blob: a99feed432e2fe7321a0593d19575407600a53ef [file] [log] [blame]
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
from torch.testing._internal.common_utils import TestCase, run_tests
import torch
import torch.nn as nn
import torch.nn.functional as F
import unittest
import functools
import itertools
import warnings
import math
from typing import Callable, Type
from torch.testing._internal.common_device_type import instantiate_device_type_tests, \
skipCUDAIfNoMagma, onlyOnCPUAndCUDA, onlyCPU
import types
from functools import partial, wraps
import functorch
from functorch import (
grad, vjp, vmap, jacrev, grad_and_value,
make_functional_deprecated_v1, make_functional_with_buffers_deprecated_v1, make_fx, nnc_jit, compiled_function
)
from torch.testing._internal.common_device_type import ops, onlyCPU
from functorch_lagging_op_db import functorch_lagging_op_db
from functorch_additional_op_db import additional_op_db
from common_utils import (
parameterized,
parameterized_with_device,
instantiate_parameterized_methods,
get_fallback_and_vmap_exhaustive,
opinfo_in_dict,
)
# NB: numpy is a testing dependency!
import numpy as np
class TestPythonKey(TestCase):
def test_make_fx(self, device):
def f(x):
return torch.sin(x)
inp = torch.randn(3)
fx_f = make_fx(f)(inp)
new_inp = torch.randn(3)
self.assertEqual(fx_f(new_inp), f(new_inp))
def test_make_fx_grad(self, device):
def f(x):
return torch.sin(x).sum()
inp = torch.randn(3)
f = grad(f)
fx_f = make_fx(f)(inp)
new_inp = torch.randn(3)
self.assertEqual(fx_f(new_inp), f(new_inp))
def test_make_fx_vmap(self, device):
def f(x):
return torch.sin(x)
inp = torch.randn(5, 3)
f = vmap(f)
fx_f = make_fx(f)(inp)
new_inp = torch.randn(5, 3)
self.assertEqual(fx_f(new_inp), f(new_inp))
def test_make_fx_jacrev(self, device):
def f(x):
return x.sin().sum()
inp = torch.randn(3)
f = jacrev(jacrev(f))
fx_f = make_fx(f)(inp)
new_inp = torch.randn(3)
self.assertEqual(fx_f(new_inp), f(new_inp))
def test_make_fx_jvp(self, device):
def f(x):
return torch.sin(x).sum()
primals = torch.randn(3)
_, vjp_fn = vjp(f, primals)
cotangent = torch.randn(())
fx_f = make_fx(vjp_fn)(cotangent, True, True)
new_cotangent = torch.randn(())
self.assertEqual(fx_f(new_cotangent, True, True), vjp_fn(new_cotangent))
def test_nnc_jit(self, device):
def f(x):
return torch.sin(x)
jit_f = nnc_jit(f)
inp = torch.randn(3)
self.assertEqual(jit_f(inp), f(inp))
def test_nnc_jit_warns_on_recompilation(self, device):
def f(x):
return torch.sin(x)
jit_f = nnc_jit(f)
inp = torch.randn(3)
jit_f(inp)
inp2 = torch.randn(5)
with warnings.catch_warnings(record=True) as warns:
warnings.simplefilter("always")
jit_f(inp2)
self.assertEqual(len(warns), 1)
self.assertTrue("Recompiling" in str(warns[-1].message))
def test_nnc_scalar(self, device):
def f(x):
return torch.sin(x)
jit_f = nnc_jit(f)
inp = torch.randn(())
self.assertEqual(jit_f(inp), f(inp))
def test_nnc_pytrees(self, device):
def f(x):
return [torch.sin(x[0])]
jit_f = nnc_jit(f)
inp = [torch.randn(3)]
self.assertEqual(jit_f(inp), f(inp))
def test_external_calls(self, device):
def f(a, b):
return torch.mv(a, b)
jit_f = nnc_jit(f)
inp = [torch.randn(3, 3), torch.randn(3)]
self.assertEqual(jit_f(*inp), f(*inp))
def test_nnc_passthrough(self, device):
def f(x, y):
return x + y, y
inp = (torch.randn(3), torch.randn(3))
jit_f = nnc_jit(f)
self.assertEqual(jit_f(*inp), f(*inp))
def f(x):
x['a'] = x['a'] * 2
return x
inp = ({'a': torch.randn(3), 'b': torch.randn(3)},)
jit_f = nnc_jit(f)
self.assertEqual(jit_f(*inp), f(*inp))
class TestPythonKeyOperatorsOpInfo(TestCase):
@ops(functorch_lagging_op_db + additional_op_db, allowed_dtypes=(torch.float,))
def test_make_fx_exhaustive(self, device, dtype, op):
# These are ops that don't make sense to test
op_skip = {
}
# Unsupported input types
if opinfo_in_dict(op, op_skip):
return
# entries in here need don't work and need to be fixed.
# Each one of these is a bug
python_fail = {
'to_sparse',
'rsub.rsub_scalar',
'linalg.matrix_power',
'linalg.inv',
'linalg.cholesky',
'linalg.eigvals',
'nn.functional.pad.circular',
}
if opinfo_in_dict(op, python_fail):
return
def f(args, kwargs):
return op.op(*args, **kwargs)
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=False)
new_f = None
for sample_input in sample_inputs_itr:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
t = f(args, kwargs)
# just since pytrees with torch.return_types doesn't work
if isinstance(t, tuple):
continue
new_f = make_fx(f)(args, kwargs)
for arg in args:
if isinstance(arg, torch.Tensor) and arg.dtype == torch.float:
arg.uniform_(0, 1)
try:
old_out = f(args, kwargs)
except:
continue
new_out = new_f(args, kwargs)
self.assertEqual(new_out, old_out)
pass
class TestEagerFusionOpInfo(TestCase):
@ops(functorch_lagging_op_db + additional_op_db, allowed_dtypes=(torch.float,))
def test_eager_compilation_exhaustive(self, device, dtype, op):
# These are ops that don't make sense to test
op_skip = {
}
# Unsupported input types
if opinfo_in_dict(op, op_skip):
return
# entries in here need don't work and need to be fixed.
# Each one of these is a bug
python_fail = {
'var',
'std',
'sort',
'prod',
'to_sparse',
'rsub.rsub_scalar',
'linalg.matrix_power',
'linalg.inv',
'linalg.cholesky',
'linalg.eigvals',
'tensor_split',
'nn.functional.pad.circular',
}
if opinfo_in_dict(op, python_fail):
return
def f(args, kwargs):
return op.op(*args, **kwargs)
if not op.supports_autograd:
return
sample_inputs_itr = op.sample_inputs(device, dtype, requires_grad=True)
new_f = None
for sample_input in sample_inputs_itr:
args = [sample_input.input] + list(sample_input.args)
kwargs = sample_input.kwargs
if not all([isinstance(i, torch.Tensor) and i.dtype == torch.float for i in args]):
continue
if not all([isinstance(i, torch.Tensor) and i.dtype == torch.float for i in kwargs.values()]):
continue
t = f(args, kwargs)
if isinstance(t, tuple):
continue
compiled_f = compiled_function(f, lambda x,_: x, lambda x,_: x).apply
compiled_f(args, kwargs)
only_for = ("cpu")
instantiate_device_type_tests(
TestPythonKey,
globals(),
only_for=only_for,
)
instantiate_device_type_tests(TestPythonKeyOperatorsOpInfo, globals(), only_for=only_for)
instantiate_device_type_tests(TestEagerFusionOpInfo, globals(), only_for=only_for)
if __name__ == '__main__':
run_tests()