| # EDITING THIS FILE? READ THIS FIRST! |
| # see Note [Edit Symbolic Files] in symbolic_helper.py |
| |
| # This file exports ONNX ops for opset 14 |
| import torch |
| |
| import torch.onnx.symbolic_helper as sym_help |
| from torch.onnx.symbolic_helper import parse_args, args_have_same_dtype |
| |
| # Note [ONNX operators that are added/updated in opset 14] |
| # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| # New operators: |
| # HardSwish, Trilu |
| # |
| # Updated operators: |
| # Reshape |
| # Add, Sub, Mul, Div |
| # GRU, LSTM, RNN |
| # BatchNorm, Cumsum, Relu |
| |
| @parse_args("v") |
| def hardswish(g, self): |
| return g.op("HardSwish", self) |
| |
| @parse_args("v", "i") |
| def tril(g, self, diagonal, out=None): |
| k = g.op("Constant", value_t=torch.tensor(diagonal, dtype=torch.int64)) |
| return g.op("Trilu", self, k, upper_i=0) |
| |
| @parse_args("v", "i") |
| def triu(g, self, diagonal, out=None): |
| k = g.op("Constant", value_t=torch.tensor(diagonal, dtype=torch.int64)) |
| return g.op("Trilu", self, k, upper_i=1) |
| |
| @parse_args("v", "v") |
| def reshape(g, self, shape): |
| # NOTE: Due to bug in ORT https://github.com/microsoft/onnxruntime/issues/10664 |
| # Reshape export cannot utilize the new allowzero attribute introduced in opset 14. |
| return sym_help._reshape_helper(g, self, shape, allowzero=0) |
| |
| @parse_args("v", "v", "v", "v", "v", "i", "f", "f", "i") |
| def batch_norm(g, input, weight, bias, running_mean, running_var, training, momentum, eps, cudnn_enabled): |
| |
| if torch.is_autocast_enabled() and \ |
| not args_have_same_dtype([input, weight, bias, running_mean, running_var]) and \ |
| sym_help._export_onnx_opset_version < 15: |
| return sym_help._onnx_opset_unsupported_detailed("BatchNormalization", 14, 15, |
| "All input tensors must have the same `dtype`." |
| " Turn off Autocast or export using opset version 15.") |
| |
| sym_help.check_training_mode(training, "batch_norm") |
| weight, bias, running_mean, running_var = sym_help._batchnorm_helper(g, input, weight, bias, running_mean, running_var) |
| out = g.op("BatchNormalization", input, weight, bias, running_mean, running_var, |
| epsilon_f=eps, |
| momentum_f=1 - momentum, |
| training_mode_i=0 if not training else 1, |
| outputs=1 if not training else 3) |
| if not training: |
| return out |
| else: |
| res, new_running_mean, new_running_var = out |
| new_running_mean.setType(running_mean.type()) |
| new_running_var.setType(running_var.type()) |
| return res |
| |
| |
| class Quantized: |
| """ |
| https://github.com/pytorch/pytorch/wiki/PyTorch-ONNX-exporter#quantized-model-export |
| """ |
| domain = "quantized" |
| |
| @staticmethod |
| def hardswish(g, x, op_scale, op_zero_point): |
| x, _, _, _ = sym_help.dequantize_helper(g, x) |
| |
| output = hardswish(g, x) |
| |
| return sym_help.quantize_helper(g, output, op_scale, op_zero_point) |