 'expected {}'.format(expected_grad), |
| 'actual {}'.format(actual_grad), |
| 'rel error {}'.format(rel_error), |
| 'max error {}'.format(rel_error.max()), |
| 'at x = {!r}'.format(x[rel_error.argmax()]), |
| ])) |
| |
| def test_dirichlet_multivariate(self): |
| alpha_crit = 0.25 * (5.0 ** 0.5 - 1.0) |
| num_samples = 100000 |
| for shift in [-0.1, -0.05, -0.01, 0.0, 0.01, 0.05, 0.10]: |
| alpha = alpha_crit + shift |
| alpha = Variable(torch.FloatTensor([alpha]), requires_grad=True) |
| alpha_vec = torch.cat([alpha, alpha, alpha.new([1])]) |
| z = Dirichlet(alpha_vec.expand(num_samples, 3)).rsample() |
| mean_z3 = 1.0 / (2.0 * alpha + 1.0) |
| loss = torch.pow(z[:, 2] - mean_z3, 2.0).mean() |
| actual_grad = grad(loss, [alpha])[0].data |
| # Compute expected gradient by hand. |
| num = 1.0 - 2.0 * alpha - 4.0 * alpha**2 |
| den = (1.0 + alpha)**2 * (1.0 + 2.0 * alpha)**3 |
| expected_grad = (num / den).data |
| self.assertEqual(actual_grad, expected_grad, 0.002, '\n'.join([ |
| "alpha = alpha_c + %.2g" % shift, |
| "expected_grad: %.5g" % expected_grad, |
| "actual_grad: %.5g" % actual_grad, |
| "error = %.2g" % torch.abs(expected_grad - actual_grad).max(), |
| ])) |
| |
| def test_dirichlet_tangent_field(self): |
| num_samples = 20 |
| alpha_grid = [0.5, 1.0, 2.0] |
| |
| # v = dx/dalpha[0] is the reparameterized gradient aka tangent field. |
| def compute_v(x, alpha): |
| return torch.stack([ |
| _Dirichlet_backward(x, alpha, torch.eye(3, 3)[i].expand_as(x))[:, 0] |
| for i in range(3) |
| ], dim=-1) |
| |
| for a1, a2, a3 in product(alpha_grid, alpha_grid, alpha_grid): |
| alpha = Variable(torch.Tensor([a1, a2, a3]).expand(num_samples, 3), requires_grad=True) |
| x = Dirichlet(alpha).rsample() |
| dlogp_da = grad([Dirichlet(alpha).log_prob(x.detach()).sum()], |
| [alpha], retain_graph=True)[0].data[:, 0] |
| dlogp_dx = grad([Dirichlet(alpha.detach()).log_prob(x).sum()], |
| [x], retain_graph=True)[0].data |
| v = torch.stack([grad([x[:, i].sum()], [alpha], retain_graph=True)[0].data[:, 0] |
| for i in range(3)], dim=-1) |
| # Compute ramaining properties by finite difference. |
| x = x.data |
| alpha = alpha.data |
| self.assertEqual(compute_v(x, alpha), v, message='Bug in compute_v() helper') |
| # dx is an arbitrary orthonormal basis tangent to the simplex. |
| dx = torch.Tensor([[2, -1, -1], [0, 1, -1]]) |
| dx /= dx.norm(2, -1, True) |
| eps = 1e-2 * x.min(-1, True)[0] # avoid boundary |
| dv0 = (compute_v(x + eps * dx[0], alpha) - compute_v(x - eps * dx[0], alpha)) / (2 * eps) |
| dv1 = (compute_v(x + eps * dx[1], alpha) - compute_v(x - eps * dx[1], alpha)) / (2 * eps) |
| div_v = (dv0 * dx[0] + dv1 * dx[1]).sum(-1) |
| # This is a modification of the standard continuity equation, using the product rule to allow |
| # expression in terms of log_prob rather than the less numerically stable log_prob.exp(). |
| error = dlogp_da + (dlogp_dx * v).sum(-1) + div_v |
| self.assertLess(torch.abs(error).max(), 0.005, '\n'.join([ |
| 'Dirichlet([{}, {}, {}]) gradient violates continuity equation:'.format(a1, a2, a3), |
| 'error = {}'.format(error), |
| ])) |
| |
| |
| class TestDistributionShapes(TestCase): |
| def setUp(self): |
| super(TestCase, self).setUp() |
| self.scalar_sample = 1 |
| self.tensor_sample_1 = Variable(torch.ones(3, 2)) |
| self.tensor_sample_2 = Variable(torch.ones(3, 2, 3)) |
| |
| def test_entropy_shape(self): |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| try: |
| actual_shape = dist.entropy().size() |
| expected_shape = dist.batch_shape if dist.batch_shape else torch.Size(SCALAR_SHAPE) |
| message = '{} example {}/{}, shape mismatch. expected {}, actual {}'.format( |
| Dist.__name__, i + 1, len(params), expected_shape, actual_shape) |
| self.assertEqual(actual_shape, expected_shape, message=message) |
| except NotImplementedError: |
| continue |
| |
| def test_bernoulli_shape_scalar_params(self): |
| bernoulli = Bernoulli(0.3) |
| self.assertEqual(bernoulli._batch_shape, torch.Size()) |
| self.assertEqual(bernoulli._event_shape, torch.Size()) |
| self.assertEqual(bernoulli.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(bernoulli.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, bernoulli.log_prob, self.scalar_sample) |
| self.assertEqual(bernoulli.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(bernoulli.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_bernoulli_shape_tensor_params(self): |
| bernoulli = Bernoulli(variable([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) |
| self.assertEqual(bernoulli._batch_shape, torch.Size((3, 2))) |
| self.assertEqual(bernoulli._event_shape, torch.Size(())) |
| self.assertEqual(bernoulli.sample().size(), torch.Size((3, 2))) |
| self.assertEqual(bernoulli.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) |
| self.assertEqual(bernoulli.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, bernoulli.log_prob, self.tensor_sample_2) |
| self.assertEqual(bernoulli.log_prob(Variable(torch.ones(3, 1, 1))).size(), torch.Size((3, 3, 2))) |
| |
| def test_geometric_shape_scalar_params(self): |
| geometric = Geometric(0.3) |
| self.assertEqual(geometric._batch_shape, torch.Size()) |
| self.assertEqual(geometric._event_shape, torch.Size()) |
| self.assertEqual(geometric.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(geometric.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, geometric.log_prob, self.scalar_sample) |
| self.assertEqual(geometric.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(geometric.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_geometric_shape_tensor_params(self): |
| geometric = Geometric(variable([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) |
| self.assertEqual(geometric._batch_shape, torch.Size((3, 2))) |
| self.assertEqual(geometric._event_shape, torch.Size(())) |
| self.assertEqual(geometric.sample().size(), torch.Size((3, 2))) |
| self.assertEqual(geometric.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) |
| self.assertEqual(geometric.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, geometric.log_prob, self.tensor_sample_2) |
| self.assertEqual(geometric.log_prob(Variable(torch.ones(3, 1, 1))).size(), torch.Size((3, 3, 2))) |
| |
| def test_beta_shape_scalar_params(self): |
| dist = Beta(0.1, 0.1) |
| self.assertEqual(dist._batch_shape, torch.Size()) |
| self.assertEqual(dist._event_shape, torch.Size()) |
