| import torch.nn as nn |
| import torch.nn.functional as F |
| from torch.nn.intrinsic import LinearReLU |
| |
| class Linear(nn.Linear): |
| r""" |
| A linear module attached with FakeQuantize modules for weight, |
| used for quantization aware training. |
| |
| We adopt the same interface as `torch.nn.Linear`, please see |
| https://pytorch.org/docs/stable/nn.html#torch.nn.Linear |
| for documentation. |
| |
| Similar to `torch.nn.Linear`, with FakeQuantize modules initialized to |
| default. |
| |
| Attributes: |
| weight: fake quant module for weight |
| """ |
| _FLOAT_MODULE = nn.Linear |
| |
| def __init__(self, in_features, out_features, bias=True, |
| qconfig=None): |
| super().__init__(in_features, out_features, bias) |
| assert qconfig, 'qconfig must be provided for QAT module' |
| self.qconfig = qconfig |
| self.weight_fake_quant = qconfig.weight() |
| |
| def forward(self, input): |
| return F.linear(input, self.weight_fake_quant(self.weight), self.bias) |
| |
| @classmethod |
| def from_float(cls, mod): |
| r"""Create a qat module from a float module or qparams_dict |
| |
| Args: `mod` a float module, either produced by torch.quantization utilities |
| or directly from user |
| """ |
| assert type(mod) == cls._FLOAT_MODULE, ' qat.' + cls.__name__ + '.from_float only works for ' + \ |
| cls._FLOAT_MODULE.__name__ |
| assert hasattr(mod, 'qconfig'), 'Input float module must have qconfig defined' |
| assert mod.qconfig, 'Input float module must have a valid qconfig' |
| if type(mod) == LinearReLU: |
| mod = mod[0] |
| |
| qconfig = mod.qconfig |
| qat_linear = cls(mod.in_features, mod.out_features, bias=mod.bias is not None, qconfig=qconfig) |
| qat_linear.weight = mod.weight |
| qat_linear.bias = mod.bias |
| return qat_linear |