blob: 7b5bec762a87e8f787d62923148c9dfb67bfbccb [file] [log] [blame]
from typing import Dict, Set, Optional, Tuple, List
import yaml
from dataclasses import dataclass
from tools.codegen.model import NativeFunction
from tools.codegen.selective_build.operator import (
SelectiveBuildOperator, merge_debug_info, merge_operator_dicts,
strip_operator_overload_name)
# A SelectiveBuilder holds information extracted from the selective build
# YAML specification.
#
# It includes information about the build's selectivity, the debug_info
# associated with this selective build (opaque string), and the set of
# operators that should be included in the build.
#
@dataclass(frozen=True)
class SelectiveBuilder:
# If true, then the build is not selective, and includes all
# operators.
include_all_operators: bool
# Debug Information at the selective/custom build level.
_debug_info: Optional[Tuple[str, ...]]
# A dictionary of operator -> operator metadata.
operators: Dict[str, SelectiveBuildOperator]
# A dictionary of selected kernel tags and dtypes. Typically a
# PyTorch Operator Kernel (function) may have many code paths
# that are specialized for many many Tensor dtypes, so it's not
# one per kernel function, but there could be many per kernel
# function. The tag isn't a kernel function name, but some fragment
# of the kernel function implementation itself.
kernel_metadata: Dict[str, List[str]]
# A set of all the custom torch bind classes used by the selected models
# Stored as a set internally to remove duplicates proactively, but written
# as a list to yamls
custom_classes: Set[str]
# If true, then fragments for all dtypes for all kernel functions
# are included as well as all custom classes. This is typically set when any one of the
# operator lists is generated from a mechanism other than
# tracing based selective build.
include_all_non_op_selectives: bool
@staticmethod
def get_nop_selector() -> 'SelectiveBuilder':
return SelectiveBuilder.from_yaml_dict({'include_all_operators': True})
@staticmethod
def from_yaml_dict(data: Dict[str, object]) -> 'SelectiveBuilder':
valid_top_level_keys = {
'include_all_non_op_selectives',
'include_all_operators',
'debug_info',
'operators',
'kernel_metadata',
'custom_classes',
}
top_level_keys = set(data.keys())
if len(top_level_keys - valid_top_level_keys) > 0:
raise Exception("Got unexpected top level keys: {}".format(
",".join(top_level_keys - valid_top_level_keys),
))
include_all_operators = data.get('include_all_operators', False)
assert isinstance(include_all_operators, bool)
debug_info = None
if 'debug_info' in data:
di_list = data['debug_info']
assert isinstance(di_list, list)
debug_info = tuple(map(lambda x: str(x), di_list))
operators = {}
operators_dict = data.get('operators', {})
assert isinstance(operators_dict, dict)
for (k, v) in operators_dict.items():
operators[k] = SelectiveBuildOperator.from_yaml_dict(k, v)
kernel_metadata = {}
kernel_metadata_dict = data.get('kernel_metadata', {})
assert isinstance(kernel_metadata_dict, dict)
for (k, v) in kernel_metadata_dict.items():
kernel_metadata[str(k)] = list(map(lambda dtype: str(dtype), v))
custom_classes = data.get('custom_classes', [])
custom_classes = set(custom_classes) # type: ignore[arg-type]
include_all_non_op_selectives = data.get('include_all_non_op_selectives', False)
assert isinstance(include_all_non_op_selectives, bool)
return SelectiveBuilder(
include_all_operators,
debug_info,
operators,
kernel_metadata,
custom_classes, # type: ignore[arg-type]
include_all_non_op_selectives,
)
@staticmethod
def from_yaml_str(config_contents: str) -> 'SelectiveBuilder':
contents = yaml.safe_load(config_contents)
return SelectiveBuilder.from_yaml_dict(contents)
@staticmethod
def from_yaml_path(config_path: str) -> 'SelectiveBuilder':
with open(config_path, 'r') as f:
contents = yaml.safe_load(f)
return SelectiveBuilder.from_yaml_dict(contents)
@staticmethod
def from_legacy_op_registration_allow_list(
allow_list: Set[str],
is_root_operator: bool,
is_used_for_training: bool) -> 'SelectiveBuilder':
operators = {}