| self.assertEqual(dist.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, dist.log_prob, self.scalar_sample) |
| self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_beta_shape_tensor_params(self): |
| dist = Beta(variable([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]]), |
| variable([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]])) |
| self.assertEqual(dist._batch_shape, torch.Size((3, 2))) |
| self.assertEqual(dist._event_shape, torch.Size(())) |
| self.assertEqual(dist.sample().size(), torch.Size((3, 2))) |
| self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) |
| self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) |
| self.assertEqual(dist.log_prob(Variable(torch.ones(3, 1, 1))).size(), torch.Size((3, 3, 2))) |
| |
| def test_binomial_shape(self): |
| dist = Binomial(10, variable([0.6, 0.3])) |
| self.assertEqual(dist._batch_shape, torch.Size((2,))) |
| self.assertEqual(dist._event_shape, torch.Size(())) |
| self.assertEqual(dist.sample().size(), torch.Size((2,))) |
| self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) |
| |
| def test_multinomial_shape(self): |
| dist = Multinomial(10, variable([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) |
| self.assertEqual(dist._batch_shape, torch.Size((3,))) |
| self.assertEqual(dist._event_shape, torch.Size((2,))) |
| self.assertEqual(dist.sample().size(), torch.Size((3, 2))) |
| self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) |
| self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3,))) |
| self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) |
| self.assertEqual(dist.log_prob(Variable(torch.ones(3, 1, 2))).size(), torch.Size((3, 3))) |
| |
| def test_categorical_shape(self): |
| # unbatched |
| dist = Categorical(variable([0.6, 0.3, 0.1])) |
| self.assertEqual(dist._batch_shape, torch.Size(())) |
| self.assertEqual(dist._event_shape, torch.Size(())) |
| self.assertEqual(dist.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2,))) |
| self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| self.assertEqual(dist.log_prob(Variable(torch.ones(3, 1))).size(), torch.Size((3, 1))) |
| # batched |
| dist = Categorical(variable([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) |
| self.assertEqual(dist._batch_shape, torch.Size((3,))) |
| self.assertEqual(dist._event_shape, torch.Size(())) |
| self.assertEqual(dist.sample().size(), torch.Size((3,))) |
| self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3,))) |
| self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_1) |
| self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| self.assertEqual(dist.log_prob(Variable(torch.ones(3, 1))).size(), torch.Size((3, 3))) |
| |
| def test_one_hot_categorical_shape(self): |
| # unbatched |
| dist = OneHotCategorical(variable([0.6, 0.3, 0.1])) |
| self.assertEqual(dist._batch_shape, torch.Size(())) |
| self.assertEqual(dist._event_shape, torch.Size((3,))) |
| self.assertEqual(dist.sample().size(), torch.Size((3,))) |
| self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3))) |
| self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_1) |
| self.assertEqual(dist.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2,))) |
| self.assertEqual(dist.log_prob(dist.enumerate_support()).size(), torch.Size((3,))) |
| self.assertEqual(dist.log_prob(Variable(torch.ones(3, 3))).size(), torch.Size((3,))) |
| # batched |
| dist = OneHotCategorical(variable([[0.6, 0.3], [0.6, 0.3], [0.6, 0.3]])) |
| self.assertEqual(dist._batch_shape, torch.Size((3,))) |
| self.assertEqual(dist._event_shape, torch.Size((2,))) |
| self.assertEqual(dist.sample().size(), torch.Size((3, 2))) |
| self.assertEqual(dist.sample((3, 2)).size(), torch.Size((3, 2, 3, 2))) |
| self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3,))) |
| self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) |
| self.assertEqual(dist.log_prob(dist.enumerate_support()).size(), torch.Size((2, 3))) |
| self.assertEqual(dist.log_prob(Variable(torch.ones((3, 1, 2)))).size(), torch.Size((3, 3))) |
| |
| def test_cauchy_shape_scalar_params(self): |
| cauchy = Cauchy(0, 1) |
| self.assertEqual(cauchy._batch_shape, torch.Size()) |
| self.assertEqual(cauchy._event_shape, torch.Size()) |
| self.assertEqual(cauchy.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(cauchy.sample(torch.Size((3, 2))).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, cauchy.log_prob, self.scalar_sample) |
| self.assertEqual(cauchy.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(cauchy.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_cauchy_shape_tensor_params(self): |
| cauchy = Cauchy(variable([0, 0]), variable([1, 1])) |
| self.assertEqual(cauchy._batch_shape, torch.Size((2,))) |
| self.assertEqual(cauchy._event_shape, torch.Size(())) |
| self.assertEqual(cauchy.sample().size(), torch.Size((2,))) |
| self.assertEqual(cauchy.sample(torch.Size((3, 2))).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(cauchy.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, cauchy.log_prob, self.tensor_sample_2) |
| self.assertEqual(cauchy.log_prob(Variable(torch.ones(2, 1))).size(), torch.Size((2, 2))) |
| |
| def test_dirichlet_shape(self): |
| dist = Dirichlet(variable([[0.6, 0.3], [1.6, 1.3], [2.6, 2.3]])) |
| self.assertEqual(dist._batch_shape, torch.Size((3,))) |
| self.assertEqual(dist._event_shape, torch.Size((2,))) |
| self.assertEqual(dist.sample().size(), torch.Size((3, 2))) |
| self.assertEqual(dist.sample((5, 4)).size(), torch.Size((5, 4, 3, 2))) |
| self.assertEqual(dist.log_prob(self.tensor_sample_1).size(), torch.Size((3,))) |
| self.assertRaises(ValueError, dist.log_prob, self.tensor_sample_2) |
| self.assertEqual(dist.log_prob(Variable(torch.ones((3, 1, 2)))).size(), torch.Size((3, 3))) |
| |
| def test_gamma_shape_scalar_params(self): |
| gamma = Gamma(1, 1) |
| self.assertEqual(gamma._batch_shape, torch.Size()) |
| self.assertEqual(gamma._event_shape, torch.Size()) |
| self.assertEqual(gamma.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(gamma.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, gamma.log_prob, self.scalar_sample) |
| self.assertEqual(gamma.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(gamma.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_gamma_shape_tensor_params(self): |
| gamma = Gamma(variable([1, 1]), variable([1, 1])) |
