| #ifndef CAFFE2_OPERATORS_TT_LINEAR_OP_H_ |
| #define CAFFE2_OPERATORS_TT_LINEAR_OP_H_ |
| |
| #ifdef CAFFE2_USE_MKL |
| #include <mkl.h> |
| #endif // CAFFE2_USE_MKL |
| |
| #include "Eigen/Core" |
| #include "Eigen/Dense" |
| #include "caffe2/core/context.h" |
| #include "caffe2/core/operator.h" |
| #include "caffe2/utils/eigen_utils.h" |
| #include "caffe2/utils/math.h" |
| |
| namespace caffe2 { |
| |
| template <typename T, class Context, class Engine = DefaultEngine> |
| class TTLinearOp final : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| TTLinearOp(const OperatorDef& operator_def, Workspace* ws) |
| : Operator<Context>(operator_def, ws), |
| inp_sizes_(this->template GetRepeatedArgument<int>("inp_sizes")), |
| out_sizes_(this->template GetRepeatedArgument<int>("out_sizes")), |
| tt_ranks_(this->template GetRepeatedArgument<int>("tt_ranks")), |
| Y_temp_(unique_ptr<Blob>(new Blob())) {} |
| ~TTLinearOp() {} |
| |
| bool RunOnDevice() override { |
| const auto& X = Input(0); // Input array |
| const auto& b = Input(1); // Bias array |
| const auto& cores = Input(2); // 1D array containing the TT-cores |
| auto* Y = Output(0); |
| |
| CAFFE_ENFORCE(X.ndim() > 1, "Number of dimensions in X: ", X.ndim()); |
| CAFFE_ENFORCE(b.ndim() == 1, "Number of dimensions in b: ", b.ndim()); |
| CAFFE_ENFORCE( |
| inp_sizes_.size() == out_sizes_.size(), |
| "inp_sizes has size: ", |
| inp_sizes_.size(), |
| ", out_sizes has size: ", |
| out_sizes_.size()); |
| CAFFE_ENFORCE( |
| cores.ndim() == 1, "Number of dimensions in cores: ", cores.ndim()); |
| // batch size |
| const int batch_size = X.ndim() > 1 ? X.dim32(0) : 1; |
| |
| // dimension d of tensors |
| const int d = inp_sizes_.size(); |
| |
| // Keep track of index of current core in multiplication |
| int cores_idx = 0; |
| |
| // Temporary buffer to facilitate multiplication of TT-cores with input |
| auto Y_buf = BlobGetMutableTensor(Y_temp_.get(), Context::GetDeviceType()); |
| Y_buf->ResizeLike(X); |
| Y_buf->CopyFrom(X); |
| |
| // The overall forward pass involves multiplication with each core, where |
| // each core has sizes dictated by inp_sizes_ and out_sizes_. Each core thus |
| // has size inp_sizes_[i] * tt_ranks_[i] * tt_ranks_[i + 1] * out_sizes_[i]. |
| for (int i = (d - 1); i >= 0; --i) { |
| int curr_rows = inp_sizes_[i] * tt_ranks_[i + 1]; |
| int curr_cols = tt_ranks_[i] * out_sizes_[i]; |
| |
| // TODO Replace by Reshape(), once wrappers are written |
| Y_buf->Resize(Y_buf->size() / curr_rows, curr_rows); |
| Y->Resize(Y_buf->size() / curr_rows, curr_cols); |
| |
| // Defensive checks |
| CAFFE_ENFORCE(Y_buf->size() % curr_rows == 0, Y_buf->size(), curr_rows); |
| CAFFE_ENFORCE( |
| cores_idx + curr_rows * curr_cols <= cores.size(), |
| cores_idx + curr_rows * curr_cols, |
| cores.size()); |
| |
| // Multiply ith core with the intermediate output |
| math::Gemm<float, Context, Engine>( |
| CblasNoTrans, |
| CblasNoTrans, |
| Y_buf->size() / curr_rows, |
| curr_cols, |
| curr_rows, |
| 1, |
