blob: 5ebf967d6c77a0d5200c17eb0e0bd142aa9d857e [file] [log] [blame]
import torch
import time
import argparse
from common import SubTensor, WithTorchFunction, SubWithTorchFunction
NUM_REPEATS = 1000
NUM_REPEAT_OF_REPEATS = 1000
def bench(t1, t2):
bench_times = []
for _ in range(NUM_REPEAT_OF_REPEATS):
time_start = time.time()
for _ in range(NUM_REPEATS):
torch.add(t1, t2)
bench_times.append(time.time() - time_start)
bench_time = float(torch.min(torch.Tensor(bench_times))) / 1000
bench_std = float(torch.std(torch.Tensor(bench_times))) / 1000
return bench_time, bench_std
def main():
global NUM_REPEATS
global NUM_REPEAT_OF_REPEATS
parser = argparse.ArgumentParser(
description="Run the __torch_function__ benchmarks."
)
parser.add_argument(
"--nreps",
"-n",
type=int,
default=NUM_REPEATS,
help="The number of repeats for one measurement.",
)
parser.add_argument(
"--nrepreps",
"-m",
type=int,
default=NUM_REPEAT_OF_REPEATS,
help="The number of measurements.",
)
args = parser.parse_args()
NUM_REPEATS = args.nreps
NUM_REPEAT_OF_REPEATS = args.nrepreps
types = torch.Tensor, SubTensor, WithTorchFunction, SubWithTorchFunction
for t in types:
tensor_1 = t(1)
tensor_2 = t(2)
bench_min, bench_std = bench(tensor_1, tensor_2)
print(
"Type {0} had a minimum time of {1} us"
" and a standard deviation of {2} us.".format(
t.__name__, (10 ** 6 * bench_min), (10 ** 6) * bench_std
)
)
if __name__ == "__main__":
main()