| self.assertEqual(gamma._batch_shape, torch.Size((2,))) |
| self.assertEqual(gamma._event_shape, torch.Size(())) |
| self.assertEqual(gamma.sample().size(), torch.Size((2,))) |
| self.assertEqual(gamma.sample((3, 2)).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(gamma.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, gamma.log_prob, self.tensor_sample_2) |
| self.assertEqual(gamma.log_prob(Variable(torch.ones(2, 1))).size(), torch.Size((2, 2))) |
| |
| def test_chi2_shape_scalar_params(self): |
| chi2 = Chi2(1) |
| self.assertEqual(chi2._batch_shape, torch.Size()) |
| self.assertEqual(chi2._event_shape, torch.Size()) |
| self.assertEqual(chi2.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(chi2.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, chi2.log_prob, self.scalar_sample) |
| self.assertEqual(chi2.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(chi2.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_chi2_shape_tensor_params(self): |
| chi2 = Chi2(variable([1, 1])) |
| self.assertEqual(chi2._batch_shape, torch.Size((2,))) |
| self.assertEqual(chi2._event_shape, torch.Size(())) |
| self.assertEqual(chi2.sample().size(), torch.Size((2,))) |
| self.assertEqual(chi2.sample((3, 2)).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(chi2.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, chi2.log_prob, self.tensor_sample_2) |
| self.assertEqual(chi2.log_prob(Variable(torch.ones(2, 1))).size(), torch.Size((2, 2))) |
| |
| def test_studentT_shape_scalar_params(self): |
| st = StudentT(1) |
| self.assertEqual(st._batch_shape, torch.Size()) |
| self.assertEqual(st._event_shape, torch.Size()) |
| self.assertEqual(st.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(st.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, st.log_prob, self.scalar_sample) |
| self.assertEqual(st.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(st.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_studentT_shape_tensor_params(self): |
| st = StudentT(variable([1, 1])) |
| self.assertEqual(st._batch_shape, torch.Size((2,))) |
| self.assertEqual(st._event_shape, torch.Size(())) |
| self.assertEqual(st.sample().size(), torch.Size((2,))) |
| self.assertEqual(st.sample((3, 2)).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(st.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, st.log_prob, self.tensor_sample_2) |
| self.assertEqual(st.log_prob(Variable(torch.ones(2, 1))).size(), torch.Size((2, 2))) |
| |
| def test_pareto_shape_scalar_params(self): |
| pareto = Pareto(1, 1) |
| self.assertEqual(pareto._batch_shape, torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(pareto._event_shape, torch.Size()) |
| self.assertEqual(pareto.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(pareto.sample((3, 2)).size(), torch.Size((3, 2) + SCALAR_SHAPE)) |
| self.assertRaises(ValueError, pareto.log_prob, self.scalar_sample) |
| self.assertEqual(pareto.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(pareto.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_gumbel_shape_scalar_params(self): |
| gumbel = Gumbel(1, 1) |
| self.assertEqual(gumbel._batch_shape, torch.Size()) |
| self.assertEqual(gumbel._event_shape, torch.Size()) |
| self.assertEqual(gumbel.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(gumbel.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, gumbel.log_prob, self.scalar_sample) |
| self.assertEqual(gumbel.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(gumbel.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_normal_shape_scalar_params(self): |
| normal = Normal(0, 1) |
| self.assertEqual(normal._batch_shape, torch.Size()) |
| self.assertEqual(normal._event_shape, torch.Size()) |
| self.assertEqual(normal.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(normal.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, normal.log_prob, self.scalar_sample) |
| self.assertEqual(normal.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(normal.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_normal_shape_tensor_params(self): |
| normal = Normal(variable([0, 0]), variable([1, 1])) |
| self.assertEqual(normal._batch_shape, torch.Size((2,))) |
| self.assertEqual(normal._event_shape, torch.Size(())) |
| self.assertEqual(normal.sample().size(), torch.Size((2,))) |
| self.assertEqual(normal.sample((3, 2)).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(normal.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, normal.log_prob, self.tensor_sample_2) |
| self.assertEqual(normal.log_prob(Variable(torch.ones(2, 1))).size(), torch.Size((2, 2))) |
| |
| def test_uniform_shape_scalar_params(self): |
| uniform = Uniform(0, 1) |
| self.assertEqual(uniform._batch_shape, torch.Size()) |
| self.assertEqual(uniform._event_shape, torch.Size()) |
| self.assertEqual(uniform.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(uniform.sample(torch.Size((3, 2))).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, uniform.log_prob, self.scalar_sample) |
| self.assertEqual(uniform.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(uniform.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_uniform_shape_tensor_params(self): |
| uniform = Uniform(variable([0, 0]), variable([1, 1])) |
| self.assertEqual(uniform._batch_shape, torch.Size((2,))) |
| self.assertEqual(uniform._event_shape, torch.Size(())) |
| self.assertEqual(uniform.sample().size(), torch.Size((2,))) |
| self.assertEqual(uniform.sample(torch.Size((3, 2))).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(uniform.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, uniform.log_prob, self.tensor_sample_2) |
| self.assertEqual(uniform.log_prob(Variable(torch.ones(2, 1))).size(), torch.Size((2, 2))) |
| |
| def test_exponential_shape_scalar_param(self): |
| expon = Exponential(1.) |
| self.assertEqual(expon._batch_shape, torch.Size()) |
| self.assertEqual(expon._event_shape, torch.Size()) |
| self.assertEqual(expon.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(expon.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, expon.log_prob, self.scalar_sample) |
| self.assertEqual(expon.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(expon.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_exponential_shape_tensor_param(self): |
| expon = Exponential(variable([1, 1])) |
| self.assertEqual(expon._batch_shape, torch.Size((2,))) |