| Y_buf->template data<float>(), |
| cores.template data<float>() + cores_idx, |
| 0, |
| Y->template mutable_data<float>(), |
| &context_); |
| |
| CAFFE_ENFORCE(Y->size() % out_sizes_[i] == 0, Y->size(), out_sizes_[i]); |
| |
| // TODO Add GPU support by writing a generic wrapper. |
| auto Y_mat = EigenMatrixMap<float>( |
| Y->template mutable_data<float>(), |
| Y->size() / out_sizes_[i], |
| out_sizes_[i]); |
| Y_mat = ConstEigenMatrixMap<float>( |
| Y->template data<float>(), |
| out_sizes_[i], |
| Y->size() / out_sizes_[i]) |
| .transpose() |
| .eval(); |
| |
| // Resize operation |
| Y_buf->Resize(Y->dim32(0), Y->dim32(1)); |
| context_.template CopyFromCPU<float>( |
| Y->size(), |
| Y->template data<float>(), |
| Y_buf->template mutable_data<float>()); |
| |
| cores_idx += curr_rows * curr_cols; |
| } |
| |
| // TODO Add GPU support by writing a generic wrapper. |
| auto Y_mat = EigenMatrixMap<float>( |
| Y->template mutable_data<float>(), batch_size, Y->size() / batch_size); |
| Y_mat = ConstEigenMatrixMap<float>( |
| Y->template data<float>(), Y->size() / batch_size, batch_size) |
| .transpose() |
| .eval(); |
| // TODO Replace by Reshape(), once wrappers are written |
| Y->Resize(batch_size, Y->size() / batch_size); |
| |
| // Check that output size of Y is the element-wise product of out_sizes |
| int prod_out_sizes = 1; |
| for (int i = 0; i < out_sizes_.size(); i++) { |
| prod_out_sizes *= out_sizes_[i]; |
| } |
| CAFFE_ENFORCE( |
| Y->dim32(1) == prod_out_sizes, |
| "Output dimension of Y: ", |
| Y->dim32(1), |
| ", product of out_sizes: ", |
| prod_out_sizes); |
| |
| // Add bias term |
| if (bias_multiplier_.size() != batch_size) { |
| // If the helper bias multiplier is not M, reshape and fill it with one. |
| bias_multiplier_.Resize(batch_size); |
| math::Set<T, Context>( |
| batch_size, |
| static_cast<T>(1), |
| bias_multiplier_.template mutable_data<T>(), |
| &context_); |
| } |
| math::Gemm<T, Context, Engine>( |
| CblasNoTrans, |
| CblasNoTrans, |
| Y->dim32(0), |
| Y->dim32(1), |
| 1, |
| 1, |
| bias_multiplier_.template data<T>(), |
| b.template data<T>(), |
| 1, |
| Y->template mutable_data<T>(), |
| &context_); |
| return true; |
| } |
| |
| protected: |
| Tensor bias_multiplier_{Context::GetDeviceType()}; |
| std::vector<int> inp_sizes_; |
| std::vector<int> out_sizes_; |
| std::vector<int> tt_ranks_; |
| std::unique_ptr<Blob> Y_temp_; |
| }; |
| |
| // TODO: Complete after verifying utility of TT-layer's forward pass. |
| template <typename T, class Context, class Engine = DefaultEngine> |
| class TTLinearGradientOp : public Operator<Context> { |
| public: |
| USE_OPERATOR_CONTEXT_FUNCTIONS; |
| TTLinearGradientOp(const OperatorDef& operator_def, Workspace* ws) |
| : Operator<Context>(operator_def, ws) {} |
| ~TTLinearGradientOp() {} |
| |
| bool RunOnDevice() override { |
| return false; |
| } |
| |
| protected: |
| Tensor bias_multiplier_{Context::GetDeviceType()}; |
| }; |
| |
| } // namespace caffe2 |
| |
| #endif // CAFFE2_OPERATORS_TT_LINEAR_OP_H_ |