| import warnings |
| import torch |
| from torch._six import inf |
| from typing import Union, Iterable |
| |
| _tensor_or_tensors = Union[torch.Tensor, Iterable[torch.Tensor]] |
| |
| |
| def clip_grad_norm_(parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.0) -> torch.Tensor: |
| r"""Clips gradient norm of an iterable of parameters. |
| |
| The norm is computed over all gradients together, as if they were |
| concatenated into a single vector. Gradients are modified in-place. |
| |
| Args: |
| parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
| single Tensor that will have gradients normalized |
| max_norm (float or int): max norm of the gradients |
| norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for |
| infinity norm. |
| |
| Returns: |
| Total norm of the parameters (viewed as a single vector). |
| """ |
| if isinstance(parameters, torch.Tensor): |
| parameters = [parameters] |
| parameters = [p for p in parameters if p.grad is not None] |
| max_norm = float(max_norm) |
| norm_type = float(norm_type) |
| if len(parameters) == 0: |
| return torch.tensor(0.) |
| device = parameters[0].grad.device |
| if norm_type == inf: |
| total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters) |
| else: |
| total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) |
| clip_coef = max_norm / (total_norm + 1e-6) |
| if clip_coef < 1: |
| for p in parameters: |
| p.grad.detach().mul_(clip_coef.to(p.grad.device)) |
| return total_norm |
| |
| |
| def clip_grad_norm(parameters: _tensor_or_tensors, max_norm: float, norm_type: float = 2.) -> torch.Tensor: |
| r"""Clips gradient norm of an iterable of parameters. |
| |
| .. warning:: |
| This method is now deprecated in favor of |
| :func:`torch.nn.utils.clip_grad_norm_`. |
| """ |
| warnings.warn("torch.nn.utils.clip_grad_norm is now deprecated in favor " |
| "of torch.nn.utils.clip_grad_norm_.", stacklevel=2) |
| return clip_grad_norm_(parameters, max_norm, norm_type) |
| |
| |
| def clip_grad_value_(parameters: _tensor_or_tensors, clip_value: float) -> None: |
| r"""Clips gradient of an iterable of parameters at specified value. |
| |
| Gradients are modified in-place. |
| |
| Args: |
| parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a |
| single Tensor that will have gradients normalized |
| clip_value (float or int): maximum allowed value of the gradients. |
| The gradients are clipped in the range |
| :math:`\left[\text{-clip\_value}, \text{clip\_value}\right]` |
| """ |
| if isinstance(parameters, torch.Tensor): |
| parameters = [parameters] |
| clip_value = float(clip_value) |
| for p in filter(lambda p: p.grad is not None, parameters): |
| p.grad.data.clamp_(min=-clip_value, max=clip_value) |