| self.assertEqual(expon._event_shape, torch.Size(())) |
| self.assertEqual(expon.sample().size(), torch.Size((2,))) |
| self.assertEqual(expon.sample((3, 2)).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(expon.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, expon.log_prob, self.tensor_sample_2) |
| self.assertEqual(expon.log_prob(Variable(torch.ones(2, 2))).size(), torch.Size((2, 2))) |
| |
| def test_laplace_shape_scalar_params(self): |
| laplace = Laplace(0, 1) |
| self.assertEqual(laplace._batch_shape, torch.Size()) |
| self.assertEqual(laplace._event_shape, torch.Size()) |
| self.assertEqual(laplace.sample().size(), torch.Size(SCALAR_SHAPE)) |
| self.assertEqual(laplace.sample((3, 2)).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, laplace.log_prob, self.scalar_sample) |
| self.assertEqual(laplace.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertEqual(laplace.log_prob(self.tensor_sample_2).size(), torch.Size((3, 2, 3))) |
| |
| def test_laplace_shape_tensor_params(self): |
| laplace = Laplace(variable([0, 0]), variable([1, 1])) |
| self.assertEqual(laplace._batch_shape, torch.Size((2,))) |
| self.assertEqual(laplace._event_shape, torch.Size(())) |
| self.assertEqual(laplace.sample().size(), torch.Size((2,))) |
| self.assertEqual(laplace.sample((3, 2)).size(), torch.Size((3, 2, 2))) |
| self.assertEqual(laplace.log_prob(self.tensor_sample_1).size(), torch.Size((3, 2))) |
| self.assertRaises(ValueError, laplace.log_prob, self.tensor_sample_2) |
| self.assertEqual(laplace.log_prob(Variable(torch.ones(2, 1))).size(), torch.Size((2, 2))) |
| |
| |
| class TestKL(TestCase): |
| |
| def setUp(self): |
| |
| class Binomial30(Binomial): |
| def __init__(self, probs): |
| super(Binomial30, self).__init__(30, probs) |
| |
| # These are pairs of distributions with 4 x 4 parameters as specified. |
| # The first of the pair e.g. bernoulli[0] varies column-wise and the second |
| # e.g. bernoulli[1] varies row-wise; that way we test all param pairs. |
| bernoulli = pairwise(Bernoulli, [0.1, 0.2, 0.6, 0.9]) |
| binomial30 = pairwise(Binomial30, [0.1, 0.2, 0.6, 0.9]) |
| beta = pairwise(Beta, [1.0, 2.5, 1.0, 2.5], [1.5, 1.5, 3.5, 3.5]) |
| categorical = pairwise(Categorical, [[0.4, 0.3, 0.3], |
| [0.2, 0.7, 0.1], |
| [0.33, 0.33, 0.34], |
| [0.2, 0.2, 0.6]]) |
| chi2 = pairwise(Chi2, [1.0, 2.0, 2.5, 5.0]) |
| dirichlet = pairwise(Dirichlet, [[0.1, 0.2, 0.7], |
| [0.5, 0.4, 0.1], |
| [0.33, 0.33, 0.34], |
| [0.2, 0.2, 0.4]]) |
| exponential = pairwise(Exponential, [1.0, 2.5, 5.0, 10.0]) |
| gamma = pairwise(Gamma, [1.0, 2.5, 1.0, 2.5], [1.5, 1.5, 3.5, 3.5]) |
| gumbel = pairwise(Gumbel, [-2.0, 4.0, -3.0, 6.0], [1.0, 2.5, 1.0, 2.5]) |
| laplace = pairwise(Laplace, [-2.0, 4.0, -3.0, 6.0], [1.0, 2.5, 1.0, 2.5]) |
| lognormal = pairwise(LogNormal, [-2.0, 2.0, -3.0, 3.0], [1.0, 2.0, 1.0, 2.0]) |
| normal = pairwise(Normal, [-2.0, 2.0, -3.0, 3.0], [1.0, 2.0, 1.0, 2.0]) |
| onehotcategorical = pairwise(OneHotCategorical, [[0.4, 0.3, 0.3], |
| [0.2, 0.7, 0.1], |
| [0.33, 0.33, 0.34], |
| [0.2, 0.2, 0.6]]) |
| pareto = pairwise(Pareto, [2.5, 4.0, 2.5, 4.0], [2.25, 3.75, 2.25, 3.75]) |
| poisson = pairwise(Poisson, [0.3, 1.0, 5.0, 10.0]) |
| uniform_within_unit = pairwise(Uniform, [0.15, 0.95, 0.2, 0.8], [0.1, 0.9, 0.25, 0.75]) |
| uniform_positive = pairwise(Uniform, [1, 1.5, 2, 4], [1.2, 2.0, 3, 7]) |
| uniform_real = pairwise(Uniform, [-2, -1, 0, 2], [-1, 1, 1, 4]) |
| uniform_pareto = pairwise(Uniform, [6.5, 8.5, 6.5, 8.5], [7.5, 7.5, 9.5, 9.5]) |
| |
| # These tests should pass with precision = 0.01, but that makes tests very expensive. |
| # Instead, we test with precision = 0.1 and only test with higher precision locally |
| # when adding a new KL implementation. |
| # The following pairs are not tested due to very high variance of the monte carlo |
| # estimator; their implementations have been reviewed with extra care: |
| # - (pareto, normal) |
| self.precision = 0.1 # Set this to 0.01 when testing a new KL implementation. |
| self.max_samples = int(1e07) # Increase this when testing at smaller precision. |
| self.samples_per_batch = int(1e04) |
| self.finite_examples = [ |
| (bernoulli, bernoulli), |
| (bernoulli, poisson), |
| (beta, beta), |
| (beta, chi2), |
| (beta, exponential), |
| (beta, gamma), |
| (beta, normal), |
| (binomial30, binomial30), |
| (categorical, categorical), |
| (chi2, chi2), |
| (chi2, exponential), |
| (chi2, gamma), |
| (chi2, normal), |
| (dirichlet, dirichlet), |
| (exponential, chi2), |
| (exponential, exponential), |
| (exponential, gamma), |
| (exponential, gumbel), |
| (exponential, normal), |
| (gamma, chi2), |
| (gamma, exponential), |
| (gamma, gamma), |
| (gamma, gumbel), |
| (gamma, normal), |
| (gumbel, gumbel), |
| (gumbel, normal), |
| (laplace, laplace), |
| (lognormal, lognormal), |
| (laplace, normal), |
| (normal, gumbel), |
| (normal, normal), |
| (onehotcategorical, onehotcategorical), |
| (pareto, chi2), |
| (pareto, pareto), |
| (pareto, exponential), |
| (pareto, gamma), |
| (poisson, poisson), |
| (uniform_within_unit, beta), |
| (uniform_positive, chi2), |
| (uniform_positive, exponential), |
| (uniform_positive, gamma), |
| (uniform_real, gumbel), |
| (uniform_real, normal), |
| (uniform_pareto, pareto), |
| ] |
| |
| self.infinite_examples = [ |
| (Bernoulli(0), Bernoulli(1)), |
| (Bernoulli(1), Bernoulli(0)), |
| (Categorical(variable([0.9, 0.1])), Categorical(variable([1, 0]))), |
| (Beta(1, 2), Uniform(0.25, 1)), |
| (Beta(1, 2), Uniform(0, 0.75)), |
| (Beta(1, 2), Uniform(0.25, 0.75)), |
| (Beta(1, 2), Pareto(1, 2)), |
| (Binomial(31, 0.7), Binomial(30, 0.3)), |
| (Chi2(1), Beta(2, 3)), |
| (Chi2(1), Pareto(2, 3)), |
| (Chi2(1), Uniform(-2, 3)), |
| (Exponential(1), Beta(2, 3)), |
| (Exponential(1), Pareto(2, 3)), |
| (Exponential(1), Uniform(-2, 3)), |
| (Gamma(1, 2), Beta(3, 4)), |
| (Gamma(1, 2), Pareto(3, 4)), |
| (Gamma(1, 2), Uniform(-3, 4)), |
| (Gumbel(-1, 2), Beta(3, 4)), |
| (Gumbel(-1, 2), Chi2(3)), |
| (Gumbel(-1, 2), Exponential(3)), |
| (Gumbel(-1, 2), Gamma(3, 4)), |
| (Gumbel(-1, 2), Pareto(3, 4)), |
| (Gumbel(-1, 2), Uniform(-3, 4)), |
| (Laplace(-1, 2), Beta(3, 4)), |
| (Laplace(-1, 2), Chi2(3)), |
| (Laplace(-1, 2), Exponential(3)), |
| (Laplace(-1, 2), Gamma(3, 4)), |
| (Laplace(-1, 2), Pareto(3, 4)), |
| (Laplace(-1, 2), Uniform(-3, 4)), |
| (Normal(-1, 2), Beta(3, 4)), |
