blob: 4c5a984d5ba3e2d51036ad5f36d87a12ab5c60e4 [file] [log] [blame]
#ifndef CAFFE2_OPERATORS_RESHAPE_OP_H_
#define CAFFE2_OPERATORS_RESHAPE_OP_H_
#include "caffe2/core/common_omp.h"
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// Takes a shape and data tensor and reshapes it
template <typename F, class Context>
class ReshapeOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
ReshapeOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
new_shape_(this->template GetRepeatedArgument<int64_t>("shape")) {}
bool RunOnDevice() override {
if (InputSize() == 2) {
return DispatchHelper<TensorTypes<int, int64_t>>::call(this, Input(1));
}
CAFFE_ENFORCE(
OperatorBase::HasArgument("shape"), "Argument `shape` is missing.");
return this->template DoRunWithType<int64_t>();
}
template <typename T>
bool DoRunWithType() {
DoRunWithTypeImpl<T>(Input(0), Output(0));
return true;
}
protected:
template <typename T>
void DoRunWithTypeImpl(const Tensor& input, Tensor* output) {
vector<int64_t> actual_new_shape = new_shape_;
if (InputSize() == 2) {
CAFFE_ENFORCE(
!OperatorBase::HasArgument("shape"),
"New shape is specified by the input blob, do not pass in "
"the argument `shape`.");
auto& shape = Input(1);
CAFFE_ENFORCE(shape.ndim() == 1, "Shape should be 1-D");
const T* shape_data = shape.template data<T>();
// Bit awkward, but needed so works on both CPU and CUDA contexts
std::vector<T> tmpv(shape.size());
context_.CopyBytesToCPU(shape.size() * sizeof(T), shape_data, &tmpv[0]);
actual_new_shape.assign(tmpv.begin(), tmpv.begin() + shape.size());
}
// Copy over the dimensions for those that are specified zero.
for (int i = 0; i < actual_new_shape.size() && i < input.ndim(); ++i) {
if (actual_new_shape[i] == 0) {
actual_new_shape[i] = input.dim(i);
}
}
// Checks if the new shape is valid and fills in the missing dimension
// specified by -1.
// NOTE: At most one dimension can be -1.
auto total_size = input.numel();
T size = 1;
int unknown_idx = -1;
for (int i = 0; i < actual_new_shape.size(); ++i) {
const auto dim = actual_new_shape[i];
if (dim == -1) {
CAFFE_ENFORCE(
unknown_idx == -1,
"Argument `shape` has more than one missing dimension.");
unknown_idx = i;
} else {
size *= dim;
}
}
if (size == 0 && total_size != 0) {
CAFFE_THROW("Can not reshape a non-zero size (", total_size, ") tensor to zero size.");
}
if (unknown_idx != -1) {
CAFFE_ENFORCE_NE(
size,
0,
"New shape at dim ",
unknown_idx,
" can not be inferred since new size is zero.");
CAFFE_ENFORCE(
total_size % size == 0,
"Argument `shape` does not agree with the input data.",
" (",
total_size,
" vs ",
size,
")");
actual_new_shape[unknown_idx] = total_size / size;
} else {
CAFFE_ENFORCE_EQ(
total_size,
size,
"Argument `shape` does not agree with the input data.",
" (",
total_size,
" != ",
size,
")");
}
// Write the original shape to the second output.
auto* old_shape = Output(1);
old_shape->Resize(input.ndim());
T* old_shape_data = old_shape->template mutable_data<T>();
for (int i = 0; i < input.ndim(); ++i) {
math::Set<T, Context>(1, input.dim(i), old_shape_data + i, &context_);
}
output->Resize(actual_new_shape);
if (output != &input) {
// If we are not doing in-place computation, a copy is needed.
context_.CopyItemsSameDevice(
input.meta(),
input.size(),
input.raw_data(),
output->raw_mutable_data(input.meta()));
}
}
private:
vector<int64_t> new_shape_;
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_RESHAPE_OP_H_