for op in allow_list:
operators[op] = {
'name': op,
'is_root_operator': is_root_operator,
'is_used_for_training': is_used_for_training,
'include_all_overloads': True,
}
return SelectiveBuilder.from_yaml_dict({
'operators': operators,
'include_all_non_op_selectives': True,
})
def is_operator_selected(self, name: str) -> bool:
if self.include_all_operators:
return True
if name in self.operators:
return True
name = strip_operator_overload_name(name)
return name in self.operators and self.operators[name].include_all_overloads
def is_native_function_selected(self, func: NativeFunction) -> bool:
op_name = op_name_from_native_function(func)
return self.is_operator_selected(op_name)
def is_operator_selected_for_training(self, name: str) -> bool:
if not self.is_operator_selected(name):
return False
if self.include_all_operators:
return True
not_training_op = SelectiveBuildOperator(
name='',
is_root_operator=False,
is_used_for_training=False,
include_all_overloads=False,
_debug_info=None,
)
op = not_training_op
if name in self.operators:
op = self.operators[name]
name = strip_operator_overload_name(name)
base_op = not_training_op
if name in self.operators:
base_op = self.operators[name]
return (
op.is_used_for_training or
(base_op.include_all_overloads and base_op.is_used_for_training)
)
def is_native_function_selected_for_training(self, func: NativeFunction) -> bool:
op_name = op_name_from_native_function(func)
return self.is_operator_selected_for_training(op_name)
def is_root_operator(self, name: str) -> bool:
if not self.is_operator_selected(name):
return False
if self.include_all_operators:
return True
if name in self.operators:
op: SelectiveBuildOperator = self.operators[name]
return op.is_root_operator
name = strip_operator_overload_name(name)
if name not in self.operators:
return False
base_op: SelectiveBuildOperator = self.operators[name]
return base_op.include_all_overloads and base_op.is_root_operator
def is_kernel_dtype_selected(self, kernel_tag: str, dtype: str) -> bool:
if self.include_all_operators or self.include_all_non_op_selectives:
return True
return kernel_tag in self.kernel_metadata and dtype in self.kernel_metadata[kernel_tag]
def to_dict(self) -> Dict[str, object]:
ret: Dict[str, object] = {
'include_all_non_op_selectives': self.include_all_non_op_selectives,
'include_all_operators': self.include_all_operators,
}
operators = {}
for (op_name, op) in self.operators.items():
operators[op_name] = op.to_dict()
ret['operators'] = operators
if self._debug_info is not None:
ret['debug_info'] = sorted(self._debug_info)
ret['kernel_metadata'] = {k: sorted(list(v)) for (k, v) in self.kernel_metadata.items()}
ret['custom_classes'] = sorted(self.custom_classes)
return ret
def merge_kernel_metadata(
lhs: Dict[str, List[str]],
rhs: Dict[str, List[str]],
) -> Dict[str, List[str]]:
kernel_metadata: Dict[str, List[str]] = {}
for (tag_name, dtypes) in list(lhs.items()) + list(rhs.items()):
dtypes_copy = set(dtypes)
if tag_name in kernel_metadata:
dtypes_copy |= set(kernel_metadata[tag_name])
kernel_metadata[tag_name] = list(dtypes_copy)
return kernel_metadata
def combine_selective_builders(lhs: SelectiveBuilder, rhs: SelectiveBuilder) -> SelectiveBuilder:
include_all_operators = lhs.include_all_operators or rhs.include_all_operators
debug_info = merge_debug_info(lhs._debug_info, rhs._debug_info)
operators = merge_operator_dicts(lhs.operators, rhs.operators)
kernel_metadata = merge_kernel_metadata(lhs.kernel_metadata, rhs.kernel_metadata)
include_all_non_op_selectives = lhs.include_all_non_op_selectives or rhs.include_all_non_op_selectives
custom_classes = lhs.custom_classes.union(rhs.custom_classes)
return SelectiveBuilder(
include_all_operators,
debug_info,
operators,
kernel_metadata,
custom_classes,
include_all_non_op_selectives,
)
def op_name_from_native_function(f: NativeFunction) -> str:
# This was originally read from the 'operator_name_with_overload' field in the
# declaration dict, which was the part before the first '(' in 'schema_string'.
return f'aten::{f.func.name}'