| (Normal(-1, 2), Chi2(3)), |
| (Normal(-1, 2), Exponential(3)), |
| (Normal(-1, 2), Gamma(3, 4)), |
| (Normal(-1, 2), Pareto(3, 4)), |
| (Normal(-1, 2), Uniform(-3, 4)), |
| (Pareto(2, 1), Chi2(3)), |
| (Pareto(2, 1), Exponential(3)), |
| (Pareto(2, 1), Gamma(3, 4)), |
| (Pareto(1, 2), Normal(-3, 4)), |
| (Pareto(1, 2), Pareto(3, 4)), |
| (Poisson(2), Bernoulli(0.5)), |
| (Poisson(2.3), Binomial(10, 0.2)), |
| (Uniform(-1, 1), Beta(2, 2)), |
| (Uniform(0, 2), Beta(3, 4)), |
| (Uniform(-1, 2), Beta(3, 4)), |
| (Uniform(-1, 2), Chi2(3)), |
| (Uniform(-1, 2), Exponential(3)), |
| (Uniform(-1, 2), Gamma(3, 4)), |
| (Uniform(-1, 2), Pareto(3, 4)), |
| ] |
| |
| def test_kl_monte_carlo(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| for (p, _), (_, q) in self.finite_examples: |
| print('Testing KL({}, {}) using Monte Carlo'.format(type(p).__name__, type(q).__name__)) |
| actual = kl_divergence(p, q) |
| numerator = 0 |
| denominator = 0 |
| while denominator < self.max_samples: |
| x = p.sample(sample_shape=(self.samples_per_batch,)) |
| numerator += (p.log_prob(x) - q.log_prob(x)).sum(0) |
| denominator += x.size(0) |
| expected = numerator / denominator |
| error = torch.abs(expected - actual) / (1 + expected) |
| if error[error == error].max() < self.precision: |
| break |
| self.assertLess(error[error == error].max(), self.precision, '\n'.join([ |
| 'Incorrect KL({}, {}).'.format(type(p).__name__, type(q).__name__), |
| 'Expected ({} Monte Carlo samples): {}'.format(denominator, expected), |
| 'Actual (analytic): {}'.format(actual), |
| ])) |
| |
| def test_kl_exponential_family(self): |
| for (p, _), (_, q) in self.finite_examples: |
| if type(p) == type(q) and issubclass(type(p), ExponentialFamily): |
| print('Testing KL({}, {}) using Bregman Divergence'.format(type(p).__name__, type(q).__name__)) |
| actual = kl_divergence(p, q) |
| expected = _kl_expfamily_expfamily(p, q) |
| if isinstance(expected, Variable) and not isinstance(actual, Variable): |
| expected = expected.data |
| self.assertEqual(actual, expected, message='\n'.join([ |
| 'Incorrect KL({}, {}).'.format(type(p).__name__, type(q).__name__), |
| 'Expected (using Bregman Divergence) {}'.format(expected), |
| 'Actual (analytic) {}'.format(actual), |
| 'max error = {}'.format(torch.abs(actual - expected).max()) |
| ])) |
| |
| def test_kl_infinite(self): |
| for p, q in self.infinite_examples: |
| self.assertTrue((kl_divergence(p, q) == float('inf')).all(), |
| 'Incorrect KL({}, {})'.format(type(p).__name__, type(q).__name__)) |
| |
| def test_kl_edgecases(self): |
| self.assertEqual(kl_divergence(Bernoulli(0), Bernoulli(0)), 0) |
| self.assertEqual(kl_divergence(Bernoulli(1), Bernoulli(1)), 0) |
| self.assertEqual(kl_divergence(Categorical(variable([0, 1])), Categorical(variable([0, 1]))), 0) |
| |
| def test_kl_shape(self): |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| try: |
| kl = kl_divergence(dist, dist) |
| except NotImplementedError: |
| continue |
| expected_shape = dist.batch_shape if dist.batch_shape else torch.Size(SCALAR_SHAPE) |
| self.assertEqual(kl.shape, expected_shape, message='\n'.join([ |
| '{} example {}/{}'.format(Dist.__name__, i + 1, len(params)), |
| 'Expected {}'.format(expected_shape), |
| 'Actual {}'.format(kl.shape), |
| ])) |
| |
| def test_entropy_monte_carlo(self): |
| set_rng_seed(0) # see Note [Randomized statistical tests] |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| try: |
| actual = dist.entropy() |
| except NotImplementedError: |
| continue |
| x = dist.sample(sample_shape=(50000,)) |
| expected = -dist.log_prob(x).mean(0) |
| if isinstance(actual, Variable): |
| actual = actual.data |
| expected = expected.data |
| ignore = (expected == float('inf')) |
| expected[ignore] = actual[ignore] |
| self.assertEqual(actual, expected, prec=0.2, message='\n'.join([ |
| '{} example {}/{}, incorrect .entropy().'.format(Dist.__name__, i + 1, len(params)), |
| 'Expected (monte carlo) {}'.format(expected), |
| 'Actual (analytic) {}'.format(actual), |
| 'max error = {}'.format(torch.abs(actual - expected).max()), |
| ])) |
| |
| def test_entropy_exponential_family(self): |
| for Dist, params in EXAMPLES: |
| if not issubclass(Dist, ExponentialFamily): |
| continue |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| try: |
| actual = dist.entropy() |
| except NotImplementedError: |
| continue |
| try: |
| expected = ExponentialFamily.entropy(dist) |
| except NotImplementedError: |
| continue |
| if isinstance(expected, Variable) and not isinstance(actual, Variable): |
| expected = expected.data |
| self.assertEqual(actual, expected, message='\n'.join([ |
| '{} example {}/{}, incorrect .entropy().'.format(Dist.__name__, i + 1, len(params)), |
| 'Expected (Bregman Divergence) {}'.format(expected), |
| 'Actual (analytic) {}'.format(actual), |
| 'max error = {}'.format(torch.abs(actual - expected).max()) |
| ])) |
| |
| |
| class TestConstraints(TestCase): |
| def test_params_contains(self): |
| for Dist, params in EXAMPLES: |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| for name, value in param.items(): |
| if isinstance(value, numbers.Number): |
| value = torch.Tensor([value]) |
| if Dist in (Categorical, OneHotCategorical, Multinomial) and name == 'probs': |
| # These distributions accept positive probs, but elsewhere we |
| # use a stricter constraint to the simplex. |
| value = value / value.sum(-1, True) |
| try: |
| constraint = dist.params[name] |
| except KeyError: |
| continue # ignore optional parameters |
| if is_dependent(constraint): |
| continue |
| message = '{} example {}/{} parameter {} = {}'.format( |
| Dist.__name__, i + 1, len(params), name, value) |
| self.assertTrue(constraint.check(value).all(), msg=message) |
| |
| def test_support_contains(self): |
| for Dist, params in EXAMPLES: |
| self.assertIsInstance(Dist.support, Constraint) |
| for i, param in enumerate(params): |
| dist = Dist(**param) |
| value = dist.sample() |
| constraint = dist.support |
| message = '{} example {}/{} sample = {}'.format( |
| Dist.__name__, i + 1, len(params), value) |
| self.assertTrue(constraint.check(value).all(), msg=message) |
| |
| |
| class TestNumericalStability(TestCase): |
| def _test_pdf_score(self, |
| dist_class, |
| x, |
| expected_value, |
| probs=None, |
| logits=None, |
| expected_gradient=None, |
| prec=1e-5): |
| if probs is not None: |
| p = Variable(probs, requires_grad=True) |
| dist = dist_class(p) |
| else: |
| p = Variable(logits, requires_grad=True) |
| dist = dist_class(logits=p) |
| log_pdf = dist.log_prob(Variable(x)) |
| log_pdf.sum().backward() |
| self.assertEqual(log_pdf.data, |
| expected_value, |
| prec=prec, |
| message='Incorrect value for tensor type: {}. Expected = {}, Actual = {}' |
| .format(type(x), expected_value, log_pdf.data)) |
| if expected_gradient is not None: |
| self.assertEqual(p.grad.data, |
| expected_gradient, |
| prec=prec, |
| message='Incorrect gradient for tensor type: {}. Expected = {}, Actual = {}' |
| .format(type(x), expected_gradient, p.grad.data)) |
| |
| def test_bernoulli_gradient(self): |
| for tensor_type in [torch.FloatTensor, torch.DoubleTensor]: |
| self._test_pdf_score(dist_class=Bernoulli, |
| probs=tensor_type([0]), |
| x=tensor_type([0]), |
| expected_value=tensor_type([0]), |
| expected_gradient=tensor_type([0])) |
| |
| self._test_pdf_score(dist_class=Bernoulli, |
| probs=tensor_type([0]), |
| x=tensor_type([1]), |
| expected_value=tensor_type([_finfo(tensor_type([])).eps]).log(), |
| expected_gradient=tensor_type([0])) |
| |
| self._test_pdf_score(dist_class=Bernoulli, |
| probs=tensor_type([1e-4]), |
| x=tensor_type([1]), |
| expected_value=tensor_type([math.log(1e-4)]), |
| expected_gradient=tensor_type([10000])) |
| |
| # Lower precision due to: |
| # >>> 1 / (1 - torch.FloatTensor([0.9999])) |
| # 9998.3408 |
| # [torch.FloatTensor of size 1] |
| self._test_pdf_score(dist_class=Bernoulli, |
| probs=tensor_type([1 - 1e-4]), |
| x=tensor_type([0]), |
| expected_value=tensor_type([math.log(1e-4)]), |
| expected_gradient=tensor_type([-10000]), |
| prec=2) |
| |
| self._test_pdf_score(dist_class=Bernoulli, |
| logits=tensor_type([math.log(9999)]), |
| x=tensor_type([0]), |
| expected_value=tensor_type([math.log(1e-4)]), |
| expected_gradient=tensor_type([-1]), |
| prec=1e-3) |
| |
| def test_bernoulli_with_logits_underflow(self): |
| for tensor_type, lim in ([(torch.FloatTensor, -1e38), |
| (torch.DoubleTensor, -1e308)]): |
| self._test_pdf_score(dist_class=Bernoulli, |
| logits=tensor_type([lim]), |
| x=tensor_type([0]), |
| expected_value=tensor_type([0]), |
| expected_gradient=tensor_type([0])) |
| |
| def test_bernoulli_with_logits_overflow(self): |
| for tensor_type, lim in ([(torch.FloatTensor, 1e38), |
| (torch.DoubleTensor, 1e308)]): |
| self._test_pdf_score(dist_class=Bernoulli, |
| logits=tensor_type([lim]), |
| x=tensor_type([1]), |
| expected_value=tensor_type([0]), |
| expected_gradient=tensor_type([0])) |
| |
| def test_categorical_log_prob(self): |
| for tensor_type in ([torch.FloatTensor, torch.DoubleTensor]): |
| p = Variable(tensor_type([0, 1]), requires_grad=True) |
| categorical = OneHotCategorical(p) |
| log_pdf = categorical.log_prob(Variable(tensor_type([0, 1]))) |
| self.assertEqual(log_pdf.data[0], 0) |
| |
| def test_categorical_log_prob_with_logits(self): |
| for tensor_type in ([torch.FloatTensor, torch.DoubleTensor]): |
| p = Variable(tensor_type([-float('inf'), 0]), requires_grad=True) |
| categorical = OneHotCategorical(logits=p) |
| log_pdf_prob_1 = categorical.log_prob(Variable(tensor_type([0, 1]))) |
| self.assertEqual(log_pdf_prob_1.data[0], 0) |
| log_pdf_prob_0 = categorical.log_prob(Variable(tensor_type([1, 0]))) |
| self.assertEqual(log_pdf_prob_0.data[0], -float('inf'), allow_inf=True) |
| |
| def test_multinomial_log_prob(self): |
| for tensor_type in [torch.FloatTensor, torch.DoubleTensor]: |
| p = Variable(tensor_type([0, 1]), requires_grad=True) |
| s = Variable(tensor_type([0, 10])) |
| multinomial = Multinomial(10, p) |
| log_pdf = multinomial.log_prob(s) |
| self.assertEqual(log_pdf.data[0], 0) |
| |
| def test_multinomial_log_prob_with_logits(self): |
| for tensor_type in [torch.FloatTensor, torch.DoubleTensor]: |
| p = Variable(tensor_type([-float('inf'), 0]), requires_grad=True) |
| multinomial = Multinomial(10, logits=p) |
| log_pdf_prob_1 = multinomial.log_prob(Variable(tensor_type([0, 10]))) |
| self.assertEqual(log_pdf_prob_1.data[0], 0) |
| log_pdf_prob_0 = multinomial.log_prob(Variable(tensor_type([10, 0]))) |
| self.assertEqual(log_pdf_prob_0.data[0], -float('inf'), allow_inf=True) |
| |
| |
| class TestLazyLogitsInitialization(TestCase): |
| def setUp(self): |
| self.examples = [e for e in EXAMPLES if e.Dist in |
| (Categorical, OneHotCategorical, Bernoulli, Binomial, Multinomial)] |
| |
| def test_lazy_logits_initialization(self): |
| for Dist, params in self.examples: |
| param = params[0] |
| if 'probs' in param: |
| probs = param.pop('probs') |
| param['logits'] = probs_to_logits(probs) |
| dist = Dist(**param) |
| shape = (1,) if not dist.event_shape else dist.event_shape |
| dist.log_prob(Variable(torch.ones(shape))) |
| message = 'Failed for {} example 0/{}'.format(Dist.__name__, len(params)) |
| self.assertFalse('probs' in vars(dist), msg=message) |
| try: |
| dist.enumerate_support() |
| except NotImplementedError: |
| pass |
| self.assertFalse('probs' in vars(dist), msg=message) |
| batch_shape, event_shape = dist.batch_shape, dist.event_shape |
| self.assertFalse('probs' in vars(dist), msg=message) |
| |
| def test_lazy_probs_initialization(self): |
| for Dist, params in self.examples: |
| param = params[0] |
| if 'probs' in param: |
| dist = Dist(**param) |
| dist.sample() |
| message = 'Failed for {} example 0/{}'.format(Dist.__name__, len(params)) |
| self.assertFalse('logits' in vars(dist), msg=message) |
| try: |
| dist.enumerate_support() |
| except NotImplementedError: |
| pass |
| self.assertFalse('logits' in vars(dist), msg=message) |
| batch_shape, event_shape = dist.batch_shape, dist.event_shape |
| self.assertFalse('logits' in vars(dist), msg=message) |
| |
| |
| @unittest.skipIf(not TEST_NUMPY, "NumPy not found") |
| class TestAgainstScipy(TestCase): |
| def setUp(self): |
| positive_var = Variable(torch.Tensor(20,).normal_()).exp() |
| positive_var2 = Variable(torch.Tensor(20,).normal_()).exp() |
| random_var = Variable(torch.Tensor(20,).normal_()) |
| random_tensor = torch.Tensor(20,).normal_() |
| simplex_tensor = softmax(random_tensor) |
| self.distribution_pairs = [ |
| ( |
| Bernoulli(simplex_tensor), |
| scipy.stats.bernoulli(simplex_tensor) |
| ), |
| ( |
| Beta(positive_var, positive_var2), |
| scipy.stats.beta(positive_var, positive_var2) |
| ), |
| ( |
| Binomial(10, simplex_tensor), |
| scipy.stats.binom(10 * np.ones(simplex_tensor.shape), simplex_tensor) |
| ), |
| ( |
| Cauchy(random_var, positive_var), |
| scipy.stats.cauchy(loc=random_var, scale=positive_var) |
| ), |
| ( |
| Dirichlet(positive_var), |
| scipy.stats.dirichlet(positive_var) |
| ), |
| ( |
| Exponential(positive_var), |
| scipy.stats.expon(scale=positive_var.reciprocal()) |
| ), |
| ( |
| FisherSnedecor(positive_var, 4 + positive_var2), # var for df2<=4 is undefined |
| scipy.stats.f(positive_var, 4 + positive_var2) |
| ), |
| ( |
| Gamma(positive_var, positive_var2), |
| scipy.stats.gamma(positive_var, scale=positive_var2.reciprocal()) |
| ), |
| ( |
| Geometric(simplex_tensor), |
| scipy.stats.geom(simplex_tensor, loc=-1) |
| ), |
| ( |
| Gumbel(random_var, positive_var2), |
| scipy.stats.gumbel_r(random_var, positive_var2) |
| ), |
| ( |
| Laplace(random_var, positive_var2), |
| scipy.stats.laplace(random_var, positive_var2) |
| ), |
| ( |
| # Tests fail 1e-5 threshold if scale > 3 |
| LogNormal(random_var, positive_var.clamp(max=3)), |
| scipy.stats.lognorm(s=positive_var.clamp(max=3), scale=random_var.exp()) |
| ), |
| ( |
| Multinomial(10, simplex_tensor), |
| scipy.stats.multinomial(10, simplex_tensor) |
| ), |
| ( |
| Normal(random_var, positive_var2), |
| scipy.stats.norm(random_var, positive_var2) |
| ), |
| ( |
| OneHotCategorical(simplex_tensor), |
| scipy.stats.multinomial(1, simplex_tensor) |
| ), |
| ( |
| Pareto(positive_var, 2 + positive_var2), |
| scipy.stats.pareto(2 + positive_var2, scale=positive_var) |
| ), |
| ( |
| Poisson(positive_var), |
| scipy.stats.poisson(positive_var) |
| ), |
| ( |
| StudentT(2 + positive_var, random_var, positive_var2), |
| scipy.stats.t(2 + positive_var, random_var, positive_var2) |
| ), |
| ( |
| Uniform(random_var, random_var + positive_var), |
| scipy.stats.uniform(random_var, positive_var) |
| ) |
| ] |
| |
| def test_mean(self): |
| for pytorch_dist, scipy_dist in self.distribution_pairs: |
| if isinstance(pytorch_dist, Cauchy): # Cauchy distribution's mean is nan, skipping check |
| continue |
| self.assertEqual(pytorch_dist.mean, scipy_dist.mean(), allow_inf=True, message=pytorch_dist) |
| |
| def test_variance_stddev(self): |
| for pytorch_dist, scipy_dist in self.distribution_pairs: |
| if isinstance(pytorch_dist, Cauchy): # Cauchy distribution's standard deviation is nan, skipping check |
| continue |
| if isinstance(pytorch_dist, (Multinomial, OneHotCategorical)): |
| self.assertEqual(pytorch_dist.variance, np.diag(scipy_dist.cov()), message=pytorch_dist) |
| self.assertEqual(pytorch_dist.stddev, np.diag(scipy_dist.cov()) ** 0.5, message=pytorch_dist) |
| else: |
| self.assertEqual(pytorch_dist.variance, scipy_dist.var(), allow_inf=True, message=pytorch_dist) |
| self.assertEqual(pytorch_dist.stddev, scipy_dist.var() ** 0.5, message=pytorch_dist) |
| |
| def test_cdf(self): |
| for pytorch_dist, scipy_dist in self.distribution_pairs: |
| samples = pytorch_dist.sample((5,)) |
| try: |
| cdf = pytorch_dist.cdf(samples) |
| except NotImplementedError: |
| continue |
| self.assertEqual(cdf, scipy_dist.cdf(samples), message=pytorch_dist) |
| |
| def test_icdf(self): |
| for pytorch_dist, scipy_dist in self.distribution_pairs: |
| samples = Variable(torch.rand((5,) + pytorch_dist.batch_shape)) |
| try: |
| icdf = pytorch_dist.icdf(samples) |
| except NotImplementedError: |
| continue |
| self.assertEqual(icdf, scipy_dist.ppf(samples), message=pytorch_dist) |
| |
| |
| class TestTransforms(TestCase): |
| def setUp(self): |
| self.transforms = [] |
| transforms_by_cache_size = {} |
| for cache_size in [0, 1]: |
| transforms = [ |
| AbsTransform(cache_size=cache_size), |
| ExpTransform(cache_size=cache_size), |
| SigmoidTransform(cache_size=cache_size), |
| AffineTransform(Variable(torch.Tensor(5).normal_()), |
| Variable(torch.Tensor(5).normal_()), |
| cache_size=cache_size), |
| AffineTransform(Variable(torch.Tensor(4, 5).normal_()), |
| Variable(torch.Tensor(4, 5).normal_()), |
| cache_size=cache_size), |
| BoltzmannTransform(cache_size=cache_size), |
| StickBreakingTransform(cache_size=cache_size), |
| LowerCholeskyTransform(cache_size=cache_size), |
| ComposeTransform([ |
| AffineTransform(Variable(torch.Tensor(4, 5).normal_()), |
| Variable(torch.Tensor(4, 5).normal_()), |
| cache_size=cache_size), |
| ]), |
| ComposeTransform([ |
| AffineTransform(Variable(torch.Tensor(4, 5).normal_()), |
| Variable(torch.Tensor(4, 5).normal_()), |
| cache_size=cache_size), |
| ExpTransform(cache_size=cache_size), |
| ]), |
| ] |
| for t in transforms[:]: |
| transforms.append(t.inv) |
| transforms.append(identity_transform) |
| self.transforms += transforms |
| if cache_size == 0: |
| self.unique_transforms = transforms[:] |
| |
| def _generate_data(self, transform): |
| domain = transform.domain |
| codomain = transform.codomain |
| x = torch.Tensor(4, 5) |
| if domain is constraints.lower_cholesky or codomain is constraints.lower_cholesky: |
| x = torch.Tensor(6, 6) |
| x = x.normal_() |
| return x |
| elif domain is constraints.real: |
| return x.normal_() |
| elif domain is constraints.positive: |
| return x.normal_().exp() |
| elif domain is constraints.unit_interval: |
| return x.uniform_() |
| elif domain is constraints.simplex: |
| x = x.normal_().exp() |
| x /= x.sum(-1, True) |
| return x |
| raise ValueError('Unsupported domain: {}'.format(domain)) |
| |
| def test_inv_inv(self): |
| for t in self.transforms: |
| self.assertTrue(t.inv.inv is t) |
| |
| def test_equality(self): |
| transforms = self.unique_transforms |
| for x, y in product(transforms, transforms): |
| if x is y: |
| self.assertTrue(x == y) |
| self.assertFalse(x != y) |
| else: |
| self.assertFalse(x == y) |
| self.assertTrue(x != y) |
| |
| self.assertTrue(identity_transform == identity_transform.inv) |
| self.assertFalse(identity_transform != identity_transform.inv) |
| |
| def test_forward_inverse_cache(self): |
| for transform in self.transforms: |
| x = Variable(self._generate_data(transform), requires_grad=True) |
| try: |
| y = transform(x) |
| except NotImplementedError: |
| continue |
| x2 = transform.inv(y) # should be implemented at least by caching |
| y2 = transform(x2) # should be implemented at least by caching |
| if transform.bijective: |
| # verify function inverse |
| self.assertEqual(x2, x, message='\n'.join([ |
| '{} t.inv(t(-)) error'.format(transform), |
| 'x = {}'.format(x), |
| 'y = t(x) = {}'.format(y), |
| 'x2 = t.inv(y) = {}'.format(x2), |
| ])) |
| else: |
| # verify weaker function pseudo-inverse |
| self.assertEqual(y2, y, message='\n'.join([ |
| '{} t(t.inv(t(-))) error'.format(transform), |
| 'x = {}'.format(x), |
| 'y = t(x) = {}'.format(y), |
| 'x2 = t.inv(y) = {}'.format(x2), |
| 'y2 = t(x2) = {}'.format(y2), |
| ])) |
| |
| def test_forward_inverse_no_cache(self): |
| for transform in self.transforms: |
| x = Variable(self._generate_data(transform), requires_grad=True) |
| try: |
| y = transform(x) |
| x2 = transform.inv(y.clone()) # bypass cache |
| y2 = transform(x2) |
| except NotImplementedError: |
| continue |
| if transform.bijective: |
| # verify function inverse |
| self.assertEqual(x2, x, message='\n'.join([ |
| '{} t.inv(t(-)) error'.format(transform), |
| 'x = {}'.format(x), |
| 'y = t(x) = {}'.format(y), |
| 'x2 = t.inv(y) = {}'.format(x2), |
| ])) |
| else: |
| # verify weaker function pseudo-inverse |
| self.assertEqual(y2, y, message='\n'.join([ |
| '{} t(t.inv(t(-))) error'.format(transform), |
| 'x = {}'.format(x), |
| 'y = t(x) = {}'.format(y), |
| 'x2 = t.inv(y) = {}'.format(x2), |
| 'y2 = t(x2) = {}'.format(y2), |
| ])) |
| |
| def test_univariate_forward_jacobian(self): |
| for transform in self.transforms: |
| x = Variable(self._generate_data(transform), requires_grad=True) |
| try: |
| y = transform(x) |
| actual = transform.log_abs_det_jacobian(x, y) |
| except NotImplementedError: |
| continue |
| expected = torch.abs(grad([y.sum()], [x])[0]).log() |
| self.assertEqual(actual, expected, message='\n'.join([ |
| 'Bad {}.log_abs_det_jacobian() disagrees with ()'.format(transform), |
| 'Expected: {}'.format(expected), |
| 'Actual: {}'.format(actual), |
| ])) |
| |
| def test_univariate_inverse_jacobian(self): |
| for transform in self.transforms: |
| y = Variable(self._generate_data(transform.inv), requires_grad=True) |
| try: |
| x = transform.inv(y) |
| actual = transform.log_abs_det_jacobian(x, y) |
| except NotImplementedError: |
| continue |
| expected = -torch.abs(grad([x.sum()], [y])[0]).log() |
| self.assertEqual(actual, expected, message='\n'.join([ |
| '{}.log_abs_det_jacobian() disagrees with .inv()'.format(transform), |
| 'Expected: {}'.format(expected), |
| 'Actual: {}'.format(actual), |
| ])) |
| |
| def test_transform_shapes(self): |
| transform0 = ExpTransform() |
| transform1 = BoltzmannTransform() |
| transform2 = LowerCholeskyTransform() |
| |
| self.assertEqual(transform0.event_dim, 0) |
| self.assertEqual(transform1.event_dim, 1) |
| self.assertEqual(transform2.event_dim, 2) |
| self.assertEqual(ComposeTransform([transform0, transform1]).event_dim, 1) |
| self.assertEqual(ComposeTransform([transform0, transform2]).event_dim, 2) |
| self.assertEqual(ComposeTransform([transform1, transform2]).event_dim, 2) |
| |
| def test_transformed_distribution_shapes(self): |
| transform0 = ExpTransform() |
| transform1 = BoltzmannTransform() |
| transform2 = LowerCholeskyTransform() |
| base_dist0 = Normal(Variable(torch.zeros(4, 4)), Variable(torch.ones(4, 4))) |
| base_dist1 = Dirichlet(Variable(torch.ones(4, 4))) |
| examples = [ |
| ((4, 4), (), base_dist0), |
| ((4,), (4,), base_dist1), |
| ((4, 4), (), TransformedDistribution(base_dist0, [transform0])), |
| ((4,), (4,), TransformedDistribution(base_dist0, [transform1])), |
| ((4,), (4,), TransformedDistribution(base_dist0, [transform0, transform1])), |
| ((), (4, 4), TransformedDistribution(base_dist0, [transform0, transform2])), |
| ((4,), (4,), TransformedDistribution(base_dist0, [transform1, transform0])), |
| ((), (4, 4), TransformedDistribution(base_dist0, [transform1, transform2])), |
| ((), (4, 4), TransformedDistribution(base_dist0, [transform2, transform0])), |
| ((), (4, 4), TransformedDistribution(base_dist0, [transform2, transform1])), |
| ((4,), (4,), TransformedDistribution(base_dist1, [transform0])), |
| ((4,), (4,), TransformedDistribution(base_dist1, [transform1])), |
| ((), (4, 4), TransformedDistribution(base_dist1, [transform2])), |
| ((4,), (4,), TransformedDistribution(base_dist1, [transform0, transform1])), |
| ((), (4, 4), TransformedDistribution(base_dist1, [transform0, transform2])), |
| ((4,), (4,), TransformedDistribution(base_dist1, [transform1, transform0])), |
| ((), (4, 4), TransformedDistribution(base_dist1, [transform1, transform2])), |
| ((), (4, 4), TransformedDistribution(base_dist1, [transform2, transform0])), |
| ((), (4, 4), TransformedDistribution(base_dist1, [transform2, transform1])), |
| ] |
| for batch_shape, event_shape, dist in examples: |
| self.assertEqual(dist.batch_shape, batch_shape) |
| self.assertEqual(dist.event_shape, event_shape) |
| x = dist.rsample() |
| try: |
| dist.log_prob(x) # this should not crash |
| except NotImplementedError: |
| continue |
| |
| |
| class TestConstraintRegistry(TestCase): |
| def setUp(self): |
| self.constraints = [ |
| constraints.real, |
| constraints.positive, |
| constraints.greater_than(variable([-10, -2, 0, 2, 10])), |
| constraints.less_than(variable([-10, -2, 0, 2, 10])), |
| constraints.unit_interval, |
| constraints.interval(variable([-4, -2, 0, 2, 4]), |
| variable([-3, 3, 1, 5, 5])), |
| constraints.simplex, |
| constraints.lower_cholesky, |
| ] |
| |
| def test_biject_to(self): |
| for constraint in self.constraints: |
| try: |
| t = biject_to(constraint) |
| except NotImplementedError: |
| continue |
| self.assertTrue(t.bijective, "biject_to({}) is not bijective".format(constraint)) |
| x = Variable(torch.Tensor(5, 5)).normal_() |
| y = t(x) |
| self.assertTrue(constraint.check(y).all(), '\n'.join([ |
| "Failed to biject_to({})".format(constraint), |
| "x = {}".format(x), |
| "biject_to(...)(x) = {}".format(y), |
| ])) |
| x2 = t.inv(y) |
| self.assertEqual(x, x2, message="Error in biject_to({}) inverse".format(constraint)) |
| |
| def test_transform_to(self): |
| for constraint in self.constraints: |
| t = transform_to(constraint) |
| x = Variable(torch.Tensor(5, 5)).normal_() |
| y = t(x) |
| self.assertTrue(constraint.check(y).all(), "Failed to transform_to({})".format(constraint)) |
| x2 = t.inv(y) |
| y2 = t(x2) |
| self.assertEqual(y, y2, message="Error in transform_to({}) pseudoinverse".format(constraint)) |
| |
| |
| if __name__ == '__main__': |
| run_tests() |